Mechanisms of Regulation of the Chemokine-Receptor Network
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atypical Chemokine Receptor 4 Shapes Activated B Cell Fate
Brief Definitive Report Atypical chemokine receptor 4 shapes activated B cell fate Ervin E. Kara,1 Cameron R. Bastow,1 Duncan R. McKenzie,1 Carly E. Gregor,1 Kevin A. Fenix,1 Rachelle Babb,1 Todd S. Norton,1 Dimitra Zotos,3 Lauren B. Rodda,4 Jana R. Hermes,6 Katherine Bourne,6 Derek S. Gilchrist,7 Robert J. Nibbs,7 Mohammed Alsharifi,1 Carola G. Vinuesa,8 David M. Tarlinton,3,9 Robert Brink,6,10 Geoffrey R. Hill,11 Jason G. Cyster,4,5 Iain Comerford,1 and Shaun R. McColl1,2 1Department of Molecular and Cellular Biology, School of Biological Sciences and 2Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia 3Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia 4Department of Microbiology and Immunology and 5Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, Downloaded from http://rupress.org/jem/article-pdf/215/3/801/1168927/jem_20171067.pdf by guest on 28 September 2021 San Francisco, San Francisco, CA 6Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia 7Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK 8Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia 9Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia 10St Vincent’s Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia 11Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia Activated B cells can initially differentiate into three functionally distinct fates—early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells—by mechanisms that remain poorly understood. -
G Protein-Coupled Receptors As Therapeutic Targets for Multiple Sclerosis
npg GPCRs as therapeutic targets for MS Cell Research (2012) 22:1108-1128. 1108 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg REVIEW www.nature.com/cr G protein-coupled receptors as therapeutic targets for multiple sclerosis Changsheng Du1, Xin Xie1, 2 1Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sci- ences and Technology, Tongji University, Shanghai 200092, China; 2State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Pudong New District, Shanghai 201203, China G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmit- ters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spec- trum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated de- myelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or phar- macological manipulations. -
Complete Dissertation
VU Research Portal Chemokine Receptors CXCR3 and CXCR7 Scholten, D.J. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Scholten, D. J. (2012). Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 01. Oct. 2021 Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation Danny Scholten The work described in this thesis was performed at the Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands. This research was performed in the framework of the Dutch public-private partnership Top Institute Pharma (TI Pharma) in project “The GPCR Forum (D1-105)”. -
The Role of Selected Chemokines and Their Receptors in the Development of Gliomas
International Journal of Molecular Sciences Review The Role of Selected Chemokines and Their Receptors in the Development of Gliomas Magdalena Groblewska 1, Ala Litman-Zawadzka 2 and Barbara Mroczko 1,2,* 1 Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; [email protected] 2 Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-85-831-8785 Received: 29 April 2020; Accepted: 22 May 2020; Published: 24 May 2020 Abstract: Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. -
Structural Basis of the Activation of the CC Chemokine Receptor 5 by a Chemokine Agonist
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401117; this version posted November 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist One-sentence summary: The structure of CCR5 in complex with the chemokine agonist [6P4]CCL5 and the heterotrimeric Gi protein reveals its activation mechanism Authors: Polina Isaikina1, Ching-Ju Tsai2, Nikolaus Dietz1, Filip Pamula2,3, Anne Grahl1, Kenneth N. Goldie4, Ramon Guixà-González2, Gebhard F.X. Schertler2,3,*, Oliver Hartley5,*, 4 1,* 2,* 1,* Henning Stahlberg , Timm Maier , Xavier Deupi , and Stephan Grzesiek Affiliations: 1 Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland 2 Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 3 Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland 4 Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland 5 Department of Pathology and Immunology, Faculty of Medicine, University of Geneva *Address correspondence to: Stephan Grzesiek Focal Area Structural Biology and Biophysics, Biozentrum University of Basel, CH-4056 Basel, Switzerland Phone: ++41 61 267 2100 FAX: ++41 61 267 2109 Email: [email protected] Xavier Deupi Email: [email protected] Timm Maier Email: [email protected] Oliver Hartley Email: [email protected] Gebhard F.X. Schertler Email: [email protected] Keywords: G protein coupled receptor (GPCR); CCR5; chemokines; CCL5/RANTES; CCR5- gp120 interaction; maraviroc; HIV entry; AIDS; membrane protein structure; cryo-EM; GPCR activation. -
Structural Determinants of MIF Functions in CXCR2-Mediated Inflammatory and Atherogenic Leukocyte Recruitment
Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment Christian Weber*†‡, Sandra Kraemer*§, Maik Drechsler†, Hongqi Lue§, Rory R. Koenen†, Aphrodite Kapurniotu¶, Alma Zernecke†, and Ju¨ rgen Bernhagen‡§ †Institute for Molecular Cardiovascular Research (IMCAR); and §Department of Biochemistry and Molecular Cell Biology, RWTH Aachen University, 52056 Aachen, Germany; and ¶Laboratory of Peptide Biochemistry, Center of Integrated Protein Science Munchen,¨ Technische Universität, D-85350 Munich, Germany Edited by Charles A. Dinarello, University of Colorado Health Sciences Center, Denver, CO, and accepted by the Editorial Board August 15, 2008 (received for review April 25, 2008) We have recently identified the archaic cytokine macrophage ing to CCR5 (i.e., HisRS) and CCR3 (i.e., AsnRS) (9, 10), and migration inhibitory factor (MIF) as a non-canonical ligand of the fragments of TyrRS mediate pro-angiogenic activity by direct CXC chemokine receptors CXCR2 and CXCR4 in inflammatory and binding to CXCR1 through a CXCL8 (also known as interleu- atherogenic cell recruitment. Because its affinity for CXCR2 was kin-8; IL-8)-like N-terminal motif consisting of residues Glu, particularly high, we hypothesized that MIF may feature structural Leu, and Arg (ELR) (11). motives shared by canonical CXCR2 ligands, namely the conserved Macrophage migration inhibitory factor (MIF) is a long- N-terminal Glu-Leu-Arg (ELR) motif. Sequence alignment and struc- known T cell cytokine discovered more than four decades ago tural modeling indeed revealed a pseudo-(E)LR motif (Asp-44-X- that more recently has been recognized to be a key mediator of Arg-11) constituted by non-adjacent residues in neighboring loops innate immunity and pleiotropic inflammatory cytokine. -
The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. -
Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel
Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses This information is current as Endothelial Cell Regulators of September 26, 2021. Carolyn A. Thomson, Serge A. van de Pavert, Michelle Stakenborg, Evelien Labeeuw, Gianluca Matteoli, Allan McI Mowat and Robert J. B. Nibbs J Immunol published online 14 May 2018 Downloaded from http://www.jimmunol.org/content/early/2018/05/11/jimmun ol.1700967 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2018/05/11/jimmunol.170096 Material 7.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 14, 2018, doi:10.4049/jimmunol.1700967 The Journal of Immunology Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators Carolyn A. Thomson,*,1 Serge A. -
CXCR2 Related Chemokine Receptors, CXCR1 and Regulation
Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 This information is current as of September 23, 2021. Alon Zaslaver, Rotem Feniger-Barish and Adit Ben-Baruch J Immunol 2001; 166:1272-1284; ; doi: 10.4049/jimmunol.166.2.1272 http://www.jimmunol.org/content/166/2/1272 Downloaded from References This article cites 61 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/166/2/1272.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 Alon Zaslaver, Rotem Feniger-Barish, and Adit Ben-Baruch The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation. -
The Chemokine System in Innate Immunity
Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function. -
Temporal Expression and Cellular Origin of CC Chemokine Receptors
Journal of Neuroinflammation BioMed Central Research Open Access Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE Sana Eltayeb1, Anna-Lena Berg*2, Hans Lassmann3, Erik Wallström1, Maria Nilsson4, Tomas Olsson1, Anders Ericsson-Dahlstrand4 and Dan Sunnemark4 Address: 1Department of Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunology Unit, Karolinska Institute, S-171 76 Stockholm, Sweden, 2Department of Pathology, Safety Assessment, AstraZeneca R&D Södertälje, S-15185 Södertälje, Sweden, 3Brain Research Institute, University of Vienna, Vienna, Austria and 4Department of Disease Biology, Local Discovery Research Area CNS and Pain Control, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden Email: Sana Eltayeb - [email protected]; Anna-Lena Berg* - [email protected]; Hans Lassmann - [email protected]; Erik Wallström - [email protected]; Maria Nilsson - [email protected]; Tomas Olsson - [email protected]; Anders Ericsson-Dahlstrand - [email protected]; Dan Sunnemark - [email protected] * Corresponding author Published: 7 May 2007 Received: 5 February 2007 Accepted: 7 May 2007 Journal of Neuroinflammation 2007, 4:14 doi:10.1186/1742-2094-4-14 This article is available from: http://www.jneuroinflammation.com/content/4/1/14 © 2007 Eltayeb et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The CC chemokine receptors CCR1, CCR2 and CCR5 are critical for the recruitment of mononuclear phagocytes to the central nervous system (CNS) in multiple sclerosis (MS) and other neuroinflammatory diseases. -
Characterization of Mononuclear Phagocytic Cells in Medaka Fish
Characterization of mononuclear phagocytic cells in medaka fish transgenic for a cxcr3a:gfp reporter Narges Aghaallaeia,1, Baubak Bajoghlia,1, Heinz Schwarzb, Michael Schorppa, and Thomas Boehma,2 aDepartment of Developmental Immunology, Max-Planck Institute of Immunobiology, D-79108 Freiburg, Germany; and bMax-Planck Institute for Developmental Biology, D-72076 Tübingen, Germany Edited* by Laurie H. Glimcher, Harvard University, Boston, MA, and approved September 10, 2010 (received for review January 13, 2010) Chemokines and chemokine receptors are key evolutionary innova- vertebrates possess many cell types that are characteristic of the tions of vertebrates. They are involved in morphogenetic processes adaptive and innate immune systems of mammals. The sites of or- and play an important role in the immune system. Based on an igin and developmental pathways of lymphocytes (1, 16, 17), as well analysis of the chemokine receptor gene family in teleost genomes, as those of the myeloid lineages (macrophages, neutrophils) (18– and the expression patterns of chemokine receptor genes during 22), have been well characterized. This was achieved by use of cell embryogenesis and the wounding response in young larvae of Ory- type-specific antibodies recognizing characteristic and evolution- zias latipes,weidentified the chemokine receptor cxcr3a as a marker arily conserved cell surface molecules or, for some species—most of innate immune cells. Cells expressing cxcr3a were characterized notably zebrafish—by use of transgenic fish in which the expression in fish transgenic for a cxcr3a:gfp reporter. In embryos and larvae, of fluorescent reporter proteins is directed by the regulatory regions cxcr3a-expressing cells are motile in healthy and damaged tissues, of specific genes to allow the in vivo visualization and preparative and phagocytic; the majority of these cells has the morphology of recovery of individual cell types.