Randall M. German Fundamentals and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Randall M. German Fundamentals and Applications Randall M. German Particulate Composites Fundamentals and Applications Particulate Composites Randall M. German Particulate Composites Fundamentals and Applications Randall M. German San Diego State University San Diego, CA, USA ISBN 978-3-319-29915-0 ISBN 978-3-319-29917-4 (eBook) DOI 10.1007/978-3-319-29917-4 Library of Congress Control Number: 2016933672 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland Dedicated to John Lee Johnson Preface Engineering materials continue to encounter challenges for new property combi- nations, and these challenges are leading to many hybrid materials known as composites. Particulate composites are formed using powders to create property combinations not available in traditional engineering compositions. This book provides engineers with information relevant to meeting the challenges on synthe- sis, selection, fabrication, and design associated with applying composites to demanding applications. Growth in the field is accelerating as we learn more about how to deliver novel property combinations. Further, the shaping flexibility associated with particles provides compelling economic benefit. Growth in the particulate composites is evident in patents, journal publications, and press releases. For example, a new composite of gold and titanium nitride is employed in the newest smart watches. The 18-karat watch has exceptional wear resistance beyond that of traditional jewelry. The 75 wt% Au (46 vol.%) gives elegance, while the hard, gold-colored TiN provides 400 HV hardness, tenfold higher than pure gold. This is just one of many ideas. Millions of formulations are possible, with tremendous flexibility in composition, microstructure, properties, and performance. Although the field is challenging to master, at the same time the performance gains are most attractive. Only now are we appreciating the full spectrum of opportunities. Although particulate composites are everywhere, the field is poorly organized. Predictive calculations are ignored or missing. Consequently, product development efforts rely on the empirical approach to see what works. In this book, the underlying principles are emphasized with attention to the critical factors. Important aspects are detailed with regard to the relations between phases, composition, powder charac- teristics, microstructure, fabrication, and properties. The resulting composites are isotropic, unlike long fiber graphite and fiberglass composites. Accordingly, a wide array of products are treated as part of this book. The intent is to introduce particulate composites in a manner relevant to training the next generation of innovators. San Diego, CA, USA Randall M. German vii Acknowledgements I am grateful to several individuals for support on this project. The idea for the book arose in discussions with a number of individuals associated with the Center for Innovative Sintered Products at Penn State University. But it took several years to realize the end product. I am especially appreciative of the help from the following experts: Sundar Atre, Animesh Bose, Louis Campbell, Robert Dowding, Zak Fang, Arun Gokhale, Mark Greenfield, Anthony Griffo, Ozkan Gulsoy, Anita Hancox, John Johnson, John Keane, Young Sam Kwon, Todd Leonhardt, Jason Liu, Yixiong Liu, Kathy Lu, Hideshi Muira, Neal Myers, Seong Jin Park, Leo Praksh, Joe Sery, Ivi Smid, Jose Torralba, Anish Upadhyaya, Ridvan Yamanoglu, and Rudy Zauner. A draft copy of this book was used by students at SDSU who provided useful comments, especially helpful were detailed comments from Hamood Almoshawah, Carolos-Jose Andallo, Sonny Birtwistle, Jonathan Briend, Vanessa Bundy, Justin Camba, Jeremiah Cox, Sam Delaney, Michael Diomartich, Abhi Dhanani, Natalia Ermolaeva, Britney Finley, Ian Gardner, Rebecca Gloria, Deanna Key, Akash Khatawate, Adam Lane, Leo Malmeryd, Falon Mannus, Robert McClellan, Cesar Ocampo, Nicholas Schwall, Nika Sedghi, Lauren Parrett, Nathan Reed, Matthew Revie, Marc Schumacher, Amritpal Singh, Arturo Sotomayorgayosso, Meena Wasimi. Oleg Usherenko, and Wes Yeagley. ix Contents 1 Introduction ......................................... 1 Context ............................................. 1 Composites . 2 Laminates, Fibers, Whiskers, Particles ...................... 7 History ............................................. 8 Shorthand Notations ................................... 10 Phase Connectivity . ................................... 12 Novel Properties ...................................... 13 Summary . 18 Study Questions . ..................................... 19 References . 20 2 Background Definitions ................................. 23 Key Terms Used in Composites . 23 Study Questions . ..................................... 32 References . 33 3 Analysis Techniques ................................... 35 Introduction ......................................... 35 Dimensional Testing . 36 Property Distributions . 38 Tests for Composition and Phases . 41 Density and Porosity Tests . .................. 43 Archimedes Technique ............................... 44 Pycnometry Technique ............................... 46 Hardness ............................................ 47 Brinell Hardness ................................... 47 Vickers Hardness . 48 Rockwell Hardness . 49 Tests for Mechanical Properties . 50 Nondestructive Tests ................................ 50 Strength Tests . 51 xi xii Contents Fatigue Tests . ............................ 56 Impact Tests . ................................... 58 Fracture Toughness ................................. 59 Magnetic Property Tests . 62 Tests for Thermal Properties . 64 Electrical Property Tests . .............................. 66 Environmental Degradation, Corrosion, and Wear Tests ......... 67 Biocompatibility ...................................... 69 Microstructure Quantification . .......................... 70 Sample Preparation ................................. 70 Optical Imaging . 71 Electron Imaging . ................................ 73 Other Imaging ..................................... 75 Standards and Specification Bodies ........................ 76 Comments on Accuracy and Precision . .................... 76 Study Questions . ..................................... 78 References . 80 4 Property Models ...................................... 83 Introduction ......................................... 83 Density ............................................. 85 Hardness ............................................ 86 Elastic Modulus . .................................... 91 Poisson’sRatio....................................... 95 Strength . 96 Failure Distributions . ................................. 102 Ductility . ................................... 104 Deformation and Fracture . 106 High Temperature . ................................... 112 Heat Capacity ........................................ 115 Thermal Expansion .................................... 116 Thermal Conductivity . ................................. 119 Thermal Shock Resistance ............................... 121 Thermal Fatigue . .................................... 122 Electrical Conductivity . ............................. 122 Magnetic Behavior .................................... 125 Wear Properties ....................................... 126 Sound Attenuation . .................................. 127 Comments on Property Models . ........................ 127 Study Questions . ..................................... 130 References . 132 5 Constituents .......................................... 137 Leading Candidates . 137 Constituent Selection Protocol . 140 Contents xiii Illustrated Definition Document: Thermal Management .......... 142 Illustrated Selection Protocol: Thermal Management ............ 143 Example Definition Documents . 146 Materials for Wire Drawing Dies ....................... 146 Self-Winding Watch Weights . ......................... 147 Frangible Ammunition ............................... 148 Radiation Containment . .............................. 150 Concrete Saw Segments .............................. 151 Stereo Headset Speaker Magnets ....................... 152 Electric Bicycle Motor Sectors . 152 Hot Sheet-Steel Descaling Abrasive . 153 Jet Engine Rotating Bearing . ........................ 154 Chromatography Filters
Recommended publications
  • The Relationship Between Microstructure and Magnetic Properties of Alnico Alloys
    The relationship between microstructure and magnetic properties of alnico alloys Citation for published version (APA): Vos, de, K. J. (1966). The relationship between microstructure and magnetic properties of alnico alloys. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR287613 DOI: 10.6100/IR287613 Document status and date: Published: 01/01/1966 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Solidification of Immiscible Alloys Under High Magnetic Field
    metals Review Solidification of Immiscible Alloys under High Magnetic Field: A Review Chen Wei 1, Jun Wang 1,*, Yixuan He 1, Jinshan Li 1,* and Eric Beaugnon 2 1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] (C.W.); [email protected] (Y.H.) 2 INSA Toulouse, University Grenoble Alpes, University Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, 38000 Grenoble, France; [email protected] * Correspondence: [email protected] (J.W.); [email protected] (J.L.) Abstract: Immiscible alloy is a kind of functional metal material with broad application prospects in industry and electronic fields, which has aroused extensive attention in recent decades. In the solidification process of metallic material processing, various attractive phenomena can be realized by applying a high magnetic field (HMF), including the nucleation and growth of alloys and mi- crostructure evolution, etc. The selectivity provided by Lorentz force, thermoelectric magnetic force, and magnetic force or a combination of magnetic field effects can effectively control the solidification process of the melt. Recent advances in the understanding of the development of immiscible alloys in the solidification microstructure induced by HMF are reviewed. In this review, the immiscible alloy systems are introduced and inspected, with the main focus on the relationship between the migration behavior of the phase and evolution of the solidification microstructure under HMF. Special attention is paid to the mechanism of microstructure evolution caused by the magnetic field and its influence on performance. The ability of HMF to overcome microstructural heterogeneity in the solidification Citation: Wei, C.; Wang, J.; He, Y.; Li, process provides freedom to design and modify new functional immiscible materials with desired J.; Beaugnon, E.
    [Show full text]
  • Exploration of Alnico Permanent Magnet Microstructure And
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Exploration of Alnico permanent magnet microstructure and processing for near final shape magnets with solid-state grain alignment for improved properties Aaron Gregory Kassen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Materials Science and Engineering Commons, and the Mechanics of Materials Commons Recommended Citation Kassen, Aaron Gregory, "Exploration of Alnico permanent magnet microstructure and processing for near final shape magnets with solid-state grain alignment for improved properties" (2018). Graduate Theses and Dissertations. 16390. https://lib.dr.iastate.edu/etd/16390 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Exploration of Alnico permanent magnet microstructure and processing for near final shape magnets with solid-state grain alignment for improved properties by Aaron Gregory Kassen A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Materials Science & Engineering Program of Study Committee: Iver E. Anderson, Major Professor Scott Chumbley David C. Jiles Matthew J. Kramer Alan M. Russell The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred.
    [Show full text]
  • Development of Radically Enhanced Alnico Magnets (Dream) for Traction Drive Motors Iver E
    Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors Iver E. Anderson (PI) Matthew J. Kramer (Co-PI) Ames Laboratory (USDOE) June 19, 2018 Project ID # ELT015 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Barriers & Targets* . High energy density permanent magnets (PM) needed for compact, and power Timeline density >50 kW/L). Reduced cost (<$3.3/kW): Efficient (>94%) • Start – October 2014 motors require aligned magnets with net- shape and simplified mass production. • Finish - September 2018 . RE Minerals: Rising prices of rare earth 85% Complete (RE) elements, price instability, and looming shortage, especially Dy. Performance & Lifetime: High temperature Budget tolerance (180-200˚C) and long life (15 yrs.) needed for magnets in PM motors. • Total funding - DOE share 100% • FY 17 Funding - $1400K Partners • Baldor, Carpenter, U. Wisconsin, • FY 18 (plan) Funding - $700K NREL, Ford, GM, UQM, (collaborators) • ORNL, U. Nebraska, Arnold Magnetic Tech. (DREaM subcontractors) • Project lead: Ames Lab *2025 VT Targets 2 Project Relevance/Objectives To meet 2025 goals for enhanced specific power, power density, and reduced (stable) cost with mass production capability for advanced electric drive motors, improved alloys and processing of permanent magnets (PM) must be developed. Likely rising RE cost trend and unpredictable import quotas (by China) for RE supplies (particularly Dy) motivates this research effort to improve (Fe-Co)-based alnico permanent magnet alloys (with reduced Co) and processing methods to achieve high magnetic strength (especially coercivity) for high torque drive motors. Objectives for the fully developed PM material: Provide competitive performance in advanced drive motors, compared to IPM motors with RE-PM.
    [Show full text]
  • Effect of Tensile Load on the Mechanical Properties of Alsic
    EKPU: EFFECT OF TENSILE LOAD ON THE MECHANICAL PROPERTIES OF AlSiC COMPOSITE MATERIALS 301 Effect of Tensile Load on the Mechanical Properties of AlSiC Composite Materials using ANSYS Design Modeller Mathias Ekpu* Department of Mechanical Engineering, Delta State University, Abraka, Oleh Campus, Nigeria. ABSTRACT: Aluminium Silicon Carbide (AlSiC) composite materials are used in the electronics industries and other manufacturing companies hence, manufacturing of AlSiC composite materials with the right properties for different applications are vital to most industries. The challenge of testing the same specimens for different properties remains, because most of the tests carried out are destructive. Hence, the use of ANSYS finite element simulation software for the design and analysis of a flat bar specimen. Loads between 3 kN to 21 kN were applied on the specimen since it is within the operating limit of a Universal Tensile Testing Machine (UTTM), while both ends are fixed. The AlSiC composite materials used in this study have a composition of 63 vol% Al (356.2) and 37 vol% SiC and, the results showed that stress was directly proportional to strain. While the calculated Young’s modulus from the stress versus strain plot was approximately 167 GPa for the different tensile loads applied. In addition, the total deformation of the AlSiC composite material increased as the load was increased. Also, the highest deformation of the material was observed around the centre of the test specimen. This is synonymous with the failure observed in practical testing of specimens. KEYWORDS: AlSiC, tensile load, aluminium MMC, stress analysis, deformation, ANSYS [Received May 31, 2020, Revised Oct.
    [Show full text]
  • Parametricstudyoffrictionstirweldi
    www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 Parametricstudyoffrictionstirweldingofaluminiumall oy6061andaluminium Sic matrix composite Chintan Patel1,Mr.chinmay shah2, PGFellow, MechanicalEngineeringDept., Parulinstituteoftechnology, 2Dept.ofMech.Engg. FacultyofEnggandtech., ParulUniversityofBaroda, Abstract: Now, a day’s friction stir welding process has many advantages compared to tradinational welding process. The present work aims assign to prospect to weld two work pieces of aluminum alloy 6061 and aluminum silicon carbide composite and study the effect of mechanical properties of welding joints. In this experimental work welding will be carried out by using different welding speed and tool rotation speed. The Hardness, tensile strength and mechanical properties will be carried out by using different mechanical test. Introduction: Friction stir welding invented by Wayne Thomas at TWI( The Welding institute) Ltd in 1991.It overcomes many of the problem associated with convention joining techniques. Friction stir welding is solid state joining process that uses a non-consumable tool to join two facing work pieces without melting the work pieces material. Heat is generated by friction between the rotating tool and work piece material, which leads to a soften region near the tool. This heat is without reaching melting point and allows traversing of the tool along the weld line. The plasticized material is transferred the front edge of the tool to back edge of the tool of the tool probe and it’s forged by the intimate contact of the tool shoulder and pin profile There are important welding parameters are: 1. Tool design: The design of the tool is critical factor as good tool can improve both the quality of the weld and the maximum possible welding speed.
    [Show full text]
  • Stirring___Mixing__Shaking___H
    MAGNETIC STIRRER - “with hot plate” Explosion proof, maintenance free brushless DC motor with low noise level offers a stirring volume up to 20 lt with a smooth start and quick stop. Ceramic top plate guarantees perfect chemical resistance against acids. Also provides impact resistant, easily cleanable, scratch proof surface with excellent heat distribution. Integrated design of the heater and the top plate provides excellent heat transfer rate and quick heat up capability. Hermetically sealed aluminium alloy housing protects all mechanical and electronic components from aggressive effects and guarantees safety with a long life time. Electronic speed control from 100 to 1500 rpm provides a gentle revolution and precise stirring speed. PID temperature technology enables excellent heating control from ambient temperature to 550°C. Offers integrated temperature control (+/- 0,2°C accuracy) with external PT1000 temperature sensor and support rod. Overheat protection circuit turns off the heater if the top plate temperature reaches 580°C for any reason. Hot surface warning display indicates any residual heat even if switched off. LCD display will show “HOT” if hotplate temperature is over 50°C. Large LCD panel for simultaneous display for set & actual temperature and set & actual speed. Special software enables control and documentation of all values via RS232 interface. Supplied complete with PT1000 temperature sensor, support rod and fixing clamp. Explosion proof, maintenance free catalogue number 613.06.001 brushless DC motor with low noise level offers a stirring volume up to 20 dimensions / weight (mm / kg) 215 x 360 x 112 / 5,3 lt with a smooth start and quick stop.
    [Show full text]
  • STUDY of Alsic METAL MATRIX COMPOSITE BASED FLAT THIN
    13th International Heat Pipe Conference (13th IHPC), Shanghai, China, September 21-25, 2004. 678'<2)$O6L&0(7$/0$75,;&20326,7(%$6(' )/$77+,1+($73,3( ;LQKH7DQJ (UQVW+DPPHO:DOWHU)LQGO7KHRGRU6FKPLWW'LHWHU7KXPIDUW Electrovac GmbH, Aufeldgasse 37-39, 3400 Klosterneuburg, Austria. *Corresponding author: [email protected], www.electrovac.com Tel: (+43)-2243-450405, Fax: (+43)-2243-450698 0DQIUHG*UROO0DUFXV6FKQHLGHU6DPHHU.KDQGHNDU IKE, Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany. Tel: (+49)-711-685-2481/2138, Fax: (+49)-711-685-2010, www-ew.ike.uni-stuttgart.de $%675$&7 AlSiC based flat thin heat pipe prototypes (143.8 x 80.8 x 5 mm3 outer dimensions) are manufactured. The manufacture process including wick structure design, AlSiC plate processing and plating, soldering the subparts, and finally filling and sealing is presented in this paper. Considering satellite launch conditions, vibration tests involving low/high level sine sweep, medium/low level random and full random are carried out. The temperature profiles over the entire heat pipe are measured by means of infrared (IR) scanning to study the thermal resistance, heat transfer capacity and heat pipe performance degradation, if any. Both horizontal and vertical orientations with different heating-cooling modes are employed in the performance tests. AlSiC based flat thin heat pipes are proven to have excellent performance characteristics. After 42 weeks life test, thermal resistance in the range from 0.15 K/W to 0.5 K/W has been measured at thermal loads from 20 W to 140 W. The lowest thermal resistance is achieved by testing the performance vertically in the top-cooling and bottom-heating mode.
    [Show full text]
  • S.No Reg. No Company Name 1 2 AHMEDABAD MANUFACTURING and CALICO PRINTING CO
    LIST OF DEFAULTING COMPANIES IN GUJRAT S.No Reg. No Company_Name 1 2 AHMEDABAD MANUFACTURING AND CALICO PRINTING CO. LTD. 2 3 GUJARAT GINNING & MFG CO.LIMITED. 3 7 THE ARYODAYA SPG & WVG.CO.LIMITED. 4 8 40817HCHOWK & AHMEDABAD MFG CO.LIMITED. 5 9 RAJNAGAR SPG & WVG MFG.CO.LIMITED. 6 10 HMEDABAD COTTON MFG. CO.LIMITED. 7 12 12DISPLAY STATUSSTEEL INDUSTRIES PVT. LTD. 8 18 ISHWER COTTON G.N.& PRES.CO.LIMITED. 9 22 THE AHMEDABAD NEW COTTON MILLS CO.LIMITED. 10 25 BHARAT KHAND TEXTILE MANUFACTURING CO LTD 11 27 HIMABHAI MANUFACTURING CO LTD 12 29 JEHANGIR VAKIL MILLS CO PVT LTD 13 30 GUJARAT OIL MILL & MFG CO LTD 14 31 RUSTOMJI MANGALDAS & COMPANY LTD 15 34 FINE KNITTING CO LTD 16 40 AHMEDABAD LAXMI COTTON MILLS CO.LIMITED. 17 42 AHMEDABAD KAISER-I-HIND MILLS CO LTD 18 45 AHMEDABAD NEW TEXTILE MILS CO LTD 19 47 SHRI VIVEKANAND MILLS LTD 20 49 MARSDEN SPINNING & MANUFACTURING CO LTD 21 50 ASHOKA MILLS LTD. 22 54 AHMEDABAD CYCLE & MOTORS TRADING CO PVT LTD 23 68 SHRI AMRUTA MILLS LTD 24 78 VIJAY MILLS CO LTD 25 79 SHRI ARBUDA MILLS LTD. 26 81 DHARWAR ELECTRICAL INDUSTRIES LTD 27 85 ANANTA MILLS LTD 28 87 BHIKABHAI JIVABHAI & CO PVT LTD 29 89 J R VAKHARIA & SONS PVT LTD 30 99 BIHARI MILLS LIMITED 31 101 ROHIT MILLS LTD 32 106 AHMEDABAD FIBRE-SALES & SUPPLIES LTD 33 107 GUJARAT PAPER MILLS LTD 34 109 IDEAL MOTORS LTD 35 110 MODEL THEATRES PVT LTD 36 115 HIMATLAL MOTILAL & CO LTD.(IN LIQ.) 37 116 RAMANLAL KANAIYALAL & CO LTD.(LIQ).
    [Show full text]
  • Metals Polymers Ceramics
    INDUSTRY NEWS METALS POLYMERS CERAMICS Carbon fiber and aluminum honeycomb chassis enhance safety BRIEFS The chassis of this CCX Edition Koenigsegg AGY has developed sports car consists of carbon fiber and alu- ThermoBallistic composite minum honeycomb with an integrated fuel armor system laminates that combine continuous tank to optimize weight distribution and structural S-2 Glass, safety, says Koenigsegg Automotive AG, E Glass, or aramid fibers to Sweden. The body is made of pre-impreg- form X-ply sheets or nated carbon fiber/Kevlar and lightweight unidirectional tapes that sandwich reinforcements. The chrome-moly can be molded to create stainless steel subframe has integrated crash members. thermoformable ballistic The cast aluminum V-8 engine has a carbon-fiber intake manifold and a TIG-welded, ceramic- and blast protection. coated stainless steel exhaust manifold. Forged aluminum wheels are stopped by ventilated ceramic www.agy.com brake disks with aluminum calipers. Allegheny Technologies Inc. has ArvinMeritor Inc. For more information: Koenigsegg Automotive AB, An- reached an agreement with Gulf Petro- announces that its Light gelholm, Sweden; www.koenigsegg.com. chemical Industries Co. to supply ATI Vehicle Systems business group has been OmegaBond advanced tubing for GPIC’s Shape-memory polymers awarded a multi-year fertilizer production complex in the make implantable stents contract to supply Kingdom of Bahrain. OmegaBond enables Hyundai North the use of dissimilar metals in the same Shape-memory polymers that can be temporarily stretched America with an tube or pipe by advanced joining tech- or compressed into forms several times larger or smaller innovative plastic door nologies such as extrusion bonding or in- than their final shape have been developed by Georgia Insti- module and accompanying tute of Technology, Atlanta, Ga.
    [Show full text]
  • Investigation of Mechanical Properties of Aluminium Silicon Carbide Hybride Metal Matrix Composite (Mmcs)
    International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 www.ijres.org Volume 5 Issue 4 ǁ Apr. 2017 ǁ PP.88-105 Investigation of Mechanical Properties of Aluminium Silicon Carbide Hybride Metal Matrix Composite (Mmcs) Bhagwat T. Dhekwar, Aliva Mohanty, Jagdish Pradhan, Saswati Nayak Department of Mechanical Engineering, NM Institute of Engineering and Technology,Bhubaneswar , Odisha Department of Mechanical Engineering, Raajdhani Engineering College,Bhubaneswar,Odisha Department of Mechanical Engineering,Aryan Institute of Engineering and Technology Bhubnaeswar , Odisha Department of Mechanical Engineering,Capital Engineering College,Bhubaneswar,Odisha ABSTRACT: Metal Matrix Composites (MMCs) have shown great interest in recent times dueto its poetental of applications in aerospace and automotive industries because of having superior strength to weight ratio. The wide use of particular metal matrix composites for engineering application has been obstructed by the exact use of silicon carbide ( SiC) by % , hence high cost of components. Although there are several techniques used for casting technology rather it can be used to overcome this problem. Materials are frequently chosen for structural applications because they have desirable combinations of mechanical characteristics. Development of hybrid metal matrix composities has became important area of research interest in Material Science . In view of this , the present study focuses on the behaviour of aluminium silicon carbide ( AlSiC) hybrid metal matrix composities .The present study was aimed at evaluating the mechanical properties of Aluminium in the presence of silicon carbidewith different weight percentage ofsilicon carbide (5%,10%,15%& 20%)combinations.ConsequentlyAluminium metal matrix composite combines and exhibits huge strength of the reinforcement with the toughness of the matrix to achieve a combination of desirable properties not avilable in any single conventional metarial .
    [Show full text]
  • Electrical and Magnetic Properties of Metals
    \ 396-4 V) PUBLICATION a NBS SPECIAL / / National Bureau of Standards U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (I) a basis lor the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and 14) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement: coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center " for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics — Cryogenics - — Electromagnetics - — Time and Frequency '-'. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]