Complete Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Complete Dissertation VU Research Portal Chemokine Receptors CXCR3 and CXCR7 Scholten, D.J. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Scholten, D. J. (2012). Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 01. Oct. 2021 Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation Danny Scholten The work described in this thesis was performed at the Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands. This research was performed in the framework of the Dutch public-private partnership Top Institute Pharma (TI Pharma) in project “The GPCR Forum (D1-105)”. Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation Danny Scholten Design by Chris Scholten - www.chrisscholten.com Copyright © Danny Scholten, Koog aan de Zaan. All rights reserved. No part of this work may be reproduced in any form or by any means without permission of the author. ISBN: 978-94-6191-498-9 IN IN INTRO Aims of thesis Chemokines and their receptors (G protein-coupled receptors; figure 1) play important roles in cellular immunity by controlling activation and differentiation of leukocytes and directing migration of immune cells to sites of inflammation or infection. In essence, this system is tightly controlled by spatial and temporal expression of chemokines and their receptors, facilitating adequate immune responses. About 19 human chemokine receptors exist, with a total of around 50 chemokines. Some chemokines bind to multiple receptors, while others bind a single receptor, and therefore the chemokine system is highly complex (figure 2). Moreover, different cell types express distinct combinations of chemokine receptors conferring sensitivity towards specific sets of chemokine concentration gradients. Improper expression of Figure 1: Schematic representation of chemokine and/or chemokine receptors results in a variety a 7-transmembrane spanning chemo- kine receptor (GPCR) and a chemokine of immune-related diseases, like chronic inflammation, or ligand binding to it. autoimmune disease. Examples include chronic obstructive pulmonary disease (COPD), inflammatory bowel disease (IBD), rheumatoid arthritis, multiple sclerosis, allograft rejection, psoriasis, and atherosclerosis. Furthermore, the HIV-1 virus utilizes CCR5 or CXCR4 as a co-receptor to infect immune cells. In addition, a subset of chemokine receptors appears to contribute to tumorigenesis and cancer metastasis. Taken together, chemokine receptors and their ligands can be considered as interesting therapeutic targets. As such, a lot of effort has been focused on the discovery and development of small-molecule chemokine receptor antagonists. This has been rewarded by the market approval of two novel chemokine receptor inhibitors, maraviroc (CCR5) and AMD3100 (CXCR4) for treatment of HIV-1 infection and stem cell mobilization, respectively. CXCR3 is a chemokine receptor that, together with its three major ligands, CXCL9 (MIG), CXCL10 (IP-10) or CXCL11 (I-TAC) is involved in inflammatory responses, mediated mainly by T-cells. In all the above-mentioned immune-related diseases, CXCR3 and/or its ligands are found to be overexpressed, implying a role for this receptor in these diseases. Several 6 Aims of Thesis IN CCL24 CX3CL1 CXCL16 CCL1 CXCL11 CXCL13 CXCL13 CXCL9 CX3CR1 CXCL8 CCR9 CXCL7 CXCL5 CXCR6 CXCL6 CCL20 CXCL3 CCL17 CCR8 CXCR5 CXCL12 CXCL1 CCL14 CCL13 CCL16 CCR6 CXCR4 CCL11 CCL8 CCL7 CXCL12 CCL5 CCL2 CXCL11 DARC Specific CXCR7 CCL19 CXCL13 CXCL10 CCL21 CCX-CKR CCL25 CXCR3 CXCL9 CXCL11 Decoy CXCL2 CXCL7 CCL13 CCL4 CXCR2 CXCL1 CXCL3 CXCL8 CCL14 CCL12 CCL2 D6 CCL7 CXCL5 CXCL6 CCL17 CCL11 CCL3 CCL22 CCL5 CCL8 Shared CXCR1 CXCL7 CCR1 CXCL6 CCL2 CXCL8 CCL4 CCL3 CCL7 XCR1 CCL5 CCL14 CCR2 XCL1 CCL8 CCL16 CCL15 CCL2 CCR10 XCL2 CCL7 CCL23 CCR3 CCL11 CCL8 CCR7 CCL27 CCR4 CCR5 CCL12 CCL2 CCL13 CCL19 CCL28 CCL7 CCL5 CCL2 CCL24 CCL17 CCL8 CCL3 CCL26 CCL21 CCL9 CCL10 CCL4 CCL11 CCL22 CCL5 CCL13 CCL8 CCL15 CCL24 CCL11 CCL26 CCL13 CCL14 Figure 2: Chemokine receptors and their respective chemokine ligands, according to IUPHAR database (http://www. iuphar-db.org/DATABASE/GPCRListForward). Chemokines binding specific to only one receptor are displayed in gray text. Chemokine receptors binding only one chemokine are indicated as "specific", while chemokine receptors binding multiple chemokines are indicated as "shared". animal models have confirmed the therapeutic potential of targeting CXCR3 in the treatment of such diseases. The role of CXCR3 in cancer seems somehow contradictory, as reports have appeared that show either positive or negative correlation of CXCR3 and/or ligand expression on tumor growth. The chemokine receptor CXCR7 is a relatively new member of the chemokine receptor family, as it was deorphanized in 2005. Interestingly, CXCR7 shares one chemokine ligand with CXCR3, namely CXCL11, and one with CXCR4, which is CXCL12 (SDF-1). CXCR7 is an interesting receptor, as it is devoid of G protein-mediated signaling. Its actual signaling characteristics are still under debate, although there is accumulating evidence, with a contribution of this thesis, pointing to alternative signaling pathways for CXCR7. This receptor is preferentially expressed during embryonic development, but is also present on a variety of transformed cells. In the past years, it has become increasingly clear that CXCR7 plays an important role in tumorigenesis and metastasis of e.g. breast, prostate, or lung cancer, either by direct receptor signaling, or transactivation of other receptors. Alternatively, a chemokine scavenger role was also suggested for CXCR7, where it acts as a ‘chemokine sink’, modulating the availability of CXCL11 and CXCL12 to CXCR3 and CXCR4, and thus signaling via these receptors. In addition, this potentially provides a directional cue, not only for cellular movement in embryonal AIms of Thesis 7 IN IN development, but also for metastasizing tumor cells. Altogether, both CXCR3 and CXCR7 chemokine receptors are interesting from a therapeutic point of view. In case of CXCR3, a lot of efforts by academic groups and industry have focused on the discovery of CXCR3 antagonists, to counteract the generally observed increased infiltration of CXCR3-expressing immune cells in diseased tissue, likely due to aberrant ligand and/or receptor expression. The emerging evidence pointing to an involvement of CXCR3 and its ligands in processes like wound healing, suggests a role for CXCR3 agonism as therapeutic approach in some cases. Figure 3 shows a selection of small-molecule compounds binding to CXCR3 subject of our studies presented in this thesis. Aims 1. As little was known on how small molecules (figure 3) interact with CXCR3, one of the aims of this thesis was to understand the molecular mechanism by which small-molecule antagonists and agonists bind to CXCR3 compared to the relatively large chemokines (±10- 20 fold size difference), and to elucidate whether these molecules mediate their effects via orthosteric or allosteric mechanisms. 2. CXCR7 is a relatively new receptor and not much is known about its signaling properties. As such, we aimed to characterize the function of this receptor, comparing it to CXCR3, and to unravel the molecular determinants that are key players in its regulation. O Cl N Cl H I N N N Cl NH N N VUF11211 VUF10990 VUF11418 (antagonist) (antagonist) (agonist) O O O O O N N N O N N N N O N N F3C N N O HN O O N F3CO F H AMG-487 NBI-74330 (antagonist) (antagonist) NH3 VUF10661 (agonist) Figure 3: Chemical structures of small CXCR3 molecules used in this thesis 8 Aims of Thesis Outline Chapter 1 provides a general introduction to chemokine receptors, including chemokine binding and receptor activation and characteristics of small molecule binding to this class of receptors. A snapshot of novel disclosures concerning small molecules in clinical trials for treatment of chemokine-related disease, is given in chapter 2. Chapter 3 describes the detailed functional and binding analysis of small-molecule CXCR3 antagonists, and how they behave on different species variants of the receptor. A small-molecule CXCR3 agonist was subjected to detailed pharmacological characterization and compared to the CXCR3 chemokines in chapter 4. In chapter 5 the binding sites of a selection of CXCR3 ligands are mapped using site-directed mutagenesis complemented with computational modeling studies. In chapter
Recommended publications
  • The Role of Selected Chemokines and Their Receptors in the Development of Gliomas
    International Journal of Molecular Sciences Review The Role of Selected Chemokines and Their Receptors in the Development of Gliomas Magdalena Groblewska 1, Ala Litman-Zawadzka 2 and Barbara Mroczko 1,2,* 1 Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; [email protected] 2 Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-85-831-8785 Received: 29 April 2020; Accepted: 22 May 2020; Published: 24 May 2020 Abstract: Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3.
    [Show full text]
  • Structural Determinants of MIF Functions in CXCR2-Mediated Inflammatory and Atherogenic Leukocyte Recruitment
    Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment Christian Weber*†‡, Sandra Kraemer*§, Maik Drechsler†, Hongqi Lue§, Rory R. Koenen†, Aphrodite Kapurniotu¶, Alma Zernecke†, and Ju¨ rgen Bernhagen‡§ †Institute for Molecular Cardiovascular Research (IMCAR); and §Department of Biochemistry and Molecular Cell Biology, RWTH Aachen University, 52056 Aachen, Germany; and ¶Laboratory of Peptide Biochemistry, Center of Integrated Protein Science Munchen,¨ Technische Universität, D-85350 Munich, Germany Edited by Charles A. Dinarello, University of Colorado Health Sciences Center, Denver, CO, and accepted by the Editorial Board August 15, 2008 (received for review April 25, 2008) We have recently identified the archaic cytokine macrophage ing to CCR5 (i.e., HisRS) and CCR3 (i.e., AsnRS) (9, 10), and migration inhibitory factor (MIF) as a non-canonical ligand of the fragments of TyrRS mediate pro-angiogenic activity by direct CXC chemokine receptors CXCR2 and CXCR4 in inflammatory and binding to CXCR1 through a CXCL8 (also known as interleu- atherogenic cell recruitment. Because its affinity for CXCR2 was kin-8; IL-8)-like N-terminal motif consisting of residues Glu, particularly high, we hypothesized that MIF may feature structural Leu, and Arg (ELR) (11). motives shared by canonical CXCR2 ligands, namely the conserved Macrophage migration inhibitory factor (MIF) is a long- N-terminal Glu-Leu-Arg (ELR) motif. Sequence alignment and struc- known T cell cytokine discovered more than four decades ago tural modeling indeed revealed a pseudo-(E)LR motif (Asp-44-X- that more recently has been recognized to be a key mediator of Arg-11) constituted by non-adjacent residues in neighboring loops innate immunity and pleiotropic inflammatory cytokine.
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • CXCR2 Related Chemokine Receptors, CXCR1 and Regulation
    Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 This information is current as of September 23, 2021. Alon Zaslaver, Rotem Feniger-Barish and Adit Ben-Baruch J Immunol 2001; 166:1272-1284; ; doi: 10.4049/jimmunol.166.2.1272 http://www.jimmunol.org/content/166/2/1272 Downloaded from References This article cites 61 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/166/2/1272.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 Alon Zaslaver, Rotem Feniger-Barish, and Adit Ben-Baruch The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation.
    [Show full text]
  • Gene Expression Profiles in the Rat Streptococcal Cell Wall-Induced
    Available online http://arthritis-research.com/content/7/1/R101 ResearchVol 7 No 1 article Open Access Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis Inmaculada Rioja1, Chris L Clayton2, Simon J Graham2, Paul F Life1 and Marion C Dickson1 1Rheumatoid Arthritis Disease Biology Department, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK 2Transcriptome Analysis Department, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK Corresponding author: Inmaculada Rioja, [email protected] Received: 3 Jul 2004 Revisions requested: 16 Sep 2004 Revisions received: 4 Oct 2004 Accepted: 9 Oct 2004 Published: 19 Nov 2004 Arthritis Res Ther 2005, 7:R101-R117 (DOI 10.1186/ar1458)http://arthritis-research.com/content/7/1/R101 © 2004 Rioja et al., licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited. Abstract Experimental arthritis models are considered valuable tools for P < 0.01), showing specific levels and patterns of gene delineating mechanisms of inflammation and autoimmune expression. The genes exhibiting the highest fold increase in phenomena. Use of microarray-based methods represents a expression on days -13.8, -13, or 3 were involved in chemotaxis, new and challenging approach that allows molecular dissection inflammatory response, cell adhesion and extracellular matrix of complex autoimmune diseases such as arthritis. In order to remodelling. Transcriptome analysis identified 10 upregulated characterize the temporal gene expression profile in joints from genes (Delta > 5), which have not previously been associated the reactivation model of streptococcal cell wall (SCW)-induced with arthritis pathology and are located in genomic regions arthritis in Lewis (LEW/N) rats, total RNA was extracted from associated with autoimmune disease.
    [Show full text]
  • Aging T Cell Chemokine Receptor Expression In
    The Journal of Immunology T Cell Chemokine Receptor Expression in Aging1 Ruran Mo,* Jun Chen,* Yin Han,* Cecelia Bueno-Cannizares,* David E. Misek,† Pascal A. Lescure,† Samir Hanash,† and Raymond L. Yung2* Changes in chemokine receptor expression are important in determining T cell migration and the subsequent immune response. To better understand the contribution of the chemokine system in immune senescence we determined the effect of aging on CD4؉ T cell chemokine receptor function using microarray, RNase protection assays, Western blot, and in vitro chemokine transmi- ,gration assays. Freshly isolated CD4؉ cells from aged (20–22 mo) mice were found to express a higher level of CCR1, 2, 4, 5, 6 and 8 and CXCR2–5, and a lower level of CCR7 and 9 than those from young (3–4 mo) animals. Caloric restriction partially or completely restored the aging effects on CCR1, 7, and 8 and CXCR2, 4, and 5. The aging-associated differences in chemokine receptor expression cannot be adequately explained by the age-associated shift in the naive/memory or Th1/Th2 profile. CD4؉ cells from aged animals have increased chemotactic response to stromal cell-derived factor-1 and macrophage-inflammatory protein- 1␣, suggesting that the observed chemokine receptor changes have important functional consequences. We propose that the aging-associated changes in T cell chemokine receptor expression may contribute to the different clinical outcome in T cell chemokine receptor-dependent diseases in the elderly. The Journal of Immunology, 2003, 170: 895–904. he precise mechanisms linking the aging immune system (6–8). T cell-tropic HIV-1 isolates (X4 strains) preferentially use to diseases in the elderly are poorly understood.
    [Show full text]
  • Identification of an Arg-Leu-Arg Tripeptide That Contributes to The
    www.nature.com/scientificreports OPEN Identifcation of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the Received: 3 October 2017 Accepted: 15 March 2018 cytokine MIF and the chemokine Published: xx xx xxxx receptor CXCR4 Michael Lacy1, Christos Kontos2, Markus Brandhofer1, Kathleen Hille2, Sabine Gröning3, Dzmitry Sinitski1, Priscila Bourilhon1, Eric Rosenberg4, Christine Krammer1, Tharshika Thavayogarajah1, Georgios Pantouris4, Maria Bakou2, Christian Weber5,6,7, Elias Lolis4, Jürgen Bernhagen1,6,8 & Aphrodite Kapurniotu2 MIF is a chemokine-like cytokine that plays a role in the pathogenesis of infammatory and cardiovascular disorders. It binds to the chemokine-receptors CXCR2/CXCR4 to trigger atherogenic leukocyte migration albeit lacking canonical chemokine structures. We recently characterized an N-like- loop and the Pro-2-residue of MIF as critical molecular determinants of the CXCR4/MIF binding-site and identifed allosteric agonism as a mechanism that distinguishes CXCR4-binding to MIF from that to the cognate ligand CXCL12. By using peptide spot-array technology, site-directed mutagenesis, structure- activity-relationships, and molecular docking, we identifed the Arg-Leu-Arg (RLR) sequence-region 87–89 that – in three-dimensional space – ‘extends’ the N-like-loop to control site-1-binding to CXCR4. Contrary to wildtype MIF, mutant R87A-L88A-R89A-MIF fails to bind to the N-terminal of CXCR4 and the contribution of RLR to the MIF/CXCR4-interaction is underpinned by an ablation of MIF/CXCR4- specifc signaling and reduction in CXCR4-dependent chemotactic leukocyte migration of the RLR- mutant of MIF. Alanine-scanning, functional competition by RLR-containing peptides, and molecular docking indicate that the RLR residues directly participate in contacts between MIF and CXCR4 and highlight the importance of charge-interactions at this interface.
    [Show full text]
  • The G-Protein Coupled Receptor CMKLR1/Chemr23: Studies on Gene Regulation, Receptor Ligand Activation, and HIV/SIV Co-Receptor Function
    The G-protein coupled receptor CMKLR1/ChemR23: Studies on gene regulation, receptor ligand activation, and HIV/SIV co-receptor function Mårtensson, Ulrika 2005 Link to publication Citation for published version (APA): Mårtensson, U. (2005). The G-protein coupled receptor CMKLR1/ChemR23: Studies on gene regulation, receptor ligand activation, and HIV/SIV co-receptor function. Elsevier. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 An academic dissertation The G-protein coupled receptor CMKLR1/ChemR23: Studies on gene regulation, receptor ligand activation, and HIV/SIV co-receptor function by Ulrika E. A. Mårtensson Division of Molecular Neurobiology Department of Physiological Sciences Faculty of Medicine Lund University, Sweden With the approval of the Faculty of Medicine, Lund University, to be presented for public examination at the BioMedical Center (BMC), Segerfalksalen, April 2, 2005, at 9.15.
    [Show full text]
  • An Investigation Into Sex-Differences in the Regulation and Function of Toll-Like Receptors in Leukocyte Trafficking in Vivo
    An investigation into sex-differences in the regulation and function of Toll-like receptors in leukocyte trafficking in vivo A thesis submitted for the degree of Doctor of Philosophy University of London By Emma Kay Centre for Microvascular Research William Harvey Research Institute Barts & The London School of Medicine and Dentistry Queen Mary University of London Charterhouse Square London EC1M 6BQ UK 1 Acknowledgements I would first and foremost like to express my utmost thanks to Dr Ramona Scotland for giving me the opportunity to carry out this PhD. I must also express my gratitude to Dr James Whiteford for agreeing to supervise me for the last 18 months, and for his support, encouragement, dedication, and optimism for the project. I must also thank Prof Sussan Nourshargh for acting as my second supervisor and allowing me to undertake this project in the Centre for Microvascular Research, and the British Heart Foundation for the funds to support this work. I wish to thank all the members of Microvascular Research, past and present, for their welcome, support, advice, comments and expertise during the past 3 years. I am also grateful to Dr Guglielmo Rosignoli for all the help during the hundreds of hours spent in the FACS room, Dr Lorena Gomez for her help with the bone marrow work, and Arif Mustafa for his time and assistance in the BSU. I express my thanks to Andrew Leese, with whom I have shared the ‘PhD rollercoaster’ with from the beginning, who has always been there to make me smile, and with whom I hope to stay friends for life.
    [Show full text]
  • Functional Distinction Between CXC Chemokines, Interleukin-8
    0023-6837/02/8201-015$03.00/0 LABORATORY INVESTIGATION Vol. 82, No. 1, p. 15, 2002 Copyright © 2002 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. Functional Distinction between CXC Chemokines, Interleukin-8 (IL-8), and Growth Related Oncogene (GRO)␣ in Neutrophil Infiltration Kazunori Fujiwara, Akihiro Matsukawa, Susumu Ohkawara, Katsumasa Takagi, and Masaru Yoshinaga Departments of Pathology (KF, AM, SO, MY) and Orthopedics (KF, KT), Kumamoto University School of Medicine, Honjo, Kumamoto, Japan SUMMARY: Interleukin-8 (IL-8: CXCL8) and growth related oncogene ␣ (GRO␣: CXCL1) are members of the CXC chemokines. In the present study, we explored the functional distinction between these CXC chemokines in the regulation of neutrophil infiltration. Injection of either rabbit IL-8 or GRO␣ (10 ␮g each) into rabbit knee joints resulted in a massive neutrophil infiltration in the joints. At their peak time point (6 hours), the number of neutrophils induced by IL-8 was more than that induced by GRO␣. Each chemokine induced the other chemokine in the joints. TNF␣ activity was induced in the joints after administration of GRO␣, but not IL-8. Treatment with anti-GRO␣ mAb and/or anti-TNF␣ mAb failed to inhibit IL-8-induced neutrophil infiltration. In contrast, either anti-IL-8 IgG or anti-TNF␣ mAb decreased GRO␣-induced response, and the inhibition was further enhanced by coadministration of these antibodies. Thus, it appears that IL-8 acts directly, whereas GRO␣ acts indirectly, in part, on neutrophil infiltration. The distinct difference in TNF␣ production between IL-8 and GRO␣ was further investigated.
    [Show full text]
  • Roles of Chemokines in Thymopoiesis: Redundancy and Regulation
    266 Cellular & Molecular Immunology Review Roles of Chemokines in Thymopoiesis: Redundancy and Regulation Wenxian Fu1 and Weifeng Chen1, 2 Thymus is the primary lymphoid organ involved in the development of thymocytes. Maturation related events of thymocytes within thymus, especially the widely discussed directional migration of thymocytes, is regulated by chemokines via chemokine receptors mediated signaling pathway. Multiple types of chemokines and chemokine receptors, as components of the network-interaction within thymic microenvironment, are involved in the thymopoiesis. It appears that these chemokines are functionally redundant and such phenomenon may be explained not only by the promiscuous, non-one-to-one matching between ligands-receptors within CXC or CC chemokine subfamily, but also by the various spatio-temporal expression patterns within different cell types and developmental stages. The redundancy and regulation of thymus expressed chemokines and chemokine receptors during thymocyte development are herein discussed. Cellular & Molecular Immunology. 2004;1(4):266-273. Key Words: chemokine, chemokine receptor, redundancy, regulation, thymopoiesis Introduction chemokines are produced within the lymphoid tissues and are involved in homeostatic lymphocyte traffic, comprising The chemokines are a family of small, structurally related the ones participating in thymopoiesis we will discuss here. cytokines, functionally involved in leukocyte activation Indeed, many chemokines may play a dual role, acting in and migration. They are divided into four subfamilies inflammatory process, and as factors triggering the termed the CXC, CC, C and CX3C chemokine, respectively, migration of lymphocytes in central and peripheral immune based on the structural and genetic considerations. The organs, depending on the spatio-temporal expression and CXC family is characterized by an amino acid positioned regulation.
    [Show full text]
  • Inflammatory Chemokines in Atherosclerosis
    cells Review Inflammatory Chemokines in Atherosclerosis Selin Gencer 1,† , Bryce R. Evans 2,†, Emiel P.C. van der Vorst 1,3,4,5,‡ , Yvonne Döring 1,2,3,‡ and Christian Weber 1,3,6,7,*,‡ 1 Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; [email protected] (S.G.); [email protected] (E.P.C.v.d.V.); [email protected] (Y.D.) 2 Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; [email protected] (B.R.E.); [email protected] (Y.D.) 3 German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany 4 Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany 5 Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands 6 Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands 7 Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany * Correspondence: [email protected] † These authors contributed equally to this manuscript and share first authorship. ‡ These authors contributed equally to this manuscript and share last authorship. Abstract: Atherosclerosis is a long-term, chronic inflammatory disease of the vessel wall leading to the formation of occlusive or rupture-prone lesions in large arteries. Complications of atherosclerosis can become severe and lead to cardiovascular diseases (CVD) with lethal consequences. During the last three decades, chemokines and their receptors earned great attention in the research of atherosclerosis as they play a key role in development and progression of atherosclerotic lesions.
    [Show full text]