Identification of an Arg-Leu-Arg Tripeptide That Contributes to The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CXCR7/ACKR3-Targeting Ligands Interfere with X7 HIV-1 and HIV-2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias Received: 11 December 2017 CXCR7/ACKR3-targeting Revised: 9 February 2018 Accepted: ligands interfere with X7 22 February 2018 Cite as: Thomas D’huys, HIV-1 and HIV-2 entry and Sandra Claes, Tom Van Loy, Dominique Schols. CXCR7/ ACKR3-targeting ligands replication in human host cells interfere with X7 HIV-1 and HIV-2 entry and replication in human host cells. Heliyon 4 (2018) e00557. doi: 10.1016/j.heliyon.2018. Thomas D’huys, Sandra Claes, Tom Van Loy, Dominique Schols∗ e00557 Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium ∗ Corresponding author. E-mail address: [email protected] (D. Schols). Abstract Chemokine receptors CCR5 and CXCR4 are considered the main coreceptors for initial HIV infection, replication and transmission, and subsequent AIDS progression. Over the years, other chemokine receptors, belonging to the family of G protein-coupled receptors, have also been identified as candidate coreceptors for HIV entry into human host cells. Amongst them, CXCR7, also known as atypical chemokine receptor 3 (ACKR3), was suggested as a coreceptor candidate capable of facilitating both HIV-1 and HIV-2 entry in vitro. In this study, a cellular infection model was established to further decipher the role of CXCR7 as an HIV coreceptor. Using this model, CXCR7-mediated viral entry was demonstrated for several clinical HIV isolates as well as laboratory strains. Of interest, the X4-tropic HIV-1 HE strain showed rapid adaptation towards CXCR7-mediated infection after continuous passaging on CD4- and CXCR7-expressing cells. -
Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response
REVIEW published: 10 June 2016 doi: 10.3389/fimmu.2016.00224 Atypical Chemokine Receptors and Their Roles in the Resolution of the inflammatory Response Raffaella Bonecchi1,2 and Gerard J. Graham3* 1 Humanitas Clinical and Research Center, Rozzano, Italy, 2 Department of Biomedical Sciences, Humanitas University, Rozzano, Italy, 3 Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK Chemokines and their receptors are key mediators of the inflammatory process regulating leukocyte extravasation and directional migration into inflamed and infected tissues. The control of chemokine availability within inflamed tissues is necessary to attain a resolving environment and when this fails chronic inflammation ensues. Accordingly, vertebrates have adopted a number of mechanisms for removing chemokines from inflamed sites to help precipitate resolution. Over the past 15 years, it has become apparent that essential players in this process are the members of the atypical chemokine receptor (ACKR) family. Broadly speaking, this family is expressed on stromal cell types and scavenges Edited by: Mariagrazia Uguccioni, chemokines to either limit their spatial availability or to remove them from in vivo sites. Institute for Research in Biomedicine, Here, we provide a brief review of these ACKRs and discuss their involvement in the Switzerland resolution of inflammatory responses and the therapeutic implications of our current Reviewed by: knowledge. Mette M. M. Rosenkilde, University of Copenhagen, Keywords: chemokines, immunity, inflammation, scavenging, atypical receptors Denmark Mario Mellado, Spanish National Research Council, Spain INTRODUCTION *Correspondence: Gerard J. Graham An effective inflammatory response requires carefully regulated initiation, maintenance, and [email protected] resolution phases (1). -
Complete Dissertation
VU Research Portal Chemokine Receptors CXCR3 and CXCR7 Scholten, D.J. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Scholten, D. J. (2012). Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 01. Oct. 2021 Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation Danny Scholten The work described in this thesis was performed at the Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands. This research was performed in the framework of the Dutch public-private partnership Top Institute Pharma (TI Pharma) in project “The GPCR Forum (D1-105)”. -
ACKR3 Expression on Diffuse Large B Cell Lymphoma Is Required for Tumor Spreading and Tissue Infiltration
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 49), pp: 85068-85084 Research Paper ACKR3 expression on diffuse large B cell lymphoma is required for tumor spreading and tissue infiltration Viola Puddinu1,2,*, Sabrina Casella1,2,*, Egle Radice1,2, Sylvia Thelen1, Stefan Dirnhofer3, Francesco Bertoni4 and Marcus Thelen1 1Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland 2Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland 3Institute of Pathology, University Hospital, University of Basel, Basel, Switzerland 4Institute of Oncology Research, Bellinzona, Switzerland *These authors have contributed equally to this work Correspondence to: Marcus Thelen, email: [email protected] Keywords: ACKR3, CXCR4, chemokine, B cell, lymphoma Received: December 20, 2016 Accepted: June 05, 2017 Published: June 29, 2017 Copyright: Puddinu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Diffuse large B cell lymphoma (DLBCL) is the most frequent lymphoma accounting for more than the 30% of the cases. Involvement of extranodal sites, such as bone marrow and central nervous system, is associated with poor prognosis. A contribution of the chemokine system in these processes is assumed as it is known as a critical regulator of the metastatic process in cancer. The atypical chemokine receptor 3 (ACKR3), which does not couple to G-proteins and does not mediate cell migration, acts as a scavenger for CXCL11 and CXCL12, interfering with the tumor homing CXCL12/CXCR4 axis. -
The Role of Selected Chemokines and Their Receptors in the Development of Gliomas
International Journal of Molecular Sciences Review The Role of Selected Chemokines and Their Receptors in the Development of Gliomas Magdalena Groblewska 1, Ala Litman-Zawadzka 2 and Barbara Mroczko 1,2,* 1 Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; [email protected] 2 Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-85-831-8785 Received: 29 April 2020; Accepted: 22 May 2020; Published: 24 May 2020 Abstract: Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. -
Structural Determinants of MIF Functions in CXCR2-Mediated Inflammatory and Atherogenic Leukocyte Recruitment
Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment Christian Weber*†‡, Sandra Kraemer*§, Maik Drechsler†, Hongqi Lue§, Rory R. Koenen†, Aphrodite Kapurniotu¶, Alma Zernecke†, and Ju¨ rgen Bernhagen‡§ †Institute for Molecular Cardiovascular Research (IMCAR); and §Department of Biochemistry and Molecular Cell Biology, RWTH Aachen University, 52056 Aachen, Germany; and ¶Laboratory of Peptide Biochemistry, Center of Integrated Protein Science Munchen,¨ Technische Universität, D-85350 Munich, Germany Edited by Charles A. Dinarello, University of Colorado Health Sciences Center, Denver, CO, and accepted by the Editorial Board August 15, 2008 (received for review April 25, 2008) We have recently identified the archaic cytokine macrophage ing to CCR5 (i.e., HisRS) and CCR3 (i.e., AsnRS) (9, 10), and migration inhibitory factor (MIF) as a non-canonical ligand of the fragments of TyrRS mediate pro-angiogenic activity by direct CXC chemokine receptors CXCR2 and CXCR4 in inflammatory and binding to CXCR1 through a CXCL8 (also known as interleu- atherogenic cell recruitment. Because its affinity for CXCR2 was kin-8; IL-8)-like N-terminal motif consisting of residues Glu, particularly high, we hypothesized that MIF may feature structural Leu, and Arg (ELR) (11). motives shared by canonical CXCR2 ligands, namely the conserved Macrophage migration inhibitory factor (MIF) is a long- N-terminal Glu-Leu-Arg (ELR) motif. Sequence alignment and struc- known T cell cytokine discovered more than four decades ago tural modeling indeed revealed a pseudo-(E)LR motif (Asp-44-X- that more recently has been recognized to be a key mediator of Arg-11) constituted by non-adjacent residues in neighboring loops innate immunity and pleiotropic inflammatory cytokine. -
The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. -
CXCR2 Related Chemokine Receptors, CXCR1 and Regulation
Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 This information is current as of September 23, 2021. Alon Zaslaver, Rotem Feniger-Barish and Adit Ben-Baruch J Immunol 2001; 166:1272-1284; ; doi: 10.4049/jimmunol.166.2.1272 http://www.jimmunol.org/content/166/2/1272 Downloaded from References This article cites 61 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/166/2/1272.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 Alon Zaslaver, Rotem Feniger-Barish, and Adit Ben-Baruch The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation. -
Single-Cell Analysis Uncovers Fibroblast Heterogeneity
ARTICLE https://doi.org/10.1038/s41467-020-17740-1 OPEN Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination ✉ Lars Muhl 1,2 , Guillem Genové 1,2, Stefanos Leptidis 1,2, Jianping Liu 1,2, Liqun He3,4, Giuseppe Mocci1,2, Ying Sun4, Sonja Gustafsson1,2, Byambajav Buyandelger1,2, Indira V. Chivukula1,2, Åsa Segerstolpe1,2,5, Elisabeth Raschperger1,2, Emil M. Hansson1,2, Johan L. M. Björkegren 1,2,6, Xiao-Rong Peng7, ✉ Michael Vanlandewijck1,2,4, Urban Lendahl1,8 & Christer Betsholtz 1,2,4 1234567890():,; Many important cell types in adult vertebrates have a mesenchymal origin, including fibro- blasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes. 1 Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157 Huddinge, Sweden. -
Gene Expression Profiles in the Rat Streptococcal Cell Wall-Induced
Available online http://arthritis-research.com/content/7/1/R101 ResearchVol 7 No 1 article Open Access Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis Inmaculada Rioja1, Chris L Clayton2, Simon J Graham2, Paul F Life1 and Marion C Dickson1 1Rheumatoid Arthritis Disease Biology Department, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK 2Transcriptome Analysis Department, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK Corresponding author: Inmaculada Rioja, [email protected] Received: 3 Jul 2004 Revisions requested: 16 Sep 2004 Revisions received: 4 Oct 2004 Accepted: 9 Oct 2004 Published: 19 Nov 2004 Arthritis Res Ther 2005, 7:R101-R117 (DOI 10.1186/ar1458)http://arthritis-research.com/content/7/1/R101 © 2004 Rioja et al., licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited. Abstract Experimental arthritis models are considered valuable tools for P < 0.01), showing specific levels and patterns of gene delineating mechanisms of inflammation and autoimmune expression. The genes exhibiting the highest fold increase in phenomena. Use of microarray-based methods represents a expression on days -13.8, -13, or 3 were involved in chemotaxis, new and challenging approach that allows molecular dissection inflammatory response, cell adhesion and extracellular matrix of complex autoimmune diseases such as arthritis. In order to remodelling. Transcriptome analysis identified 10 upregulated characterize the temporal gene expression profile in joints from genes (Delta > 5), which have not previously been associated the reactivation model of streptococcal cell wall (SCW)-induced with arthritis pathology and are located in genomic regions arthritis in Lewis (LEW/N) rats, total RNA was extracted from associated with autoimmune disease. -
Aging T Cell Chemokine Receptor Expression In
The Journal of Immunology T Cell Chemokine Receptor Expression in Aging1 Ruran Mo,* Jun Chen,* Yin Han,* Cecelia Bueno-Cannizares,* David E. Misek,† Pascal A. Lescure,† Samir Hanash,† and Raymond L. Yung2* Changes in chemokine receptor expression are important in determining T cell migration and the subsequent immune response. To better understand the contribution of the chemokine system in immune senescence we determined the effect of aging on CD4؉ T cell chemokine receptor function using microarray, RNase protection assays, Western blot, and in vitro chemokine transmi- ,gration assays. Freshly isolated CD4؉ cells from aged (20–22 mo) mice were found to express a higher level of CCR1, 2, 4, 5, 6 and 8 and CXCR2–5, and a lower level of CCR7 and 9 than those from young (3–4 mo) animals. Caloric restriction partially or completely restored the aging effects on CCR1, 7, and 8 and CXCR2, 4, and 5. The aging-associated differences in chemokine receptor expression cannot be adequately explained by the age-associated shift in the naive/memory or Th1/Th2 profile. CD4؉ cells from aged animals have increased chemotactic response to stromal cell-derived factor-1 and macrophage-inflammatory protein- 1␣, suggesting that the observed chemokine receptor changes have important functional consequences. We propose that the aging-associated changes in T cell chemokine receptor expression may contribute to the different clinical outcome in T cell chemokine receptor-dependent diseases in the elderly. The Journal of Immunology, 2003, 170: 895–904. he precise mechanisms linking the aging immune system (6–8). T cell-tropic HIV-1 isolates (X4 strains) preferentially use to diseases in the elderly are poorly understood. -
Role of Chemokines in Hepatocellular Carcinoma (Review)
ONCOLOGY REPORTS 45: 809-823, 2021 Role of chemokines in hepatocellular carcinoma (Review) DONGDONG XUE1*, YA ZHENG2*, JUNYE WEN1, JINGZHAO HAN1, HONGFANG TUO1, YIFAN LIU1 and YANHUI PENG1 1Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051; 2Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China Received September 5, 2020; Accepted December 4, 2020 DOI: 10.3892/or.2020.7906 Abstract. Hepatocellular carcinoma (HCC) is a prevalent 1. Introduction malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges Hepatocellular carcinoma (HCC) is the sixth most common for the treatment of HCC is the prevention or management type of cancer worldwide and the third leading cause of of recurrence and metastasis of HCC. It has been found that cancer-associated death (1). Most patients cannot undergo chemokines and their receptors serve a pivotal role in HCC radical surgery due to the presence of intrahepatic or distant progression. In the present review, the literature on the multi- organ metastases, and at present, the primary treatment methods factorial roles of exosomes in HCC from PubMed, Cochrane for HCC include surgery, local ablation therapy and radiation library and Embase were obtained, with a specific focus on intervention (2). These methods allow for effective treatment the functions and mechanisms of chemokines in HCC. To and management of patients with HCC during the early stages, date, >50 chemokines have been found, which can be divided with 5-year survival rates as high as 70% (3). Despite the into four families: CXC, CX3C, CC and XC, according to the continuous development of traditional treatment methods, the different positions of the conserved N-terminal cysteine resi- issue of recurrence and metastasis of HCC, causing adverse dues.