The Cambrian Evidence That Darwin Failed to Comprehend Years? Evolutionists Cannot Offer Any Logical Scenario to Answer That Question
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rhythms of the Brain
Rhythms of the Brain György Buzsáki OXFORD UNIVERSITY PRESS Rhythms of the Brain This page intentionally left blank Rhythms of the Brain György Buzsáki 1 2006 3 Oxford University Press, Inc., publishes works that further Oxford University’s objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 2006 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Buzsáki, G. Rhythms of the brain / György Buzsáki. p. cm. Includes bibliographical references and index. ISBN-13 978-0-19-530106-9 ISBN 0-19-530106-4 1. Brain—Physiology. 2. Oscillations. 3. Biological rhythms. [DNLM: 1. Brain—physiology. 2. Cortical Synchronization. 3. Periodicity. WL 300 B992r 2006] I. Title. QP376.B88 2006 612.8'2—dc22 2006003082 987654321 Printed in the United States of America on acid-free paper To my loved ones. This page intentionally left blank Prelude If the brain were simple enough for us to understand it, we would be too sim- ple to understand it. -
The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present. -
Ediacaran) of Earth – Nature’S Experiments
The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E. -
Team-Fly® Power up Your Mind
Power Up Your Mind:Y L Learn faster,F work smarterM A E T Bill Lucas NICHOLAS BREALEY PUBLISHING Team-Fly® Power Up Your Mind Learn faster, work smarter Bill Lucas N ICHOLAS B REALEY P UBLISHING LONDON First published by Nicholas Brealey Publishing in 2001 Reprinted (twice) 2002 3–5 Spafield Street PO Box 700 Clerkenwell, London Yarmouth EC1R 4QB, UK Maine 04096, USA Tel: +44 (0)20 7239 0360 Tel: (888) BREALEY Fax: +44 (0)20 7239 0370 Fax: (207) 846 5181 http://www.nbrealey-books.com http://www.powerupyourmind.com © Bill Lucas 2001 The right of Bill Lucas to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. ISBN 1-85788-275-X British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. Library of Congress Cataloging-in-Publication Data Lucas, Bill. Power up your mind : learn faster, work smarter / Bill Lucas. p. cm. Includes bibliographical references and index. ISBN 1-85788-275-X 1. Learning, Psychology of. 2. Work--Psychological aspects. I. Title. BF318 .L83 2001 153.1′5--dc21 2001035940 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise without the prior written permission of the publishers. This book may not be lent, resold, hired out or otherwise disposed of by way of trade in any form, binding or cover other than that in which it is published, without the prior consent of the publishers. -
War in the Age of Intelligent Machines
Introduction The image of the ''killer robot" once belonged uniquely to the world of science fiction. This is still so, of course, but only if one thinks of human like mechanical contraptions scheming to conquer the planet. The latest weapons systems planned by the Pentagon, however, offer a less anthropo morphic example of what machines with "predatory capabilities" might be like: pilotless aircraft and unmanned tanks "intelligent" enough to be able to select and destroy their own targets. Although the existing prototypes of robotic weapons, like the PROWLER or the BRAVE 3000, are not yet truly autonomous, these new weapons do demonstrate that even if Artificial Intel ligence is not at present sufficiently sophisticated to create true "killer robots,'' when synthetic intelligence does make its appearance on the planet, there will already be a predatory role awaiting it. The PROWLER, for example, is a small terrestrial armed vehicle, equipped with a primitive form of "machine vision" (the capability to ana lyze the contents of a video frame) that allows it to maneuver around a battlefield and distinguish friends from enemies. Or at least this is the aim of the robot's designers. In reality, the PROWLER still has difficulty negoti ating sharp turns or maneuvering over rough terrain, and it also has poor friend/foe recognition capabilities. For these reasons it has been deployed only for very simple tasks, such as patrolling a military installation along a predefined path. We do not know whether the PROWLER has ever opened fire on an intruder without human supervision, but it is doubtful that as currently designed this robot has been authorized to kill humans on its own. -
The Platinum Rule® F O R S a L E S M Ast E R Y
The Platinum Rule® FO R SALE S M ast E R Y Dr. Tony Alessandra Scott Michael Zimmerman and Dr. Joseph La Lopa PLATINUM RULE GROUP, LLC. The Platinum Rule® FO R S A L E S M ast E R Y © Copyright 2009 • All rights reserved in all media. Dr. Tony Alessandra, Scott Michael Zimmerman and Dr. Joseph La Lopa No part of this publication may be reproduced or transmitted in any form or by any means, mechanical or electronic, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from author or publisher (except by a reviewer, who may quote brief passages and/or show brief video clips in review). ISBN: 0-000000-00-0 (Hardcover) ISBN: 978-0-9819371-2-0 (Paperback) ISBN: 0-000000-00-0 (Audio) ISBN: 0-000000-00-0 (eBook) Published by: Cover & Interior Design by: Glenn Griffiths www.TheCyranoGroup.com Platinum Rule Group, LLC. 600 31st Street SW Barberton, Ohio 44203 1-330-848-0444 www.PlatinumRule.com ACKNOWLEDGE M EN ts WE ARE GRATEFUL TO ALL OF THE PSYCHOLOGISTS, sociologists, visionaries, philosophers, coaches, consultants, trainers, speakers and authors who directly and indirectly influenced our work, documented their findings and who built foundations of evidence upon which we could build. Just a sampling of these include: Michael J. O’Connor, Katherine Briggs, Jim Cathcart, Roger Dawson, John Geier, Paul Green, Phil Hunsaker, Carl Jung, Florence Littauer, Russ Watson, William Moulton Marston, David McClelland, David Merrill, Roger Reid, Larry Wilson, Bill Schwarz, Isabel Briggs Myers, Don Lowry, Janice Van Dyke and Don Hutson. -
What Is Persona?
What is Monsters and Other Childish Things? Monsters and Other Childish Things (MaOCT) is a roleplaying game written by Benjamin Baugh, based on Wild Talents by Dennis Detwiller and Greg Stolze, using the One Roll Engine (O.R.E.) that Stolze designed. In it, the players control school-age Kids (Elementary through High School, usually) who are accompanied by horrible, slavering, nightmarish Monsters that also happen to be a Kid’s best friend. They have adventures, deal with school bullies (hopefully with words, not by eating them), experiences crushes (again, hopefully without eating them) and discover the horrible secrets of other worlds on the fringes of human awareness. Good fun is had by all. What is Persona? Persona is a Japanese Roleplaying Video Game series made by Atlus. A spin-off of the Shin Megami Tensei series, Persona focuses on high schoolers pitted jointly against other-worldly forces and the crushing gravity of their own social obligations and psychological trauma. Their instrument for dealing with these are Personas: manifestations of psycho-spiritual power that come to their aid and defense. In each of the Persona games, the player controls a group of Persona users who must unravel the mysteries of some supernatural phenomena that threatens the existence of their friends, town, or even the entire world. What am I reading? The Velvet Book is a conversion module for MaOCT designed to optimize its rules for running a game inspired by the Persona series. In truth, you can run Persona with MaOCT’s vanilla rules; the Drunk and Ugly Podcast did an entire series like that (check out “Shin Megami Tensei and Other Childish Things”) and it worked just fine. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 53, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.-0LENELLUS AND OTHER GENERA OF THE MESONACID/E With Twenty-Two Plates CHARLES D. WALCOTT (Publication 1934) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 12, 1910 Zl^i £orb (gaitimovt (pnee BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.—OLENELLUS AND OTHER GENERA OF THE MESONACID^ By CHARLES D. WALCOTT (With Twenty-Two Plates) CONTENTS PAGE Introduction 233 Future work 234 Acknowledgments 234 Order Opisthoparia Beecher 235 Family Mesonacidas Walcott 236 Observations—Development 236 Cephalon 236 Eye 239 Facial sutures 242 Anterior glabellar lobe 242 Hypostoma 243 Thorax 244 Nevadia stage 244 Mesonacis stage 244 Elliptocephala stage 244 Holmia stage 244 Piedeumias stage 245 Olenellus stage 245 Peachella 245 Olenelloides ; 245 Pygidium 245 Delimitation of genera 246 Nevadia 246 Mesonacis 246 Elliptocephala 247 Callavia 247 Holmia 247 Wanneria 248 P.'edeumias 248 Olenellus 248 Peachella 248 Olenelloides 248 Development of Mesonacidas 249 Mesonacidas and Paradoxinas 250 Stratigraphic position of the genera and species 250 Abrupt appearance of the Mesonacidse 252 Geographic distribution 252 Transition from the Mesonacidse to the Paradoxinse 253 Smithsonian Miscellaneous Collections, Vol. 53, No. 6 232 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 53 Description of genera and species 256 Nevadia, new genus 256 weeksi, new species 257 Mcsonacis Walcott 261 niickwitzi (Schmidt) 262 torelli (Moberg) 264 vermontana -
Nonverbal Dictionary
The The NONVERBAL DICTIONARY of GESTURES, SIGNS & BODY LANGUAGE CUES From Adam's-Apple-Jump to Zygomatic Smile By David B. Givens © 2002 (Spokane, Washington: Center for Nonverbal Studies Press) Items in this Dictionary have been researched by anthropologists, archaeologists, biologists, linguists, psychiatrists, psychologists, semioticians, and others who have studied human communication from a scientific point of view. Every effort has been made to cite their work in the text. Definitions, meanings, and interpretations left uncredited are those of the author. Gestures and consumer products with http://members.aol.com/nonverbal2/diction1.htm (1 of 2) [27/04/02 05:54:42] The current trademark registrations are identified with the ® symbol. Entries in The Dictionary. There have been many who, not knowing how to mingle the useful and the pleasing in the right proportions, have had all their toil and pains for nothing . --Cervantes (Don Quixote) Dedication "A masterful piece of work" --American Library Association "Highly recommended" --New Scientist "Very interesting reading" --The Houston Chronicle "Monumental" --Yahoo! Picks of the Week "Site of the Day Award" --WWW Virtual Library WWW Virtual Library "Best" Site © 2002 by David B. Givens, Ph.D. Center for Nonverbal Studies http://members.aol.com/nonverbal2/diction1.htm (2 of 2) [27/04/02 05:54:42] adajum ADAM'S-APPLE-JUMP Body movement. 1. A conspicuous up-and-down motion of the Adam's apple. 2. A movement of the throat visible while gulping or swallowing, as in nervousness. Usage: The Adam's-apple-jump is an unconscious sign of emotional anxiety, embarrassment, or stress. -
High Ecological Complexity in Benthic Ediacaran Communities
ARTICLES https://doi.org/10.1038/s41559-018-0663-7 High ecological complexity in benthic Ediacaran communities Simon A. F. Darroch 1*, Marc Laflamme2 and Peter J. Wagner3 A long-running debate over the affinities of the Neoproterozoic ‘Ediacara biota’ has led to contrasting interpretations of Ediacaran ecosystem complexity. A ‘simple’ model assumes that most, if not all, Ediacaran organisms shared similar basic ecologies. A contrasting ‘complex’ model suggests that the Ediacara biota more likely represent organisms from a variety of different positions on the eukaryotic tree and thus occupied a wide range of different ecologies. We perform a quantitative test of Ediacaran ecosystem complexity using rank abundance distributions (RADs). We show that the Ediacara biota formed complex-type communities throughout much of their stratigraphic range and thus likely comprised species that competed for different resources and/or created niche for others (‘ecosystem engineers’). One possible explanation for this pattern rests in the recent inference of multiple metazoan-style feeding modes among the Ediacara biota; in this scenario, different Ediacaran groups/clades were engaged in different methods of nutrient collection and thus competed for different resources. This result illustrates that the Ediacara biota may not have been as bizarre as it is sometimes suggested, and provides an ecological link with the animal-dominated benthic ecosystems of the Palaeozoic era. he terminal Neoproterozoic Ediacara biota (570–541 Ma) number of basic resource types being partitioned13. One class of represents the first major radiation of large, morphologically RAD models supposes that species in a community compete for complex multicellular eukaryotes. Given their position at the roughly the same resources. -
Exceptionally Preserved Jellyfishes from the Middle Cambrian Paulyn Cartwright1, Susan L
Exceptionally Preserved Jellyfishes from the Middle Cambrian Paulyn Cartwright1, Susan L. Halgedahl2, Jonathan R. Hendricks3, Richard D. Jarrard2, Antonio C. Marques4, Allen G. Collins5, Bruce S. Lieberman3* 1 Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America, 2 Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, United States of America, 3 Department of Geology, and Division of Invertebrate Paleontology, Natural History Museum, University of Kansas, Lawrence, Kansas, United States of America, 4 Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Sa˜o Paulo, Brazil, 5 National Systematics Laboratory of NOAA Fisheries Service, National Museum of Natural History, Smithsonian Institution, Washington, D. C., United States of America Cnidarians represent an early diverging animal group and thus insight into their origin and diversification is key to understanding metazoan evolution. Further, cnidarian jellyfish comprise an important component of modern marine planktonic ecosystems. Here we report on exceptionally preserved cnidarian jellyfish fossils from the Middle Cambrian (,505 million years old) Marjum Formation of Utah. These are the first described Cambrian jellyfish fossils to display exquisite preservation of soft part anatomy including detailed features of structures interpreted as trailing tentacles and subumbrellar and exumbrellar surfaces. If the interpretation of these preserved characters is correct, their presence is diagnostic of modern jellyfish taxa. These new discoveries may provide insight into the scope of cnidarian diversity shortly after the Cambrian radiation, and would reinforce the notion that important taxonomic components of the modern planktonic realm were in place by the Cambrian period. -
Chemostratigraphic Correlations Across the First Major Trilobite
www.nature.com/scientificreports OPEN Chemostratigraphic correlations across the frst major trilobite extinction and faunal turnovers between Laurentia and South China Jih-Pai Lin 1*, Frederick A. Sundberg2, Ganqing Jiang3, Isabel P. Montañez4 & Thomas Wotte5 During Cambrian Stage 4 (~514 Ma) the oceans were widely populated with endemic trilobites and three major faunas can be distinguished: olenellids, redlichiids, and paradoxidids. The lower–middle Cambrian boundary in Laurentia was based on the frst major trilobite extinction event that is known as the Olenellid Biomere boundary. However, international correlation across this boundary (the Cambrian Series 2–Series 3 boundary) has been a challenge since the formal proposal of a four-series subdivision of the Cambrian System in 2005. Recently, the base of the international Cambrian Series 3 and of Stage 5 has been named as the base of the Miaolingian Series and Wuliuan Stage. This study provides detailed chemostratigraphy coupled with biostratigraphy and sequence stratigraphy across this critical boundary interval based on eight sections in North America and South China. Our results show robust isotopic evidence associated with major faunal turnovers across the Cambrian Series 2–Series 3 boundary in both Laurentia and South China. While the olenellid extinction event in Laurentia and the gradual extinction of redlichiids in South China are linked by an abrupt negative carbonate carbon excursion, the frst appearance datum of Oryctocephalus indicus is currently the best horizon to achieve correlation between the two regions. Te international correlation of the traditional lower–middle Cambrian boundary has been exceedingly difcult primarily due to apparent diachroniety of the datum species used to defne the boundary refecting the endemic faunas.