Biased Agonism at Chemokine Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Biased Agonism at Chemokine Receptors Cellular Signalling 78 (2021) 109862 Contents lists available at ScienceDirect Cellular Signalling journal homepage: www.elsevier.com/locate/cellsig Biased agonism at chemokine receptors Dylan Scott Eiger a, Noelia Boldizsar b, Christopher Cole Honeycutt b, Julia Gardner b, Sudarshan Rajagopal a,c,* a Department of Biochemistry, Duke University, Durham, NC 27710, USA b Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA c Department of Medicine, Duke University, Durham, NC 27710, USA ARTICLE INFO ABSTRACT Keywords: In the human chemokine system, interactions between the approximately 50 known endogenous chemokine Biased agonism ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological G protein-coupled receptors processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. Chemokine System CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies,leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specificcellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacyand safer side effect profiles. 1. Chemokine System normal and pathologic conditions. The role of CKR activation by che­ mokines was first recognized in the immune response, specifically as Chemokine receptors (CKRs) are a subfamily of G protein-coupled chemoattractants to direct leukocyte migration, a process known as receptors (GPCRs) that bind a group of small (8-12 kDa) and highly chemotaxis [5,6]. While the functions and roles of chemokines in leu­ conserved chemotactic cytokines known as chemokines [1]. The human kocytes are well known, it is now appreciated that chemokines and CKRs chemokine system is composed of approximately 20 known CKRs and 50 are also produced in a variety of non-leukocyte cell types, including known chemokines (Fig. 1). The chemokines are classified into four epithelial cells, fibroblasts,endothelial cells, and neurons [7], and play a subtypes (C, CC, CXC, CX3C) based on the number, positioning, and key role in a wide range of other cellular functions and biological pro­ spacing of conserved N-terminal cysteine residues [2]. Similarly, CKRs cesses including development, angiogenesis, neuromodulation, and are organized and classified according to the ligands they bind [3]. immune cell homeostasis [8–11]. For example, the expression of Chemokines are also categorized as homeostatic chemokines, which are neuronal chemokine ligands and receptors has recently been shown to constitutively expressed in a variety of specifictissues and cell types, and be involved in synaptic transmission and neuronal survival [12], as well inflammatorychemokines, which are induced during immune responses as in guidance of central nervous system (CNS) cellular interactions via primarily to recruit leukocytes to sites of inflammation[ 4]. Homeostatic neuron-astrocyte, neuron-microglia, and neuron-neuron interactions and inflammatory classifications of chemokines are not mutually [13]. exclusive, as some CKRs and chemokine ligands are involved in both Due to the chemokine system’s involvement in a wide variety of * Corresponding author at: Box 102147, Duke University Medical Center, Durham, NC 27710, USA. E-mail addresses: [email protected] (D.S. Eiger), [email protected] (N. Boldizsar), [email protected] (C.C. Honeycutt), julia. [email protected] (J. Gardner), [email protected] (S. Rajagopal). https://doi.org/10.1016/j.cellsig.2020.109862 Received 9 September 2020; Received in revised form 7 November 2020; Accepted 24 November 2020 Available online 27 November 2020 0898-6568/© 2020 Elsevier Inc. All rights reserved. D.S. Eiger et al. Cellular Signalling 78 (2021) 109862 biological processes, it is unsurprising that chemokines and CKRs are biased signaling for drug development in the chemokine system. implicated in various disease states including, but not limited to, auto­ immune disorders, infectious diseases, hypersensitivity reactions, 2. G Protein-Coupled Receptor Signaling and Biased Agonism atherosclerosis, and cancer [14–18]. The role of the chemokine system in chronic inflammatory diseases is particularly important and chemo­ CKRs are a subfamily of the rhodopsin class of GPCRs, the most kines play a central role in asthma, chronic obstructive pulmonary dis­ common and versatile superfamily of receptors in the human genome ease, inflammatory bowel disease, arthritis, multiple sclerosis, and [25] and the target of ~34% of all Food and Drug Administration (FDA) psoriasis [19]. Additionally, certain disorders are directly associated approved pharmaceutical drugs [26]. Canonical GPCR signaling starts with mutations in the genes that encode CKRs, such as the Warts, Hy­ with agonist binding, upon which a GPCR undergoes conformational pogammaglobulinemia, Immunodeficiency,and Myelokathexis (WHIM) changes that induce the recruitment of heterotrimeric G proteins con­ Syndrome which is driven by an autosomal dominant truncation mutant sisting of Gα, Gβ, and Gγ subunits. The guanosine diphosphate (GDP)- in the receptor CXCR4 [20]. bound Gα subunit undergoes nucleotide exchange for guanosine While the chemokine system is known to play a significant role in triphosphate (GTP), leading to Gα activation and dissociation of the many disease states, there are relatively few drugs that target it directly. heterotrimeric complex into its Gα and Gβγ constituents [27]. The Gα Chemokines and CKRs bind with significantpromiscuity, wherein most subunits are classified into four families based on sequence similarity: CKRs can be activated by multiple chemokine ligands and most che­ Gαs, Gαi/o, Gαq/11, and Gα12/13 [28]. The activated Gα proteins typically mokines can activate multiple CKRs [21]. This promiscuity was thought regulate the production and subsequent signaling of secondary mes­ to lead to “redundancy” between chemokines and their receptors, sengers, such as adenosine 3’,5’-cyclic monophosphate (cAMP), intra­ serving as a mechanism for a robust physiologic response [22]. As cellular calcium, and inositol triphosphate [29]. Most chemokine adequate chemokine levels are imperative for immune cell function, receptors signal through Gαi/o, which inhibits adenylyl cyclase and re­ redundant chemokine signaling would provide sufficient signals to duces intracellular concentrations of cAMP [30]. There are various direct leukocyte chemotaxis and function that is relatively insensitive to isoforms of the Gβ and Gγ subunits, and at chemokine receptors the Gβγ variations in the concentration of any individual chemokine [23]. dimer has been shown to activate phosphoinositide-specific phospholi­ However, we now appreciate that many of these ligands can have pase Cβ (PLC) and phosphoinositide 3-kinase (PI3K). PLC then produces distinct signaling profiles at the same receptor and many receptors can diacylglycerol (DAG), leading to the activation of protein kinase C have distinct signaling profiles when stimulated by the same ligand, a (PKC), and inositol-triphosphate (IP3), which triggers calcium mobili­ phenomenon referred to as “biased agonism” [22,24]. Biased signaling zation [31]. The signaling messengers of the Gβγ dimer in chemokine through differences in ligands, receptors and the cellular context (sys­ receptors have been demonstrated to play a role in the promotion of tem) can have important effects on chemokine signaling and implica­ leukocyte migration, among other functions [32]. tions for drug development. Here, we review the current literature on Following G protein activation, G protein-coupled receptor kinases biased signaling within the chemokine system to highlight the complex (GRKs) are recruited to the receptor and phosphorylate the receptor C- and multidimensional nature of biased agonism and the biochemical terminus and intracellular loops. This phosphorylation promotes the mechanisms that underlie it, the importance of biased agonism within interaction of the receptor with the β-arrestins, which were first the chemokine system and its physiologic effects, and the implications of described for their function in the desensitization of G protein-mediated Fig. 1. The complexity of the human chemokine system. Chemokine receptors fall into fivecategories: CCRs, CXCRs, ACKRs, XCRs and CX3CRs. Chemokine ligands fall into four categories: CCLs, CXCLs, XCLs, CX3CLs. Lines connecting chemokine receptors to chemokines are colored
Recommended publications
  • Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells
    Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells This information is current as Hyung W. Lim, Jeeho Lee, Peter Hillsamer and Chang H. of September 28, 2021. Kim J Immunol 2008; 180:122-129; ; doi: 10.4049/jimmunol.180.1.122 http://www.jimmunol.org/content/180/1/122 Downloaded from References This article cites 44 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/180/1/122.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3؉ Regulatory T Cells1 Hyung W. Lim,* Jeeho Lee,* Peter Hillsamer,† and Chang H. Kim2* It is a question of interest whether Th17 cells express trafficking receptors unique to this Th cell lineage and migrate specifically to certain tissue sites.
    [Show full text]
  • CXCR7/ACKR3-Targeting Ligands Interfere with X7 HIV-1 and HIV-2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias Received: 11 December 2017 CXCR7/ACKR3-targeting Revised: 9 February 2018 Accepted: ligands interfere with X7 22 February 2018 Cite as: Thomas D’huys, HIV-1 and HIV-2 entry and Sandra Claes, Tom Van Loy, Dominique Schols. CXCR7/ ACKR3-targeting ligands replication in human host cells interfere with X7 HIV-1 and HIV-2 entry and replication in human host cells. Heliyon 4 (2018) e00557. doi: 10.1016/j.heliyon.2018. Thomas D’huys, Sandra Claes, Tom Van Loy, Dominique Schols∗ e00557 Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium ∗ Corresponding author. E-mail address: [email protected] (D. Schols). Abstract Chemokine receptors CCR5 and CXCR4 are considered the main coreceptors for initial HIV infection, replication and transmission, and subsequent AIDS progression. Over the years, other chemokine receptors, belonging to the family of G protein-coupled receptors, have also been identified as candidate coreceptors for HIV entry into human host cells. Amongst them, CXCR7, also known as atypical chemokine receptor 3 (ACKR3), was suggested as a coreceptor candidate capable of facilitating both HIV-1 and HIV-2 entry in vitro. In this study, a cellular infection model was established to further decipher the role of CXCR7 as an HIV coreceptor. Using this model, CXCR7-mediated viral entry was demonstrated for several clinical HIV isolates as well as laboratory strains. Of interest, the X4-tropic HIV-1 HE strain showed rapid adaptation towards CXCR7-mediated infection after continuous passaging on CD4- and CXCR7-expressing cells.
    [Show full text]
  • Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response
    REVIEW published: 10 June 2016 doi: 10.3389/fimmu.2016.00224 Atypical Chemokine Receptors and Their Roles in the Resolution of the inflammatory Response Raffaella Bonecchi1,2 and Gerard J. Graham3* 1 Humanitas Clinical and Research Center, Rozzano, Italy, 2 Department of Biomedical Sciences, Humanitas University, Rozzano, Italy, 3 Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK Chemokines and their receptors are key mediators of the inflammatory process regulating leukocyte extravasation and directional migration into inflamed and infected tissues. The control of chemokine availability within inflamed tissues is necessary to attain a resolving environment and when this fails chronic inflammation ensues. Accordingly, vertebrates have adopted a number of mechanisms for removing chemokines from inflamed sites to help precipitate resolution. Over the past 15 years, it has become apparent that essential players in this process are the members of the atypical chemokine receptor (ACKR) family. Broadly speaking, this family is expressed on stromal cell types and scavenges Edited by: Mariagrazia Uguccioni, chemokines to either limit their spatial availability or to remove them from in vivo sites. Institute for Research in Biomedicine, Here, we provide a brief review of these ACKRs and discuss their involvement in the Switzerland resolution of inflammatory responses and the therapeutic implications of our current Reviewed by: knowledge. Mette M. M. Rosenkilde, University of Copenhagen, Keywords: chemokines, immunity, inflammation, scavenging, atypical receptors Denmark Mario Mellado, Spanish National Research Council, Spain INTRODUCTION *Correspondence: Gerard J. Graham An effective inflammatory response requires carefully regulated initiation, maintenance, and [email protected] resolution phases (1).
    [Show full text]
  • ACKR3 Expression on Diffuse Large B Cell Lymphoma Is Required for Tumor Spreading and Tissue Infiltration
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 49), pp: 85068-85084 Research Paper ACKR3 expression on diffuse large B cell lymphoma is required for tumor spreading and tissue infiltration Viola Puddinu1,2,*, Sabrina Casella1,2,*, Egle Radice1,2, Sylvia Thelen1, Stefan Dirnhofer3, Francesco Bertoni4 and Marcus Thelen1 1Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland 2Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland 3Institute of Pathology, University Hospital, University of Basel, Basel, Switzerland 4Institute of Oncology Research, Bellinzona, Switzerland *These authors have contributed equally to this work Correspondence to: Marcus Thelen, email: [email protected] Keywords: ACKR3, CXCR4, chemokine, B cell, lymphoma Received: December 20, 2016 Accepted: June 05, 2017 Published: June 29, 2017 Copyright: Puddinu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Diffuse large B cell lymphoma (DLBCL) is the most frequent lymphoma accounting for more than the 30% of the cases. Involvement of extranodal sites, such as bone marrow and central nervous system, is associated with poor prognosis. A contribution of the chemokine system in these processes is assumed as it is known as a critical regulator of the metastatic process in cancer. The atypical chemokine receptor 3 (ACKR3), which does not couple to G-proteins and does not mediate cell migration, acts as a scavenger for CXCL11 and CXCL12, interfering with the tumor homing CXCL12/CXCR4 axis.
    [Show full text]
  • CXCR6 Within T-Helper (Th) and T-Cytotoxic
    European Journal of Endocrinology (2005) 152 635–643 ISSN 0804-4643 EXPERIMENTAL STUDY CXCR6 within T-helper (Th) and T-cytotoxic (Tc) type 1 lymphocytes in Graves’ disease (GD) G Aust, M Kamprad1, P Lamesch2 and E Schmu¨cking Institute of Anatomy, 1Department of Clinical Immunology and Transfusion Medicine and 2Department of Surgery, University of Leipzig, Phillipp-Rosenthal-Str. 55, Leipzig, 04103, Germany (Correspondence should be addressed to G Aust; Email: [email protected]) Abstract Objective: In Graves’ disease (GD), stimulating anti-TSH receptor antibodies are responsible for hyperthyroidism. T-helper 2 (Th2) cells were expected to be involved in the underlying immune mech- anism, although this is still controversial. The aim of this study was to examine the expression of CXCR6, a chemokine receptor that marks functionally specialized T-cells within the Th1 and T-cyto- toxic 1 (Tc1) cell pool, to gain new insights into the running immune processes. Methods: CXCR6 expression was examined on peripheral blood lymphocytes (PBLs) and thyroid- derived lymphocytes (TLs) of GD patients in flow cytometry. CXCR6 cDNA was quantified in thyroid tissues affected by GD (n ¼ 16), Hashimoto’s thyroiditis (HT; n ¼ 2) and thyroid autonomy (TA; n ¼ 11) using real-time reverse transcriptase PCR. Results: The percentages of peripheral CXCR6þ PBLs did not differ between GD and normal subjects. CXCR6 was expressed by small subsets of circulating T-cells and natural killer (NK) cells. CXCR6þ cells were enriched in thyroid-derived T-cells compared with peripheral CD4þ and CD8þ T-cells in GD. The increase was evident within the Th1 (CD4þ interferon-gþ (IFN-gþ)) and Tc1 (CD8þIFN- gþ) subpopulation and CD8þ granzyme Aþ T-cells (cytotoxic effector type).
    [Show full text]
  • Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells
    Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells This information is current as Hyung W. Lim, Jeeho Lee, Peter Hillsamer and Chang H. of September 28, 2021. Kim J Immunol 2008; 180:122-129; ; doi: 10.4049/jimmunol.180.1.122 http://www.jimmunol.org/content/180/1/122 Downloaded from References This article cites 44 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/180/1/122.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3؉ Regulatory T Cells1 Hyung W. Lim,* Jeeho Lee,* Peter Hillsamer,† and Chang H. Kim2* It is a question of interest whether Th17 cells express trafficking receptors unique to this Th cell lineage and migrate specifically to certain tissue sites.
    [Show full text]
  • Single-Cell Analysis Uncovers Fibroblast Heterogeneity
    ARTICLE https://doi.org/10.1038/s41467-020-17740-1 OPEN Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination ✉ Lars Muhl 1,2 , Guillem Genové 1,2, Stefanos Leptidis 1,2, Jianping Liu 1,2, Liqun He3,4, Giuseppe Mocci1,2, Ying Sun4, Sonja Gustafsson1,2, Byambajav Buyandelger1,2, Indira V. Chivukula1,2, Åsa Segerstolpe1,2,5, Elisabeth Raschperger1,2, Emil M. Hansson1,2, Johan L. M. Björkegren 1,2,6, Xiao-Rong Peng7, ✉ Michael Vanlandewijck1,2,4, Urban Lendahl1,8 & Christer Betsholtz 1,2,4 1234567890():,; Many important cell types in adult vertebrates have a mesenchymal origin, including fibro- blasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes. 1 Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157 Huddinge, Sweden.
    [Show full text]
  • CXCR6 Deficiency Impairs Cancer Vaccine Efficacy and CD8+ Resident Memory T-­Cell Recruitment in Head and Neck and Lung Tumors
    Open access Original research J Immunother Cancer: first published as 10.1136/jitc-2020-001948 on 10 March 2021. Downloaded from CXCR6 deficiency impairs cancer vaccine efficacy and CD8+ resident memory T- cell recruitment in head and neck and lung tumors Soumaya Karaki,1,2 Charlotte Blanc,1,2 Thi Tran,1,2 Isabelle Galy- Fauroux,1,2 Alice Mougel,1,2 Estelle Dransart,3 Marie Anson,1,2 Corinne Tanchot,1,2 Lea Paolini,1,2 Nadege Gruel,4,5 Laure Gibault,6 Francoise Lepimpec- Barhes,7 Elizabeth Fabre,8 Nadine Benhamouda,9 Cecile Badoual,6 Diane Damotte,10 11 12,13 14 Emmanuel Donnadieu , Sebastian Kobold, Fathia Mami- Chouaib, 15 3 1,2,9 Rachel Golub, Ludger Johannes, Eric Tartour To cite: Karaki S, Blanc C, ABSTRACT explains why the intranasal route of vaccination is the Tran T, et al. CXCR6 deficiency most appropriate strategy for inducing these cells in the Background Resident memory T lymphocytes (TRM) impairs cancer vaccine efficacy are located in tissues and play an important role in head and neck and pulmonary mucosa, which remains a and CD8+ resident memory immunosurveillance against tumors. The presence of T major objective to overcome resistance to anti- PD-1/PD- T- cell recruitment in head and RM prior to treatment or their induction is associated to the L1, especially in cold tumors. neck and lung tumors. Journal for ImmunoTherapy of Cancer response to anti- Programmed cell death protein 1 (PD- 2021;9:e001948. doi:10.1136/ 1)/Programmed death- ligand 1 (PD- L1) immunotherapy jitc-2020-001948 and the efficacy of cancer vaccines.
    [Show full text]
  • Aging T Cell Chemokine Receptor Expression In
    The Journal of Immunology T Cell Chemokine Receptor Expression in Aging1 Ruran Mo,* Jun Chen,* Yin Han,* Cecelia Bueno-Cannizares,* David E. Misek,† Pascal A. Lescure,† Samir Hanash,† and Raymond L. Yung2* Changes in chemokine receptor expression are important in determining T cell migration and the subsequent immune response. To better understand the contribution of the chemokine system in immune senescence we determined the effect of aging on CD4؉ T cell chemokine receptor function using microarray, RNase protection assays, Western blot, and in vitro chemokine transmi- ,gration assays. Freshly isolated CD4؉ cells from aged (20–22 mo) mice were found to express a higher level of CCR1, 2, 4, 5, 6 and 8 and CXCR2–5, and a lower level of CCR7 and 9 than those from young (3–4 mo) animals. Caloric restriction partially or completely restored the aging effects on CCR1, 7, and 8 and CXCR2, 4, and 5. The aging-associated differences in chemokine receptor expression cannot be adequately explained by the age-associated shift in the naive/memory or Th1/Th2 profile. CD4؉ cells from aged animals have increased chemotactic response to stromal cell-derived factor-1 and macrophage-inflammatory protein- 1␣, suggesting that the observed chemokine receptor changes have important functional consequences. We propose that the aging-associated changes in T cell chemokine receptor expression may contribute to the different clinical outcome in T cell chemokine receptor-dependent diseases in the elderly. The Journal of Immunology, 2003, 170: 895–904. he precise mechanisms linking the aging immune system (6–8). T cell-tropic HIV-1 isolates (X4 strains) preferentially use to diseases in the elderly are poorly understood.
    [Show full text]
  • Role of Chemokines in Hepatocellular Carcinoma (Review)
    ONCOLOGY REPORTS 45: 809-823, 2021 Role of chemokines in hepatocellular carcinoma (Review) DONGDONG XUE1*, YA ZHENG2*, JUNYE WEN1, JINGZHAO HAN1, HONGFANG TUO1, YIFAN LIU1 and YANHUI PENG1 1Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051; 2Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China Received September 5, 2020; Accepted December 4, 2020 DOI: 10.3892/or.2020.7906 Abstract. Hepatocellular carcinoma (HCC) is a prevalent 1. Introduction malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges Hepatocellular carcinoma (HCC) is the sixth most common for the treatment of HCC is the prevention or management type of cancer worldwide and the third leading cause of of recurrence and metastasis of HCC. It has been found that cancer-associated death (1). Most patients cannot undergo chemokines and their receptors serve a pivotal role in HCC radical surgery due to the presence of intrahepatic or distant progression. In the present review, the literature on the multi- organ metastases, and at present, the primary treatment methods factorial roles of exosomes in HCC from PubMed, Cochrane for HCC include surgery, local ablation therapy and radiation library and Embase were obtained, with a specific focus on intervention (2). These methods allow for effective treatment the functions and mechanisms of chemokines in HCC. To and management of patients with HCC during the early stages, date, >50 chemokines have been found, which can be divided with 5-year survival rates as high as 70% (3). Despite the into four families: CXC, CX3C, CC and XC, according to the continuous development of traditional treatment methods, the different positions of the conserved N-terminal cysteine resi- issue of recurrence and metastasis of HCC, causing adverse dues.
    [Show full text]
  • CX3CR1) Modulator, Attenuates Mucosal Inflammation and Reduces CX3CR11 Leukocyte Trafficking in Mice with Colitis
    1521-0111/92/5/502–509$25.00 https://doi.org/10.1124/mol.117.108381 MOLECULAR PHARMACOLOGY Mol Pharmacol 92:502–509, November 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics E6130, a Novel CX3C Chemokine Receptor 1 (CX3CR1) Modulator, Attenuates Mucosal Inflammation and Reduces CX3CR11 Leukocyte Trafficking in Mice with Colitis Hisashi Wakita, Tatsuya Yanagawa, Yoshikazu Kuboi, and Toshio Imai Eisai Co., Ltd., Tsukuba Research Laboratories, Ibaraki (H.W., T.Y., Y.K.) and KAN Research Institute Inc., Hyogo (T.I.), Japan Received February 1, 2017; accepted August 16, 2017 Downloaded from ABSTRACT The chemokine fractalkine (CX3C chemokine ligand 1; CX3CL1) (IC50 4.9 nM), most likely via E6130-induced down-regulation of and its receptor CX3CR1 are involved in the pathogenesis of CX3CR1 on the cell surface. E6130 had agonistic activity via several diseases, including inflammatory bowel diseases such as CX3CR1 with respect to guanosine 59-3-O-(thio)triphosphate Crohn’s disease and ulcerative colitis, rheumatoid arthritis, hepa- binding in CX3CR1-expressing Chinese hamster ovary K1 titis, myositis, multiple sclerosis, renal ischemia, and athero- (CHO-K1) membrane and had no antagonistic activity. Orally sclerosis. There are no orally available agents that modulate the administered E6130 ameliorated several inflammatory bowel molpharm.aspetjournals.org fractalkine/CX3CR1 axis. [(3S,4R)-1-[2-Chloro-6-(trifluoromethyl) disease–related parameters in a murine CD41CD45RBhigh benzyl]-3-{[1-(cyclohex-1-en-1-ylmethyl)piperidin-4-yl]carbamoyl}- T-cell-transfer colitis model and a murine oxazolone-induced 4-methylpyrrolidin-3-yl]acetic acid (2S)-hydroxy(phenyl)acetate colitis model.
    [Show full text]
  • Identification of an Arg-Leu-Arg Tripeptide That Contributes to The
    www.nature.com/scientificreports OPEN Identifcation of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the Received: 3 October 2017 Accepted: 15 March 2018 cytokine MIF and the chemokine Published: xx xx xxxx receptor CXCR4 Michael Lacy1, Christos Kontos2, Markus Brandhofer1, Kathleen Hille2, Sabine Gröning3, Dzmitry Sinitski1, Priscila Bourilhon1, Eric Rosenberg4, Christine Krammer1, Tharshika Thavayogarajah1, Georgios Pantouris4, Maria Bakou2, Christian Weber5,6,7, Elias Lolis4, Jürgen Bernhagen1,6,8 & Aphrodite Kapurniotu2 MIF is a chemokine-like cytokine that plays a role in the pathogenesis of infammatory and cardiovascular disorders. It binds to the chemokine-receptors CXCR2/CXCR4 to trigger atherogenic leukocyte migration albeit lacking canonical chemokine structures. We recently characterized an N-like- loop and the Pro-2-residue of MIF as critical molecular determinants of the CXCR4/MIF binding-site and identifed allosteric agonism as a mechanism that distinguishes CXCR4-binding to MIF from that to the cognate ligand CXCL12. By using peptide spot-array technology, site-directed mutagenesis, structure- activity-relationships, and molecular docking, we identifed the Arg-Leu-Arg (RLR) sequence-region 87–89 that – in three-dimensional space – ‘extends’ the N-like-loop to control site-1-binding to CXCR4. Contrary to wildtype MIF, mutant R87A-L88A-R89A-MIF fails to bind to the N-terminal of CXCR4 and the contribution of RLR to the MIF/CXCR4-interaction is underpinned by an ablation of MIF/CXCR4- specifc signaling and reduction in CXCR4-dependent chemotactic leukocyte migration of the RLR- mutant of MIF. Alanine-scanning, functional competition by RLR-containing peptides, and molecular docking indicate that the RLR residues directly participate in contacts between MIF and CXCR4 and highlight the importance of charge-interactions at this interface.
    [Show full text]