To Study Cost Efficiency of Buildings in Different

Total Page:16

File Type:pdf, Size:1020Kb

To Study Cost Efficiency of Buildings in Different TO STUDY COST EFFICIENCY OF BUILDINGS IN DIFFERENT GEOGRAPHICAL LOCATION OF INDIA BY UTILIZING WASTES IN CONCRETE A THESIS Submitted in partial fulfillment of the requirements for the award of the degree of MASTER OF TECHNOLOGY in CIVIL ENGINEERING With specialization in STRUCTURAL ENGINEERING Under the supervision of Mr. CHANDRA PAL GAUTAM (Assistant Professor) by AKSHAY CHANDEL (182657) to JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT, SOLAN – 173234 HIMACHAL PRADESH, INDIA May-2020 STUDENT’S DECLARATION I hereby declare that the work presented in the Project report entitled “To Study Cost Efficiency of Buildings in Different Geographical Location of India by Utilizing Wastes in Concrete” submitted for partial fulfillment of the requirements for the degree of Master of Technology in Civil Engineering at Jaypee University of Information Technology, Waknaghat, is an authentic record of my work carried out under the supervision of Mr. Chandra Pal Gautam, Assistant Professor. This work has not been submitted elsewhere for the reward of any other degree/diploma. I am fully responsible for the contents of my project report. Signature of Student Akshay Chandel 182657 Department of Civil Engineering Jaypee University of Information Technology, Waknaghat, India May-2020 ii CERTIFICATE This is to certify that the work which is being presented in the project report titled “To Study Cost Efficiency of Buildings in Different Geographical Location of India by Utilizing Wastes in Concrete” in partial fulfillment of the requirements for the award of the degree of Master of Technology in Civil Engineering with specialization in “Structural Engineering” and submitted to the Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Akshay Chandel , 182657 during a period from July, 2019 to May , 2020 under the supervision of Mr. Chandra Pal Gautam, Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat. The above statement made is correct to the best of my knowledge. Date: - 28th, May 2020 Signature of Supervisor Signature of HOD Mr. Chandra Pal Gautam Dr. Ashok Kumar Gupta Assistant Professor Professor & Head Civil Engineering Department Civil Engineering Department JUIT Waknaghat JUIT Waknaghat iii ACKNOWLEDGEMENT The completion of any project depends upon cooperation, coordination, and combined efforts of several sources of knowledge. I am grateful to my project guide Mr. Chandra Pal Gautam (Assistant Professor) for his even willing to give me valuable advice and direction whenever I approached him with any problem. I am thankful to him for providing immense guidance for this project. I am also thankful to Dr. Ashok Kumar Gupta, Professor & Head, Department of Civil Engineering, and all the faculty members for their immense cooperation and motivation for the research of my project. Akshay Chandel May - 2020 iv ABSTRACT Today, the need to protect the environment is a moral obligation for humans. Concrete is the most devoured material on the planet after the water and utilized most broadly in the construction due to its properties. According to the Ministry of Environment, Forests and Climate Change of INDIA (MoEFCC) in 2018-19 nearly 15,000 MT of garbage remain exposed every day, resulting in almost 55 Lakh MT of solid waste disposed in open areas each year, which leads to "severe" pollution level. Of the total collected waste, only 20 per cent (27,000 MT per day) is processed and the remaining 80 per cent (1, 08,000 MT per day) is dumped in landfill sites. Furthermore, recycling waste consumes energy and produces pollution. Besides, the gathering of waste in the suburbs and the removal of waste are perilous for nature. Utilizing waste material in Concrete is an appropriate technique for accomplishing two objectives: eliminating waste and adding positive properties in concrete. Since the green concrete industry is growing, it is important to assess concrete that contains waste from all perspectives to determine its capability. The goal of this study is to inspect the concrete properties when it is replaced with waste materials as components. In this study the crumb rubber replaced with san, bagasse is used as cement, and waste crushed tiles are used as coarse aggregate up to some amount as a replacement. With the addition of these wastes we can reduce carbon footprint, and save the natural resources. Different tests on concrete are performed to check the feasibility of these waste materials. With the help of right strategy the Green concrete can be used for making G+3 building in Autodesk Revit architecture and further design in different parts of India by Stadd. Pro software. After that the energy efficiency of the building is also checked and then Cost comparisons of buildings are done with Zero Energy Building through Estimator software. Further cost efficiency of the building is checked by Estimator software. And then stability is checked in different harsh environment conditions of India in Stadd.pro. Keywords: Bagasse, Crumb rubber, Compressive strength, Mosaic, Harsh. v TABLE OF CONTENT Description Page No. STUDENT'S DECLARATION ii CERTIFICATE iii ACKNOWLEDGEMENT iv ABSTRACT v LIST OF FIGURES ix LIST OF TABLES xii LIST OF ACRONYMS AND ABBREVIATIONS xiii Chapter 1: Introduction 1.1 General 1 1.1.1 Concrete 1 1.1.2 Waste 2 1.1.3 Why So Much Interest in These Waste 3 1.1.4 Applications 3 1.1.5 Advantages 4 1.1.6 Disadvantages 4 1.1.7 Need/Demand 4 Chapter 2: Literature Review 2.1 Introduction 5 2.2 Review of Literature 5 2.3 Research Gap 17 2.4 Research Objectives 17 Chapter 3: Methodology 3.1 General 18 3.2 Materials and Software used 19 vi 3.2.1 Cement 19 3.2.2 Sand 19 3.2.3 Coarse Aggregates 20 3.2.4 Bagasse 20 3.2.5 Waste Crushed Tiles 21 3.2.6 Crumb Rubber 22 3.2.7 Super Plasticizer 22 3.2.8 Water 23 3.2.9 Autodesk Revit Architecture 23 3.2.10 Autodesk Energy Analysis 23 3.2.11 Estimator 23 3.2.12 Stadd pro 23 3.3 Parameters of Experiment 24 3.4 Testing 24 3.5 Some Test Performed 24 3.5.1 Casting 24 3.5.2 Compressive Strength Test 25 3.6 Procedure for Mix Design 25 3.7 Estimation of the Quantity of Concrete Mix 26 Chapter 4: Result Analysis 4.1 General 33 4.2 Software Part 44 4.2.1 Basic Parameters 46 4.2.2 Carbon Emission and Energy Analysis in North India (Kandaghat) 47 4.2.3 Carbon Emission and Energy Analysis in South India (Kerala) 50 4.2.4 Carbon Emission and Energy Analysis in East India (Darjeeling) 53 4.2.5 Carbon Emission and Energy Analysis in West India (Ganganagar) 56 4.3 Calculation of Overall Energy Consumed by the Building 59 4.3.1 Total Energy Utilization of the Building in North India (Kandaghat) 59 4.3.2 Total Energy Utilization of the Building in South India (Kerala) 59 4.3.3 Total Energy Utilization of the Building in East India (Darjeeling) 59 4.3.4 Total Energy Utilization of the Building in West India (Ganganagar) 59 vii 4.4 Stability Analysis of Building in Stadd. Pro 60 4.5 Approximate Cost of Conventional Building (excluding foundation work) 63 4.6 Approximate Cost of Zero Energy Building (excluding foundation work) 71 Chapter 5: Discussions and Conclusions 6.1 General 76 6.2 Materials Identify 76 6.3 Conclusions 77 6.4 Future Scope 78 REFERENCE 83 viii LIST OF FIGURES Figure Description Page Number Number 3.1 Methodology of project 18 3.2 Portland Pozalana Cement used at lab 19 3.3 Sand used for design mix 20 3.4 Coarse aggregate of 10mm and 12.5mm 20 3.5 Bagasse used as replacement of cement 21 3.6 Waste crushed tiles used as replacement of Coarse aggregates 21 3.7 Crumb rubber used as replacement of Fine aggregates 22 3.8 Super plasticizer used in design mix 22 3.9 Compression Testing Machine 25 3.10 Bagasse added in Concrete mix 28 3.11 Waste crushed Tiles added in Concrete mix 28 3.12 Crumb rubber mixed in Concrete mix 29 3.13 Curing of cubes in sunlight 29 3.14 Curing of cubes after water 30 3.15 Testing of cubes under Compression Testing Machine 30 3.16 Waste tile cubes after crack under Compression Testing Machine 31 3.17 Crumb rubber cubes after crack under Compression Testing Machine 31 3.18 Bagasse cubes after crack under Compression Testing Machine 32 4.1 Compressive strength variation with the %age of Bagasse for 7 days 34 4.2 Compressive strength variation with the %age of Bagasse for 28 days 35 4.3 Compressive strength variation with the %age of Rubber for 7 days 36 4.4 Compressive strength variation with the %age of Rubber for 28 days 37 4.5 Compressive strength variation with the %age of Tiles for 7 days 38 4.6 Compressive strength variation with the %age of Tiles for 28 days 39 4.7 Graph showing compressive strength of different mix 42 4.8 2-D plan of one floor of G+3 building 45 4.9 Parameters required for Energy and carbon calculations in Revit 46 4.10 Revit 3-D G+3 Building Plan in Kandaghat 47 ix 4.11 Performance factor of the building in Kandaghat 47 4.12 Life cycle cost of building in Kandaghat 47 4.13 Intensity of Used Energy of building in Kandaghat 48 4.14 Renewable Energy Potential of building in Kandaghat 48 4.15 Carbon emission of building in Kandaghat 48 4.16 Annual cost of Energy use of Building in Kandaghat 49 4.17 Use of Energy as Fuel of Building in Kandaghat 49 4.18 Use of Energy as Electricity of Building in Kandaghat 49 4.19 Revit 3-D G+3 Building Plan in Kerala 50 4.20 Performance factor of the building in Kerala 50 4.21 Life cycle cost of building in Kerala 51 4.22 Intensity of Used Energy of building in Kerala 51 4.23 Renewable Energy Potential
Recommended publications
  • An Investigation of High-Performance Self Compacting Concrete Under Flexural Loading
    Civil Engineering and Architecture 8(6): 1414-1418, 2020 http://www.hrpub.org DOI: 10.13189/cea.2020.080624 An Investigation of High-Performance Self Compacting Concrete under Flexural Loading Theerthananda M P1,*, P C Srinivasa1, G M Naveen2 1Department of Civil Engineering, Government Engineering College, Kushalnagar, India 2Department of Civil Engineering, Government Engineering College, Chamarjanagar, India Received October 20, 2020; Revised November 25, 2020; Accepted December 30, 2020 Cite This Paper in the following Citation Styles (a): [1] Theerthananda M P, P C Srinivasa, G M Naveen, "An Investigation of High-Performance Self Compacting Concrete under Flexural Loading," Civil Engineering and Architecture, Vol. 8, No. 6, pp. 1414 - 1418, 2020. DOI: 10.13189/cea.2020.080624. (b): Theerthananda M P, P C Srinivasa, G M Naveen (2020). An Investigation of High-Performance Self Compacting Concrete under Flexural Loading. Civil Engineering and Architecture, 8(6), 1414 - 1418. DOI: 10.13189/cea.2020.080624. Copyright©2020 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract To shorten construction period, to assure compaction in the structure especially in confined zones where vibrating compaction is difficult and to eliminate noise due to vibration effective especially at concrete 1. Introduction products plants SCC is developed in practice. Also, SCC is applied to tunnel lining for preventing the cold joint High Performance Self Compacting Concrete (HPSCC) Self-compacting concrete has been used. Currently, the is the one which ability to Flow, good viscosity, main reasons for the employment of self-compacting segregation resistance and passing ability.
    [Show full text]
  • Fiber in Continuously Reinforced Concrete Pavements 6
    Technical Report Documentation Page 1. Report No. 2. Government 3. Recipient’s Catalog No. FHWA/TX-07/0-4392-2 Accession No. 4. Title and Subtitle 5. Report Date January 2006; Revised December 2006 Fiber in Continuously Reinforced Concrete Pavements 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Dr. Kevin Folliard, David Sutfin, Ryan Turner, and David P. 0-4392-2 Whitney 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research 11. Contract or Grant No. The University of Texas at Austin 0-4392 3208 Red River, Suite 200 Austin, TX 78705-2650 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report 9/1/01–8/31/03 Research and Technology Implementation Office 14. Sponsoring Agency Code P.O. Box 5080 Austin, TX 78763-5080 15. Supplementary Notes Project conducted in cooperation with the Federal Highway Administration and the Texas Department of Transportation. Project Title: Use of Fibers in Concrete Pavement 16. Abstract Continuously reinforced concrete pavement (CRCP) is a major form of highway pavement in Texas due to its increase in ride quality, minimal maintenance, and extended service life. However, CRCP may sometimes experience pavement distress that results in early failure, either due to under-design or the use of poor construction materials. Significant effort has been made to improve the performance of some of these materials (e.g. siliceous river gravel) to achieve an acceptable level of performance but has been unable to provide a practical solution. This research study investigates whether fiber reinforcement may solve some of the problems associated with siliceous river gravel, particularly spalling.
    [Show full text]
  • Experimental Investigation on Nano Concrete with Nano Silica and M-Sand
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 EXPERIMENTAL INVESTIGATION ON NANO CONCRETE WITH NANO SILICA AND M-SAND Mohan Raj.B1, Sugila Devi.G2 1PG Student, Nadar Saraswathi College of Engineering and Technology, Theni, Tamilnadu, India. 2Assistant Professor, Nadar Saraswathi College of Engineering and Technology, Theni, Tamilnadu, India. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The influence of Nano-Silica on various material is Nano Silica (NS). The advancement made by the properties of concrete is obtained by replacing the cement study of concrete at Nano scale has proved the Nano silica is with various percentages of Nano-Silica. Nano-Silica is used as much better than silica fume used in conventional concrete. a partial replacement for cement in the range of 3%, 3.5%, Now, the researchers are capitalizing on nanotechnology to and 10% for M20 mix. Specimens are casted using Nano-Silica innovate a new generation of concrete materials that concrete. Laboratory tests conducted to determine the overcome the above drawbacks and trying to achieve the compressive strength, split tensile and flexural strength of sustainable concrete structures. Evolution of materials is Nano-Silica concrete at the age of 7, 14 and 28 days. Results need of the day for improved or better performance for indicate that the concrete, by using Nano-Silica powder, was special engineering applications and modifying the bulk able to increase its compressive strength. However, the density state of materials in terms of composition or microstructure is reduce compared to standard mix of concrete.
    [Show full text]
  • To the One Who Loved Me, Died for Me and Has Been Raised
    To the One Who loved me, died for me and has been raised. (Bible 2 Corinthians 5:14-15) Acknowledgements In this age, with the next millennium fast approaching, no one can carry out research work alone. Therefore, the author would like to show his appreciation to the many people who assisted with this study. First, I would like to give thanks to my supervisor Dr. P. L. Domone, who helped with this work, gave valuable suggestions and also corrected my written English patiently. I also appreciated Dr. Y. Xu's kind suggestions and encouragement, and both Dr. K. Ozawa and Dr. J.C. Liu supplied useful information concerning this study. I also enjoyed discussing this research work with my junior colleagues: Mr. V. Sheikh, Mr. E.M. Ahmed and Mrs. J. Jin. Furthermore, Mr A. Tucker and Miss H. Kinloch carried out several mixes concerning the early strength of SCC as their final year project under my guidance. The help I received from the technical staff of the Elvery Concrete Technology Laboratory cannot be ignored, especially from Mr. 0. Bourne and Mr. M. Saytch. Furthermore, I would like to acknowledge the scholarship from my government, without which the dream of studying in this country could not have come true, after having spent 12 years teaching. I especially want to give thanks to my family - my mother, my wife Priscilla and May and Boaz for their support. I owe them very much. I also appreciated the care from the saints in the church - it is impossible to list all of them.
    [Show full text]
  • Proposing a New Method Based on Image Analysis to Estimate the Segregation Index of Lightweight Aggregate Concretes
    materials Article Proposing a New Method Based on Image Analysis to Estimate the Segregation Index of Lightweight Aggregate Concretes Afonso Miguel Solak 1,2 , Antonio José Tenza-Abril 1 , Francisco Baeza-Brotons 1 and David Benavente 3,* 1 Department of Civil Engineering, University of Alicante, 03080 Alicante, Spain; [email protected] (A.M.S.); [email protected] (A.J.T.-A.); [email protected] (F.B.-B.) 2 CYPE Ingenieros S.A., 03003 Alicante, Spain 3 Department of Earth and Environmental Sciences, University of Alicante, 03080 Alicante, Spain * Correspondence: [email protected] Received: 18 October 2019; Accepted: 1 November 2019; Published: 5 November 2019 Abstract: This work presents five different methods for quantifying the segregation phenomenon in lightweight aggregate concretes (LWAC). The use of LWACs allows greater design flexibility and substantial cost savings, and has a positive impact on the energy consumption of a building. However, these materials are susceptible to aggregate segregation, which causes an irregular distribution of the lightweight aggregates in the mixture and may affect the concrete properties. To quantify this critical process, a new method based on image analysis is proposed and its results are compared to the well-established methods of density and ultrasonic pulse velocity measurement. The results show that the ultrasonic test method presents a lower accuracy than the other studied methods, although it is a nondestructive test, easy to perform, and does not need material characterization. The new methodology via image analysis has a strong correlation with the other methods, it considers information from the complete section of the samples, and it does not need the horizontal cut of the specimens or material characterization.
    [Show full text]
  • (AUTONOMOUS) Dundigal, Hyderabad- 500 043 CONCRETE TECHNOLOGY (ACE010) IARE-R16 B.Tech V SEM
    INSTITUTE OF AERONAUTICAL ENGINERRING (AUTONOMOUS) Dundigal, Hyderabad- 500 043 CONCRETE TECHNOLOGY (ACE010) IARE-R16 B.Tech V SEM Prepared by Mr. N. Venkat Rao, Associate Professor Ms.B.Bhavani, Assistant Professor COURSE GOAL • To introduce properties of concrete and it constituent materials and the role of various admixtures in modifying these properties to suit specific requirements, such as ready mix concrete, reinforcement detailing, disaster-resistant construction, and concrete machinery have been treated exhaustively the and also special concrete in addition to the durability maintenance and quality control of concrete structure. COURSE OUTLINE UNIT TITILE CONTENT I CEMENT Portland cement, chemical composition, Hydration, ADMIXTURE Setting of cement, Structure of hydrate cement, Test & on physical properties, Different grades of cement. AGGREGATE Mineral and chemical admixtures, properties, dosage, effects, usage. Classification of aggregate, Particle shape & texture, Bond, strength & other mechanical properties of aggregate, Specific gravity, Bulk density, porosity, adsorption & moisture content of aggregate, Bulking of sand, Deleterious substance in aggregate, Soundness of aggregate, Alkali aggregate reaction, Thermal properties, Sieve analysis, Fineness modulus, Grading curves, Grading of fine & coarse Aggregates, Gap graded aggregate, Maximum aggregate size. COURSE OUTLINE UNIT TITILE CONTENT II FRESH Workability, Factors affecting workability, CONCRETE Measurement of workability by different tests, Setting times of concrete, Effect of time and temperature on workability, Segregation & bleeding, Mixing and vibration of concrete, Steps in manufacture of concrete, Quality of mixing water. COURSE OUTLINE UNIT TITILE CONTENT III HARDENED Water / Cement ratio, Abram’s Law, Gel space ratio, CONCRETE Nature of strength of concrete, Maturity concept, TESTING Strength in tension & compression, Factors affecting OF strength, Relation between compression & tensile HARDENED strength, Curing.
    [Show full text]
  • Vysoké Učení Technické V Brně Brno University of Technology
    VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ FACULTY OF CIVIL ENGINEERING ÚSTAV TECHNOLOGIE STAVEBNÍCH HMOT A DÍLCŮ INSTITUTE OF TECHNOLOGY OF BUILDING MATERIALS AND COMPONENTS VLIV VLASTNOSTÍ VSTUPNÍCH MATERIÁLŮ NA KVALITU ARCHITEKTONICKÝCH BETONŮ INFLUENCE OF INPUT MATERIALS FOR QUALITY ARCHITECTURAL CONCRETE DIPLOMOVÁ PRÁCE DIPLOMA THESIS AUTOR PRÁCE Bc. Veronika Ondryášová AUTHOR VEDOUCÍ PRÁCE prof. Ing. RUDOLF HELA, CSc. SUPERVISOR BRNO 2018 1 2 3 Abstrakt Diplomová práce se zaměřuje na problematiku vlivu vlastností vstupních surovin pro výrobu kvalitních povrchů architektonických betonů. V úvodní části je popsána definice architektonického betonu a také výhody a nevýhody jeho realizace. V dalších kapitolách jsou uvedeny charakteristiky, dávkování či chemické složení vstupních materiálů. Kromě návrhu receptury je důležitým parametrem pro vytvoření kvalitního povrchu betonu zhutňování, precizní uložení do bednění a následné ošetřování povrchu. Popsány jsou také jednotlivé druhy architektonických betonů, jejich způsob vyrábění s uvedenými příklady na konkrétních realizovaných stavbách. V praktické části byly navrženy 4 receptury, kde se měnil druh nebo dávkování vstupních surovin. Při tvorbě receptur byl důraz kladen především na minimální segregaci čerstvého betonu a omezení vzniku pórů na povrchu ztvrdlého betonu. Klíčová slova Architektonický beton, vstupní suroviny, bednění, separační prostředky, cement, přísady, pigment. Abstract This diploma thesis focuses on the influence of properties of feedstocks for the production of quality surfaces of architectural concrete. The introductory part describes the definition of architectural concrete with the advantages and disadvantages of its implementation. In the following chapters, the characteristics, the dosage or the chemical composition of the input materials are given. Besides the design of the mixture, important parameters for the creation of a quality surface of concrete are compaction, precise placement in formwork and subsequent treatment of the surface.
    [Show full text]
  • Nano Concrete and Its Classified Applications in Nano Technology
    NANO CONCRETE AND ITS CLASSIFIED APPLICATIONS IN NANO TECHNOLOGY 1ANUPRIYA P. JADHAV, 2A. P. PATIL, 3 D. D. PARKHE, 4S. D. BHAGAT, 5RAJENDRA PAWAR 1,2,3,4,5 MAHARASHTRA ENGINEERING RESEARCH INSTITUTE, NASHIK, MAHARASHTRA, INDIA . Email: [email protected] Abstract - This paper presents a modified design of Nanotechnology, which is one of the most active research areas that include a Number of disciplines including civil engineering and construction materials. In this paper, nano –silica has been replaced in various properties such as 2.5%, 3%, 3.5% to the weight of cement. Then the properties of concrete such as compressive strength of respective specimens were tested after 7 & 28 days of curing. Result has been obtained & compared with normal concrete mix. Nano concrete was concluded to have a higher strength than the ordinary concrete. Nanotechnology is the understanding, control, and restructuring of matter on the order of nano meters (i.e., less than 500nm) to create materials with fundamentally new properties and functions. The main advances have been in the nano science of cementitious materials with an increase in the knowledge and understanding of basic phenomena in cement at the nano scale. Keywords - Nano Scale, Asr, Nano Tube, Nano Silica, Polycarboxylates, Atomic Scale, Nano Concrete. I. INTRODUCTION C. WHAT IS NANO CONCRETE? A concrete made with portland cement particles that A. GNERAL are less than 500nm as a cementing agent. Nano Nanotechnology encompasses main approaches: (i) concrete is concrete made by filling the pores in the top down” approach, in which larger structures are conventional concrte using nano particals of size less reduced in size to the nano scale while maintaining than 500 nm.Currently cement particle sizes range their original properties order constructed from larger from a few nano-meters to a maximum of about 100 structures in to their smaller, composite parts and (ii) micro meters.
    [Show full text]
  • Experimental Study on Partial Replacement of Cement with Fly Ash and Complete Replacement of Sand with M Sand P.SRIDEVI1, DR
    Experimental Study On Partial Replacement Of Cement With Fly Ash And Complete Replacement Of Sand With M sand P.SRIDEVI1, DR. K. CHANDRAMOULI2 1Assistant Professor, Dept of Civil Engineering, NRI Institute of Technology, Visadala(V), Medikonduru(M), Guntur, AP, India, E-mail: [email protected]. 2 Professor& HOD, Dept Of Civil Engineering, NRI Institute Of Technology ,Visadala(V), Medikonduru(M), Guntur, AP, India, E-mail: koduru [email protected]. ABSTRACT Due to rapid growth in construction activity, the available sources of natural sand are getting exhausted & also, good quality sand may have to be transported from long distance, which adds to the cost of construction. In some cases, natural sand may not be of good quality. Therefore, it is necessary to replace natural sand in concrete by an alternate material partially, without compromising the quality of concrete. Quarry sand is one such material which can be used to replace sand as fine aggregate. The present study is aimed at utilizing Quarry sand as fine aggregate replacing natural sand and also the compressive strength of the water cured specimens is measured on the 7,14,28 Days. Split Tensile strength, Flexural Strength, Here we have conducting a test on concrete by using fly ash and m sand. By using these materials we have find out strength on a concrete by adding partial replacement on cement with fly ash and complete replacement of sand with m sand. Key words:: Experimental Study, Partial Replacement, Cement, Fly Ash, Sand, M sand. 1.INTRODUCTION Concrete is the most widely used construction material in civil engineering industry because of its high structural strength, stability, and malleability.
    [Show full text]
  • Eindhoven University of Technology MASTER Study on Bond Capacity Of
    Eindhoven University of Technology MASTER Study on bond capacity of 3D printed concrete with cable reinforcement Dezaire, S. Award date: 2018 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain STUDY ON BOND CAPACITY OF 3D PRINTED CONCRETE WITH CABLE REINFORCEMENT GRADUATION THESIS S. Dezaire Eindhoven University of Technology Department of the Built Environment Master Architecture, Building and Planning Specialization Structural Design Title: STUDY ON BOND CAPACITY OF 3D PRINTED CONCRETE WITH CABLE REINFORCEMENT Report number: A-2018.225 Version: Published Date: 12-8-2018 Student: S. (Steven) Dezaire ID-number: 0810235 E-mail: [email protected] [email protected] Graduation committee: First supervisor: dr.
    [Show full text]
  • Strength Characteristics by Partial Replacement of Cement with Brick Powder
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 7 (2018) pp. 94-99 © Research India Publications. http://www.ripublication.com Strength Characteristics by Partial Replacement of Cement with Brick Powder Sanjay Raj. A Assistant Professor, School of Civil Engineering, Rukmini Knowledge Park, REVA University, Yelankha, Bengaluru, Karnataka, India. Preeti D B, Anil Kumar, Akshay Mangraj UG Scholars, School of Civil Engineering, Rukmini Knowledge Park, REVA University, Yelankha, Bengaluru, Karnataka, India. Abstract transportation from sources & also large scale depletion of The purpose of this research is to study the properties of fresh sources creates environmental problems & to overcome these and hardened states of M40 grade concrete, using Crushed problems there is a need of cost effective alternative and ROCK Powder (CRP) as fine aggregate to full amount of sand innovative materials. with Partial replacement of brick powder at 0%, 5%, 10%, 15% and 20% to existing cement content. This paper Research Significance investigates quantitavely the strength of concrete mix at The most widely used fine aggregate for the different ages. The overall test results revealed that in making of concrete is natural sand, mined from the river beds. concrete mixtures, Crushed Rock Powder can be fully However, the availability of river sand for the preparation of substituted as an alternative material for natural sand (fine concrete is becoming scarce due to the excessive nonscientific aggregate) in presence of Brick powder upto 15%. These methods of mining. Apart from this, issues like lowering of findings guide the practitioner in selecting fly ash and water table, sinking of bridge piers, etc.
    [Show full text]
  • Crete Based on Spatial Distribution of Aggregate Size Fractions
    Image Anal Stereol 2020;39:147-159 doi: 105566/ias.2318 Original Research Paper QUANTIFICATION OF SEGREGATION IN PORTLAND CEMENT CON- CRETE BASED ON SPATIAL DISTRIBUTION OF AGGREGATE SIZE FRACTIONS MURAT OZEN, 1, MURAT GULER2 1Mersin University, Department of Civil Engineering, Mersin, Turkey; 2Middle East Technical University, De- partment of Civil Engineering, Ankara, Turkey e-mail: [email protected], [email protected] (Received December 27, 2019; revised July 16, 2020; accepted July 23, 2020) ABSTRACT Segregation is one of the quality standards that must be monitored during the fabrication and placement of Portland cement concrete. Segregation refers to separation of coarse aggregate from the cement paste, re- sulting in inhomogeneous mixture. This study introduces a digital imaging based technique to quantify the segregation of Portland cement concrete from 2D digital images of cut sections. In the previous studies, segregation was evaluated based on the existence of coarse aggregate fraction at different geometrical re- gions of a sample cross section without considering its distribution characteristics. However, it is shown that almost all particle fractions can form clusters and increase the degree of segregation, thus deteriorating the structural performance of concrete. In the proposed methodology, a segregation index is developed by based on the spatial distribution of different size fractions of coarse aggregate within a sample cross section. It is shown that degradation in mixture’s homogeneity is controlled by the combined effect of particle dis- tribution and their relative proportions in the mixture. Hence, a segregation index characterizing the mixture inhomogeneity is developed by considering not only spatial distribution of aggregate particles, but also their size fractions in the mixture.
    [Show full text]