Reliable Moisture Determination in Power Transformers
Total Page:16
File Type:pdf, Size:1020Kb
RELIABLE MOISTURE DETERMINATION IN POWER TRANSFORMERS Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung vorgelegt von Maik Koch aus Guben Hauptberichter: Prof. Dr.-Ing. S. Tenbohlen Mitberichter: Prof. Dr. S. M. Gubanski Tag der mündlichen Prüfung: 14.02.2008 Institut für Energieübertragung und Hochspannungstechnik der Universität Stuttgart 2008 Acknowledgements At first, I will express my deepest gratitude to Professor Stefan Tenbohlen for the encouraging, cooperative and kind way of supervising this research work. Without his challenging leadership to new questions and topics the achievements of this work would not have been possible. He also ensured a close connection between University research and practical application. My special thanks appertain to the second supervisor Professor Stanislaw Gubanski for the amendments to the thesis and the very fruitful cooperation within the European research project REDIATOOL and the CIGRÉ Task Force D1.01.14 "Dielectric response diagnoses for transformer windings". The research within the European project REDIATOOL essentially accelerated the outcome of this work especially in the field of dielectric diagnostic methods. I very much appreciated and profited from the open discussions with researchers from Poznan University of Technology (Poland) and Chalmers University of Technology (Göteborg, Sweden). Furthermore I gratefully acknowledge the financial support by the European Union. The collaboration and discussions in the CIGRÉ Working Group A2.30 "Moisture Equilibrium and Moisture Migration within Transformer Insulation Systems" helped me very much to see the issue of moisture from different points of view and to relate my investigations to the findings of international experts. Many thanks go to my colleagues at the University of Stuttgart for providing a marvelous work climate and also to the workshop for preparing the laboratory set-ups. I loved to work in this great team. I am very thankful to Professor Feser who initiated this research work. The extent of this work would not have been possible without my students who practically performed a large part of the laboratory work, so I very appreciated their support. For the on-site measurements I wish to convey my gratitude to AREVA Energietechnik Mönchengladbach, RWE Netzservice Wesel and Siemens Transformers Nürnberg. As it is impossible to mention everyone by name, I must however particularly thank Dr. Ivanka Höhlein, Uwe Thieß, Tobias Stirl, Jörg Harthun, Prof. Claus Neumann, Dr. Ulrich Sundermann and Jens Füser. Special thanks belong to Dr. Michael Krüger and Steffen Kaiser of Omicron for practically applying some outcome of this work. As a non-native English speaker I very much appreciated the amendments by Chris Sharp. Finally, I express my deepest gratitude and love to my wife Carolin. It is not a small thing that she organized the celebration after the oral examination. However, far beyond this she patiently relieved my daily strain and helped me to relax together with our cheerful daughter Adina. Jauchzet, frohlocket! Auf preiset die Tage! Rühmet, was heute der Höchste getan! Soli Deo Gloria Table of Contents Abstract...................................................................................................9 1 Introduction ...................................................................................11 1.1 Power Transformers in a Liberalized Energy Market.........................11 1.2 Dangerous Effects of Moisture ...........................................................14 1.3 Sources of Water Contamination........................................................17 1.4 Aim and Structure of this Work..........................................................19 2 Direct Measurement in Oil and Cellulose....................................23 2.1 State of the Art....................................................................................23 2.2 Karl Fischer Titration..........................................................................26 2.2.1 The Karl Fischer Titration Technique.............................................26 2.2.2 Influence of Heating Temperature for Cellulose Samples..............27 2.2.3 Solvent for Oil Extraction for Cellulose Samples...........................28 2.2.4 Influence of Aging By-Products on Oil Titrations..........................28 2.2.5 Direct Injection versus Heating Method for Oil Titrations.............29 2.3 Capacitive Probes ...............................................................................30 3 Determination by Moisture Equilibrium ......................................35 3.1 State of the Art and Literature Review ...............................................35 3.2 Adsorption of Water in Cellulose Materials .......................................38 3.2.1 Moisture Sorption Isotherms...........................................................38 3.2.2 Measurement of Isotherms at Cellulose Materials..........................41 3.3 Solubility of Water in Oil ...................................................................44 3.3.1 Composition and Aging of Insulation Oil.......................................44 3.3.2 Measurement of Isotherms at Insulation Oils .................................45 3.4 Moisture Diffusion and Equilibrium...................................................49 3.5 Improved Measurements by Moisture Equilibrium............................53 3.5.1 Diagrams Adapted to the Moisture Adsorption Capacity...............53 3.5.2 Measurement via Moisture Saturation of Oil..................................57 3.5.3 Measurement of Moisture Saturation in Cellulose .........................58 4 Moisture Analysis by Dielectric Methods ...................................63 4.1 State of the Art....................................................................................63 4.1.1 Literature Review ...........................................................................63 4.1.2 A Comparative Test on the State of the Art Methods.....................65 4.2 Polarisation and Conductivity of Insulation Materials .......................69 4.2.1 Dielectric Properties – Theoretical Background.............................69 8 TABLE OF CONTENTS 4.2.2 Dielectric Properties in Time Domain ............................................71 4.2.3 Dielectric Properties in Frequency Domain....................................73 4.2.4 Modelling of Dielectric Properties..................................................77 4.3 Dielectric Properties of Oil .................................................................78 4.3.1 Ionic Conduction in Mineral Oil.....................................................78 4.3.2 Setup and Samples..........................................................................80 4.3.3 Effects of Field Strength, Moisture and Temperature.....................81 4.4 Dielectric Properties of Cellulose Models in Time Domain...............85 4.4.1 Investigated Samples and Measurement Setup...............................85 4.4.2 Influences of Moisture, Temperature, Aging and Geometry..........86 4.4.3 Linearity of the Dielectric Properties..............................................90 4.5 Dielectric Properties of Cellulose Models in Frequency Domain ......91 4.5.1 Investigated Samples and Measurement Setup...............................91 4.5.2 Results for Moisture, Temperature and Aging ...............................93 4.5.3 Influence of Oil Conductivity and Pressboard Material .................96 4.5.4 Accuracy of the Results ..................................................................98 4.6 Improved Moisture Analysis ............................................................101 5 On-Site Measurements at Power Transformers .......................107 5.1 Overview of Measurements ..............................................................107 5.2 Case Studies of Selected Transformers.............................................111 5.3 Influence of Moisture Migration.......................................................117 6 Summary, Conclusions and Suggestions ................................121 6.1 Summary and Achievements ............................................................121 6.2 Suggestions for Further Work...........................................................125 7 Appendix......................................................................................127 7.1 Zusammenfassung ............................................................................127 7.2 Recommendations for Karl Fischer Titration ...................................132 7.3 List of Publications ...........................................................................134 7.4 Definitions and Abbreviations ..........................................................136 8 References...................................................................................143 Abstract This thesis aims to provide reliable methods of assessing moisture in oil-paper- insulated power transformers. Water in power transformers causes three damaging effects: it decreases the dielectric withstand strength, accelerates cellulose aging and causes the emission of gaseous bubbles at high temperatures. Therefore knowledge about the moisture concentration in a transformer is of great importance for safe operation and for further maintenance actions. The traditional method of moisture evaluation, oil sampling with subsequent application