Background and Significance

Total Page:16

File Type:pdf, Size:1020Kb

Background and Significance ROLE OF CHEMOKINES IN REGULATING OLIGODENDROCYTE DEVELOPMENT, ASTROGLIOSIS, AND DEMYELINATING DISEASES by AMBER E. KERSTETTER-FOGLE Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Dr. Robert H. Miller Department of Neuroscience CASE WESTERN RESERVE UNIVERSITY January, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Amber E. Kerstetter-Fogle________________________ candidate for the _________Ph.D.__________degree *. (signed)______Jerry Silver________________________ (chair of the committee) ___________ Robert H. Miller______________________ __________ Ruth Siegel_________________________ ___________Richard Zigmond_____________________ ______________________________________________ ______________________________________________ (date) __October 26, 2009_____________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Copyright © 2010 by Amber E. Kerstetter-Fogle All rights reserved This work is dedicated to my husband, Gary D. Fogle Jr. This is as much an accomplishment of his as it is mine. He has given up so much for me to get where I am today. I am thankful and greatful for the support and love he has given me all these years. TABLE OF CONTENTS List of Figures 3 Preface 5 Acknowledgements 6 List of Abbreviations 8 Abstract 10 Chapter 1 Background and Introduction I. Cellular composition of the nervous system 12 a. Astrocytes role in central nervous system function 13 b. Microglia: the primary immune defense in the CNS 15 c. Oligodendrocyte development and unique features 17 II. Inflammatory reaction and pathology in the CNS 21 a. Cytokines and their responsibility in inflammatory response 22 b. Chemokines and cytokines in development and disease 23 c. CXCR2 function and role in oligodendrocyte development and pathology 25 III. Demyelinating disorders and Multiple Sclerosis 27 a. Current MS treatments modulate symptoms and inflammation 31 b. Experimental models of Multiple Sclerosis 32 c. Remyelination success and failure in MS 36 IV. Primary hypothsis of this dissertation 38 Chapter 2 Inhibition of CXCR2 signaling promotes recovery in models of Multiple Sclerosis I. Abstract 46 II. Introduction 47 III. Materials and methods 50 IV. Results 55 V. Discussion 62 Chapter 3 Regulation of astrogliosis by the chemokine CXCL1 I. Abstract 82 1 II. Introduction 84 III. Materials and methods 87 IV. Results 94 V. Discussion 100 Chapter 4 Discussion and Future Directions I. Overview 112 II. Astrogliosis may confer reason for recovery in animal models of demyelination 114 III. Neuroprotection elicited by inhibition of CXCR2 in demyelinating disorders 115 IV. Chemokine receptor/ligand promiscuity of binding 117 V. The contribution of the immune system to models of demyelination and potential targets for therapeutics 118 VI. Modulation of blood brain barrier and inflammation 121 VII. Expression of CXCL1/CXCR2 and signaling in vivo 122 VIII. Downstream signaling components of CXCR2 123 IX. Stability of antagonists 124 X. Alternate chemokine targets alone or in combination with CXCR2 inhibitors 126 XI. Ex vivo application of brain lesions may be helpful in understanding role of T cells and other cells outside the CNS 127 XII. Other demyelinating disease models and the efficacy for CXCR2 inhibitors 128 XIII. Conclusions and potential of CXCR2 inhibitors for the treatment of demyelinating disorders 130 Bibliography 133 2 LIST OF FIGURES Figure 1.1 Cell lineage of astrocytes and oligodendrocytes in the central nervous system 40 Figure 1.2 Saltatory conduction associated with myelination and clustering of sodium channels promoting efficient axonal transduction 41 Figure 1.3 Oligodendrocyte specification occurs in the ventral spinal cord and cell proliferation is conducted by locally derived signals by astrocytes 42 Figure 1.4 Canonical CXCL1/CXCR2 signaling resulting in modulation of proliferation, differentiation, and migration in a number of cell types 43 Figure 1.5 Disability progression in different types of Multiple Sclerosis 44 Figure 1.6 Model of CXCL/CXCR2 modulation in reducing immune mediated pathology and enhancement of migration and differentiation of oligodendrocyte progenitor cells 45 Figure 2.1 Paradigm for local injection of antibody or small molecule inhibitor after lysolecithin lesion 67 Figure 2.2 Structure of small molecule inhibitor against CXCR2 68 Figure 2.3 Lesion volume quantification of lysolecithin lesions 69 Figure 2.4 Myelin thickness/axonal diameter measurements in EAE and lysolecithin lesions 70 Figure 2.5 Local delivery of anti-CXCR2 antibodies reduces the size of LPC induced demyelinating lesions 71 Figure 2.6 Local delivery of CXCR2 antagonists enhances remyelination in LPC lesions 73 Figure 2.7 Systemic delivery of CXCR2 antagonists has limited effect on repair of LPC lesions 74 Figure 2.8 Inhibition of CXCR2 promotes the differentiation of spinal cord OPCs in vitro 75 Figure 2.9 Systemic inhibition of CXCR2 results in functional 3 improvement in MOG35-55 peptide induced EAE 76 Figure 2.10 Systemic inhibition of CXCR2 results in decreased cell infiltration and increased remyelination in MOG35-55 induced EAE 78 Figure 2.11 Systemic treatment with CXCR2 antagonists results in increased MBP and decreased Iba1 expression in EAE animals 80 Figure 2.12 Long term but not short term treatment with CXCR2 antagonist results in sustained remyelination 81 Figure 3.1 CXCR2 and CXCL1 mRNA is expressed by purified astrocytes in vitro 104 Figure 3.2 CSPG protein is secreted and expressed by astrocytes in response to CXCL1 treatment 105 Figure 3.3 CXCL1 treatment increases the number and protein levels of GFAP in astrocyte cultures 106 Figure 3.4 Cytokine profile in astrocyte conditioned media treated with CXCL1 demonstrate an upregulation of inflammatory mediators and migratory signals 107 Figure 3.5 CXCR2 protein is expressed in the periphery 3 days post LPC demyelination 109 Figure 3.6 The chemokine CXCL1 is upregulated around LPC lesions 3 days post demyelination and CXCR2 is expressed by GFAP expressing cells within the lesion 110 Figure 3.7 Constant intrathecal delivery of CXCL1 enhances GFAP immunohistochemistry suggesting an astrogliotic response in the spinal cord 111 Figure 4.1 Lysolecithin lesion in nude rats are decreased compared to control animals as indicated by histology 132 4 PREFACE The goal of the research described here is to define the role of CXCR2 chemokine receptor signaling in respect to development and repair of demyelinating disorders of the central nervous system. The focus of this work is specifically on the role of glia, astrocytes and oligodendrocytes, on processes involving myelin generation during development and disease. This thesis characterizes the methods of development of myelination, demyelination, and remyelination and addresses the roles of the chemokine receptor, CXCR2 and its primary ligand CXCL1 in these processes. The studies utilize a CXCR2 inhibitor in demyelinating disorder similar to Multiple Sclerois in which I demonstrate that repair is enhanced. Further, I show that CXCR2 modulates functions related to oligodendrocyte differentiation, microglial activation, and astrogliosis. Treatment of multiple models of demyelination with CXCR2 inhibitors promotes function recovery and remyelination and reduces immunological attacks. Additionally, treatment of astrocytes with the ligand, CXCL1, promotes astroliosis and may be impeding repair in demyelination. The results of this research suggest that inhibitors to CXCR2 are attractive candidates for therapeutic tools for the treatment of demyelinating disorders as they modulate astrogliosis, microgliosis, lymphoid cell entry and most importantly, oligodendrocyte maturation. 5 ACKNOWLEDGEMENTS This work was conducted in the Department of Neurosciences at Case Western Reserve University in Dr. Robert H. Miller’s laboratory. Support of this work was by the NIH and the Myelin Repair Foundation. The pioneers of this work include Dr. Shenandoah Robinson, Dr. Hui-Hsin Tsai, Dr. Dolly Padovani- Claudio and Dr. Robert Miller. Without their contributions and the Miller laboratory I would not have been able to complete this body of work. I must thank my current mentor, Dr. Robert Miller, for the freedom he allowed me in pursuing this project and allowing me to develop into an independent researcher. I envy his knowledge and expertise in a number of fields. His balance between work and family are something I hope to emulate in the future. The Miller cohort of people also aided me in development of my research and I value the friendships I have made. I must specifically thank, Sara Vandomelen for helping me with scheduling and being a support system for me. Additionally, Anne Dechant for also helping me with my development as a researcher. Lianhua Bai for helping me learn immunology, against my will, and being a great lab mate in the afterhours times, when it really matters. Anita Zaremba was a great person to work with and helped me iron out some of the issues that go along with tissue culture. I thank Molly Fuller for being a friend and great ally in the laboratory. I thank Steve Selkirk for being a mentor and helping guide me in my decisions as a researcher. Saisho Mangla was instrumental in helping me complete some experiments and aiding in my psychological outlook on the politics associated with science. He was also a great friend to me. Yee-Hsee Hsieh was a very
Recommended publications
  • Development of a Central Nervous System Axonal Myelination Assay for High Throughput Screening Karen D
    Lariosa‑Willingham et al. BMC Neurosci (2016) 17:16 DOI 10.1186/s12868-016-0250-2 BMC Neuroscience METHODOLOGY ARTICLE Open Access Development of a central nervous system axonal myelination assay for high throughput screening Karen D. Lariosa‑Willingham1,2, Elen S. Rosler1,3, Jay S. Tung1, Jason C. Dugas1,4, Tassie L. Collins1,5 and Dmitri Leonoudakis1,2* Abstract Background: Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate auto‑ immune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. Results: We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expres‑ sion of markers of differentiation over the time course of the assay. We have validated the assay scalability and consist‑ ency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination.
    [Show full text]
  • Complete Dissertation
    VU Research Portal Chemokine Receptors CXCR3 and CXCR7 Scholten, D.J. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Scholten, D. J. (2012). Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 01. Oct. 2021 Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation Danny Scholten The work described in this thesis was performed at the Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands. This research was performed in the framework of the Dutch public-private partnership Top Institute Pharma (TI Pharma) in project “The GPCR Forum (D1-105)”.
    [Show full text]
  • The Role of Selected Chemokines and Their Receptors in the Development of Gliomas
    International Journal of Molecular Sciences Review The Role of Selected Chemokines and Their Receptors in the Development of Gliomas Magdalena Groblewska 1, Ala Litman-Zawadzka 2 and Barbara Mroczko 1,2,* 1 Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; [email protected] 2 Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-85-831-8785 Received: 29 April 2020; Accepted: 22 May 2020; Published: 24 May 2020 Abstract: Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3.
    [Show full text]
  • October 2004
    Myelin Repair Foundation Research Progress Summary October 2004 This summary outlines progress made by the Myelin Repair Foundation research team since June 2004 and includes findings from on-going research funded by other sources that members of the team found relevant to MRF research plan. Since the success of MRF is dependent on collaboration, rather than reporting on the progress of individual projects, this report describes progress towards MRF’s overall research goals and the contributions of various team members towards completing our understanding of critical aspects of myelination and how it is affected by the multiple sclerosis (MS) disease process. 1. Fundamental control of myelination: There are several MRF investigations focused on understanding the processes that control both myelination in development and remyelination after myelin loss due to inflammation and cell death: • Dr. Ben Barres’ lab has screened thousands of genes and identified 46 genes, specific to the myelination process, that show significantly higher or lower activity levels during developmental myelination than before or after the myelination process. In addition, Dr. Barres’ lab has demonstrated the timing of these changes during the developmental myelination process. The next step is to analyze the function of each of these 46 genes by artificially controlling its level of activity (expression) and observing the effect it has on myelin formation. Finding ways to artificially manipulate the expression of each gene is a formidable task. Although the functional analysis of each gene in this group is a significant project that may take several years to complete because of the large number of genes to be analyzed, the initial identification of these active genes is providing clues to other MRF researchers that will help prioritize which genes to evaluate first and which to ignore.
    [Show full text]
  • Structural Determinants of MIF Functions in CXCR2-Mediated Inflammatory and Atherogenic Leukocyte Recruitment
    Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment Christian Weber*†‡, Sandra Kraemer*§, Maik Drechsler†, Hongqi Lue§, Rory R. Koenen†, Aphrodite Kapurniotu¶, Alma Zernecke†, and Ju¨ rgen Bernhagen‡§ †Institute for Molecular Cardiovascular Research (IMCAR); and §Department of Biochemistry and Molecular Cell Biology, RWTH Aachen University, 52056 Aachen, Germany; and ¶Laboratory of Peptide Biochemistry, Center of Integrated Protein Science Munchen,¨ Technische Universität, D-85350 Munich, Germany Edited by Charles A. Dinarello, University of Colorado Health Sciences Center, Denver, CO, and accepted by the Editorial Board August 15, 2008 (received for review April 25, 2008) We have recently identified the archaic cytokine macrophage ing to CCR5 (i.e., HisRS) and CCR3 (i.e., AsnRS) (9, 10), and migration inhibitory factor (MIF) as a non-canonical ligand of the fragments of TyrRS mediate pro-angiogenic activity by direct CXC chemokine receptors CXCR2 and CXCR4 in inflammatory and binding to CXCR1 through a CXCL8 (also known as interleu- atherogenic cell recruitment. Because its affinity for CXCR2 was kin-8; IL-8)-like N-terminal motif consisting of residues Glu, particularly high, we hypothesized that MIF may feature structural Leu, and Arg (ELR) (11). motives shared by canonical CXCR2 ligands, namely the conserved Macrophage migration inhibitory factor (MIF) is a long- N-terminal Glu-Leu-Arg (ELR) motif. Sequence alignment and struc- known T cell cytokine discovered more than four decades ago tural modeling indeed revealed a pseudo-(E)LR motif (Asp-44-X- that more recently has been recognized to be a key mediator of Arg-11) constituted by non-adjacent residues in neighboring loops innate immunity and pleiotropic inflammatory cytokine.
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • CXCR2 Related Chemokine Receptors, CXCR1 and Regulation
    Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 This information is current as of September 23, 2021. Alon Zaslaver, Rotem Feniger-Barish and Adit Ben-Baruch J Immunol 2001; 166:1272-1284; ; doi: 10.4049/jimmunol.166.2.1272 http://www.jimmunol.org/content/166/2/1272 Downloaded from References This article cites 61 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/166/2/1272.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 Alon Zaslaver, Rotem Feniger-Barish, and Adit Ben-Baruch The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation.
    [Show full text]
  • Gene Expression Profiles in the Rat Streptococcal Cell Wall-Induced
    Available online http://arthritis-research.com/content/7/1/R101 ResearchVol 7 No 1 article Open Access Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis Inmaculada Rioja1, Chris L Clayton2, Simon J Graham2, Paul F Life1 and Marion C Dickson1 1Rheumatoid Arthritis Disease Biology Department, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK 2Transcriptome Analysis Department, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK Corresponding author: Inmaculada Rioja, [email protected] Received: 3 Jul 2004 Revisions requested: 16 Sep 2004 Revisions received: 4 Oct 2004 Accepted: 9 Oct 2004 Published: 19 Nov 2004 Arthritis Res Ther 2005, 7:R101-R117 (DOI 10.1186/ar1458)http://arthritis-research.com/content/7/1/R101 © 2004 Rioja et al., licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited. Abstract Experimental arthritis models are considered valuable tools for P < 0.01), showing specific levels and patterns of gene delineating mechanisms of inflammation and autoimmune expression. The genes exhibiting the highest fold increase in phenomena. Use of microarray-based methods represents a expression on days -13.8, -13, or 3 were involved in chemotaxis, new and challenging approach that allows molecular dissection inflammatory response, cell adhesion and extracellular matrix of complex autoimmune diseases such as arthritis. In order to remodelling. Transcriptome analysis identified 10 upregulated characterize the temporal gene expression profile in joints from genes (Delta > 5), which have not previously been associated the reactivation model of streptococcal cell wall (SCW)-induced with arthritis pathology and are located in genomic regions arthritis in Lewis (LEW/N) rats, total RNA was extracted from associated with autoimmune disease.
    [Show full text]
  • Aging T Cell Chemokine Receptor Expression In
    The Journal of Immunology T Cell Chemokine Receptor Expression in Aging1 Ruran Mo,* Jun Chen,* Yin Han,* Cecelia Bueno-Cannizares,* David E. Misek,† Pascal A. Lescure,† Samir Hanash,† and Raymond L. Yung2* Changes in chemokine receptor expression are important in determining T cell migration and the subsequent immune response. To better understand the contribution of the chemokine system in immune senescence we determined the effect of aging on CD4؉ T cell chemokine receptor function using microarray, RNase protection assays, Western blot, and in vitro chemokine transmi- ,gration assays. Freshly isolated CD4؉ cells from aged (20–22 mo) mice were found to express a higher level of CCR1, 2, 4, 5, 6 and 8 and CXCR2–5, and a lower level of CCR7 and 9 than those from young (3–4 mo) animals. Caloric restriction partially or completely restored the aging effects on CCR1, 7, and 8 and CXCR2, 4, and 5. The aging-associated differences in chemokine receptor expression cannot be adequately explained by the age-associated shift in the naive/memory or Th1/Th2 profile. CD4؉ cells from aged animals have increased chemotactic response to stromal cell-derived factor-1 and macrophage-inflammatory protein- 1␣, suggesting that the observed chemokine receptor changes have important functional consequences. We propose that the aging-associated changes in T cell chemokine receptor expression may contribute to the different clinical outcome in T cell chemokine receptor-dependent diseases in the elderly. The Journal of Immunology, 2003, 170: 895–904. he precise mechanisms linking the aging immune system (6–8). T cell-tropic HIV-1 isolates (X4 strains) preferentially use to diseases in the elderly are poorly understood.
    [Show full text]
  • Identification of an Arg-Leu-Arg Tripeptide That Contributes to The
    www.nature.com/scientificreports OPEN Identifcation of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the Received: 3 October 2017 Accepted: 15 March 2018 cytokine MIF and the chemokine Published: xx xx xxxx receptor CXCR4 Michael Lacy1, Christos Kontos2, Markus Brandhofer1, Kathleen Hille2, Sabine Gröning3, Dzmitry Sinitski1, Priscila Bourilhon1, Eric Rosenberg4, Christine Krammer1, Tharshika Thavayogarajah1, Georgios Pantouris4, Maria Bakou2, Christian Weber5,6,7, Elias Lolis4, Jürgen Bernhagen1,6,8 & Aphrodite Kapurniotu2 MIF is a chemokine-like cytokine that plays a role in the pathogenesis of infammatory and cardiovascular disorders. It binds to the chemokine-receptors CXCR2/CXCR4 to trigger atherogenic leukocyte migration albeit lacking canonical chemokine structures. We recently characterized an N-like- loop and the Pro-2-residue of MIF as critical molecular determinants of the CXCR4/MIF binding-site and identifed allosteric agonism as a mechanism that distinguishes CXCR4-binding to MIF from that to the cognate ligand CXCL12. By using peptide spot-array technology, site-directed mutagenesis, structure- activity-relationships, and molecular docking, we identifed the Arg-Leu-Arg (RLR) sequence-region 87–89 that – in three-dimensional space – ‘extends’ the N-like-loop to control site-1-binding to CXCR4. Contrary to wildtype MIF, mutant R87A-L88A-R89A-MIF fails to bind to the N-terminal of CXCR4 and the contribution of RLR to the MIF/CXCR4-interaction is underpinned by an ablation of MIF/CXCR4- specifc signaling and reduction in CXCR4-dependent chemotactic leukocyte migration of the RLR- mutant of MIF. Alanine-scanning, functional competition by RLR-containing peptides, and molecular docking indicate that the RLR residues directly participate in contacts between MIF and CXCR4 and highlight the importance of charge-interactions at this interface.
    [Show full text]
  • The G-Protein Coupled Receptor CMKLR1/Chemr23: Studies on Gene Regulation, Receptor Ligand Activation, and HIV/SIV Co-Receptor Function
    The G-protein coupled receptor CMKLR1/ChemR23: Studies on gene regulation, receptor ligand activation, and HIV/SIV co-receptor function Mårtensson, Ulrika 2005 Link to publication Citation for published version (APA): Mårtensson, U. (2005). The G-protein coupled receptor CMKLR1/ChemR23: Studies on gene regulation, receptor ligand activation, and HIV/SIV co-receptor function. Elsevier. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 An academic dissertation The G-protein coupled receptor CMKLR1/ChemR23: Studies on gene regulation, receptor ligand activation, and HIV/SIV co-receptor function by Ulrika E. A. Mårtensson Division of Molecular Neurobiology Department of Physiological Sciences Faculty of Medicine Lund University, Sweden With the approval of the Faculty of Medicine, Lund University, to be presented for public examination at the BioMedical Center (BMC), Segerfalksalen, April 2, 2005, at 9.15.
    [Show full text]
  • MRF Archive Compiled Research Summaries
    Myelin Repair Foundation Archived Research Summaries Summaries – 2008 Bailey, S. L., B. Schreiner, and S. D. Miller. 2008. CNS dendritic cells in inflammation and disease. In: Central Nervous System Diseases and Inflammation. (T. E. Lane, M. Carson, C. Bergmann and T. Wyss-Coray, eds.). Springer, New York, NY. Pp 263-275. http://www.springerlink.com/content/l17910144487u803/ Scientific Summary: CD11c+ DCs play a major role in both the initiation and progression of autoimmune inflammatory disease in the CNS. Since the CNS serves as the primary site where activation of pathogenic Th1/Th17 cells specific for endogenous myelin epitopes (i.e., epitope spreading), which play a critical role in driving progressive autoimmune disease, the current data suggests that the inflamed CNS can function as a neo-lymphoid organ. In support of this our recent unpublished data indicates that expression of genes encoding multiple receptor:ligand pairs involved in lymphoid organogenesis (including LTα1β2/LTβR, CXCL12/CXCR4, CSCL13/CXCR5, CCL21/CCR7, and CCL19/CCR7) are highly upregulated in the CNS. Further, mDCs are the main drivers of epitope spreading displaying the unique ability to acquire and present endogenous myelin peptides, to cluster specifically with naïve CD4+ T cells in the inflamed CNS and to polarize towards a Th17 phenotype when presenting endogenous myelin peptides. In conclusion, understanding the cues that determine DC signals to T cells will be crucial to understanding the fate of pathological (auto)immune inflammation in different tissues and diseases. Moreover, strategies targeting inhibition of the migration of myeloid DCs to the CNS may be an effective therapy for chronic immune-mediated CNS demyelinating diseases including MS.
    [Show full text]