Potential Way Gas Industry Can Contribute to the Reduction of Methane Emissions Report for the Madrid Forum (5 - 6 June 2019)

Total Page:16

File Type:pdf, Size:1020Kb

Potential Way Gas Industry Can Contribute to the Reduction of Methane Emissions Report for the Madrid Forum (5 - 6 June 2019) Potential ways the gas industry can contribute to the reduction of methane emissions Report for the Madrid Forum (5 - 6 June 2019) Potential ways the gas industry can contribute to the reduction of methane emissions Report for the Madrid Forum (5 - 6 June 2019) CONTRIBUTORS This report combines information and data on methane emissions provided by representatives of the entire natural gas value chain, from production to utilisation, including biomethane plants. Methane Guiding Principles ACKNOWLEDGMENTS: Throughout the coordination of this report, GIE and MARCOGAZ would like to thank all representatives of organisations and companies for their support, engagement and commitment with the development of this report, in particular to the small team that coordinated the elaboration of the chapters. We appreciate the involvement and participation during the workshops, including the representatives of non-EU companies and organisations. GIE and MARCOGAZ are also grateful to the members of the peer review panel and to the European Commission representatives, for their guidance and support to improve the content of the report. DISCLAIMER: This report has been developed by GIE and MARCOGAZ with contributions from the industry. 2 / 146 Potential ways the gas industry can contribute to the reduction of methane emissions Report for the Madrid Forum (5 - 6 June 2019) CONTENTS 1 Summary ............................................................................................................................... 4 Conclusions ...................................................................................................................... 4 Recommendations ........................................................................................................... 6 2 Introduction and scope of the report ................................................................................... 8 3 Overview and main findings ................................................................................................ 10 Current status of CH4 emissions in the gas sector in the EU (Q1) .................................. 11 Existing activities by the gas industry (Q2) .................................................................... 12 Ongoing initiatives and commitments. Identified challenges and future actions (Q3 & Q4) 18 4 Technical background ......................................................................................................... 22 Current understanding and initiatives ........................................................................... 23 Gas industry potential for further reducing methane emissions ................................... 26 Increase transparency. Improve accuracy of collecting methane emissions data ........ 41 Advance strong performance across the gas value chain .............................................. 64 Ensure continued methane emissions reduction .......................................................... 70 Advocate sound policy and regulations on methane emissions .................................... 82 Annexes .......................................................................................................................... 88 5 Critical review statements ................................................................................................. 132 6 Glossary ............................................................................................................................. 137 7 List of acronyms ................................................................................................................ 139 8 References ......................................................................................................................... 141 3 / 146 Potential ways the gas industry can contribute to the reduction of methane emissions Report for the Madrid Forum (5 - 6 June 2019) 1 SUMMARY The effort of the European Union (EU) to reduce the greenhouse gas (GHG) impact of its energy system is focused on mitigating carbon dioxide (CO2) emissions. However, regulation (EU) 2018/1999 on the Governance of the EU requires the European Commission (EC) to propose an EU strategic plan for methane, which will become an integral part of an EU long-term climate strategy aiming to achieve the 1.5°C target until 2050. To this end, the Directorate General for Energy of the EC, at the 31st European Gas Regulatory Forum (Madrid Forum) held in October 2018, invited GIE and MARCOGAZ to investigate the potential ways that the gas industry can contribute to the reduction of methane emissions and to report their findings at the 32nd Madrid Forum in June 2019. Responding to the request, GIE and MARCOGAZ conducted an industry-wide study, with contributions from representatives of the entire gas value chain, from production to utilisation, including biomethane production, and all types of methane emissions. This report provides an overview of the current status of CH4 emissions in the EU gas sector and the actions undertaken by the gas industry until now. The report contains also information on ongoing initiatives and a number of proposed commitments for future actions for the industry. The gas sector is committed to remain the backbone of the low carbon energy system through environmental leadership. Increased knowledge, technology developments and a drive for continuous improvement will lead to further emission reductions in the gas sector as well as other economic segments such as agriculture, waste and industrial processes. Over two million kilometres of existing gas infrastructure will continue to provide competitive energy to EU industries and households. Conclusions Methane emissions management and reduction is a top priority for the European gas industry. Preventing and mitigating methane emissions makes good commercial sense and is a safety requirement. Moreover, the industry considers minimisation of methane emissions as an opportunity to actively contribute to short-term mitigation of climate change, to accelerate environmental commitments and further enhance the environmental value of natural gas. The main conclusions from this report are: Methane emissions occasioned by the EU gas sector operations1 account for a 0.6 % [1] of the total EU GHG emissions. Nonetheless, the gas industry is well aware of the importance of addressing methane emissions in order to ensure that gas and the gas infrastructure remains a significant component of the EU energy mix in the long-term. The gas industry has made good progress related to the identification of all significant sources2 of methane emissions in the different segments of the gas value chain, from production to utilisation. Quantification of methane emission is a complex task. Complementary approaches to quantify methane emissions through a combination of measurement, calculations and modelling to fit each situation have been developed. Two quantification approaches “bottom-up” and “top-down” are available and currently in use, showing significant gaps in macro figures. The EU gas industry mainly uses the so-called “bottom-up” 1 Data on utilisation is not available. 2 Detailed information in Table 1 (p.13). 4 / 146 Potential ways the gas industry can contribute to the reduction of methane emissions Report for the Madrid Forum (5 - 6 June 2019) approach, based upon an inventory of emission sources to quantify methane emissions. Considering the available publications and the experience of the EU gas industry, super-emitters3 in the gas sector have not been identified in the EU. The gas industry has developed reporting methods to increase transparency and comparability associated to the reported data. In addition to the national inventory reports, a number of players report their own company emission inventories, including methane, through the associations’ report and/or via other reporting initiatives (i.e. CDP4). It is necessary to improve the accuracy of the national inventory reports. Collaboration between national authorities and the gas industry should be enhanced to improve the quality of the data. Verification and validation of the methane emissions contributes to increase transparency and reduce data uncertainty. A range of reference standards, methodologies and frameworks related to emission control currently exist (e.g. GHG Protocol, EN 15446, ISO 14064, ISO 14001). Harmonisation of quantification and reporting methodologies (specific for the gas sector, covering all the different types of methane emissions and the entire gas value chain) is very important. The best performers deploy a systematic approach to identify, detect, quantify, report and verify emissions. It is essential to close the current knowledge gap and it enables prioritisation and efficient allocation of capital and human resources to target and mitigate methane emissions at the lowest abatement cost. There is a large number of best available techniques (BAT) to reduce methane emissions that the gas industry is already implementing on a voluntary basis. Although the gas industry is making good progress in quantifying and reducing methane emissions, it is necessary to ensure that this is extended over all parts of the gas chain. Innovation on technologies and methodologies (such as drones, satellites, etc.) is key to further detect and reduce methane emissions. Many gas companies have set emission reduction targets for the next years. These targets are an example of the commitments and future efforts of the gas industry to achieve additional
Recommended publications
  • Enagás' CH4 Emissions Reporting, Mitigation and Commitment
    Enagás’ CH4 emissions reporting, mitigation and commitment Initial condition Enagás is a midstream company. It is a leading natural gas infrastructure company in Spain and the Technical Manager of the Spanish gas system. The company's activities include the management, operation and maintenance of gas infrastructure. In Spain Enagás has approximately 12,000 km of gas pipelines, 19 compressor stations, 493 regulation and metering stations, and 3 underground storage facilities. It also owns 4 LNG regasification plants, and it is the main shareholder of other two. Traditionally, Enagás managed methane emissions predominantly from the safety requirements perspective. However, as energy efficiency and GHG emissions reduction have become strategic priorities for the company, emissions of methane, being a potent short-lived climate pollutant, came to the forefront. The most relevant aspects addressed by Enagás in its climate change management model are: public commitment and the setting of targets, emissions reduction and compensation measures, as well as reporting on performance and results, following TCFD1 recommendations. Since 2013, the company voluntarily started to annually calculate and verify its Carbon Footprint, which constitutes the base for its emission reduction strategy. Quantification of methane emissions is a part of that process, which is subject to an independent third-party verification in accordance with standard ISO 14064. Process: the role of leaks detection and repair Methane emissions account for approximately 20% of Enagás’ greenhouse gas emissions (scope 1 and 2). 70% of these are fugitive methane emissions while the remainder (30%) is primary caused by safety precautions, or by design of equipment (vents). Due to the relatively large share of fugitive emissions, in 2013 Enagás started to carry out leak detection and repair campaigns (LDAR).
    [Show full text]
  • EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter
    EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter EPA 454/B-18-008 August 2018 EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter 9/1/2018 Informational Document This informational document describes the emerging technologies that can measure and/or identify pollutants using state of the science techniques Forward Optical Remote Sensing (ORS) technologies have been available since the late 1980s. In the early days of this technology, there were many who saw the potential of these new instruments for environmental measurements and how this technology could be integrated into emissions and ambient air monitoring for the measurement of flux. However, the monitoring community did not embrace ORS as quickly as anticipated. Several factors contributing to delayed ORS use were: • Cost: The cost of these instruments made it prohibitive to purchase, operate and maintain. • Utility: Since these instruments were perceived as “black boxes.” Many instrument specialists were wary of how they worked and how the instruments generated the values. • Ease of use: Many of the early instruments required a well-trained spectroscopist who would have to spend a large amount of time to setup, operate, collect, validate and verify the data. • Data Utilization: Results from path integrated units were different from point source data which presented challenges for data use and interpretation.
    [Show full text]
  • Detection and Measurement of Fugitive Emissions Using Airborne Differential Absorption Lidar (DIAL)
    EPA Gas STAR Program – Annual Implementation Workshop Detection and Measurement of Fugitive Emissions Using Airborne Differential Absorption Lidar (DIAL) Daniel Brake Active Imaging Solutions ITT Industries Space Systems Division Rochester, New York email: [email protected] phone: (585) 269-5070 www.ssd.itt.com/angel 25 October 2005 2 ITT Industries – Corporate Overview ITT Industries: ~$7.0 Billion (annual revenue) – ITT Defense: ~$3.0 Billion (annual revenue) – Supplier of sophisticated military defense systems and provider of advanced technical and operational services to government customers. – ITT Industries Space Systems Division – Over 50 years as a national leader providing innovation and quality in the design, production and development of Remote Sensing, Meteorological, and Navigation satellite systems. 3 Hydrocarbon Gas Detection: Active Remote Sensing Definition – A remote sensing system that can emit its own electromagnetic energy at a target and then record the interaction between the energy and the target. Application – DIAL (Differential Absorption Lidar) is an example of an active remote sensing technology. A DIAL system sends out controlled pulses of laser energy and then measures the interaction between the laser energy and the target. Advantages – The ability to obtain direct, non-point15 sourOn-ce,line measurementsTheof d iffespecificrence in gases, regardless of the time of day or season. Ability to accuratelywavelength is locate and aquantifybsorption betweareean th eemissions. two wavelengths can rption chosen close to 10 The ability to control the what, when andpeak where of the of target illuminabe usedtion. to dete rmActiveine systems are absorption the concentration of the Abso particularly advantaged when the desired5 featu wavelengtre hs are notchemical sufficient responsibllye provided by the sun, such as portions of the mid-wave infrared (IR).
    [Show full text]
  • Epact Complementary Program Unconventional Resources Technical Advisory Committee Meeting
    EPAct Complementary Program Unconventional Resources Technical Advisory Committee Meeting Alexandra Hakala Shale Gas Technical Coordinator, NETL-ORD September 19, 2013 National Energy Technology Laboratory Tech Transfer to Date: www.edx.netl.doe.gov/ucr 31 Conference Presentations 7 Published Articles & Reports • Additional manuscripts undergoing internal and external peer review 2 Datasets released via EDX 2 Data-driven tool/app via EDX Complementary Program Portfolio – UCR Fugitive Emission Factors and Air Emissions – Fugitive Air Emissions Field Data (2011 to present) – Greenhouse Gas Life Cycle Methane Emission Factor Assessment (2011 to 2012 -- completed) Produced Water and Waste Management – Predicting Compositions and Volumes of Produced Water (2011 to present) – Evaluation of the Geochemical and Microbiological Composition of Shale Gas Produced Water and Solid Wastes (2011 to present) – Biogeochemical Factors that Affect the Composition of Produced Waters and the Utility of Geochemical Tracer Tools (2011 to present) Subsurface Fluid and Gas Migration – Integrated Field Monitoring – Gas/Fluid Migration (2011 to present) – Gas Flow from Shallow Gas Formations (2012 to present) – Approach for Assessing Spatial Trends & Potential Risks with UCR Systems (2011 to present) – Impacts of Shale Gas Development on Shallow Groundwater (2012 to present) – Subsurface Gas and Fluid Migration Assessment (2011 to 2012 -- completed) – Develop a Suite of Naturally Occurring Geochemical Tracer Tools that Verify the Sources of Fluids in Complex Geologic
    [Show full text]
  • GHG Emissions in King County: a 2017 Update
    GHG Emissions in King County: A 2017 Update GHG Emissions in King County: 2017 Inventory Update, Contribution Analysis, and Wedge Analysis July 2019 Prepared for King County, Washington By ICLEI USA 1 GHG Emissions in King County: A 2017 Update ICLEI Team Hoi-Fei Mok Michael Steinhoff Eli Yewdall King County Staff Matt Kuharic The inventory portion of this report draws extensively on King County Greenhouse Gas Emissions Inventory: A 2015 Update, produced by Cascadia Consulting Group and Hammerschlag & Co, LLC. 2 GHG Emissions in King County: A 2017 Update Table of Contents Acronyms ................................................................................................................................................................................................. 4 Introduction and Context .................................................................................................................................................................. 5 Inventory update approach ......................................................................................................................................................... 5 2017 Inventory Update ...................................................................................................................................................................... 7 Results .................................................................................................................................................................................................. 7 Supplemental
    [Show full text]
  • What Does Science Tell Us About Fugitive Methane Emissions from Unconventional Gas?
    www.csiro.au Fugitive emissions from unconventional gas What the latest scientific research is telling us about fugitive methane emissions from unconventional gas. July 2019 What does science tell us about fugitive methane emissions from unconventional gas? This factsheet sets out what the KEY POINTS science tells us about methane • Fugitive emissions are losses, leaks and other releases of methane to the atmosphere that emission sources from coal seam gas are associated with industries producing natural gas, oil and coal. They also include CO2 (CSG) wells, pipelines, compressors emissions associated with flaring of excess gas to the atmosphere. and other infrastructure associated • In Australia, fugitive emissions from oil and gas with CSG production; and their production are estimated to account for about 6.0% of greenhouse gas emissions. importance in contributing to • To accurately measure fugitive emissions, natural background biological and geological warming of the earth’s climate. sources must be separated from human sources. CSIRO studies aim to separate these sources. • CSIRO has a range of research programs What is methane and where does it come from? underway in Queensland, New South Wales, Methane, a colourless, odourless, non-toxic gas, originates from Western Australia and the Northern Territory two sources: using measuring and monitoring techniques, life-cycle analysis methods and industry activity • the decomposition of organic matter, such as in lakes, rivers, data to provide accurate and comprehensive wetlands and soils, or estimates of natural and and fugitive emissions • from deep beneath the earth’s surface where gaseous methane in Australia. has formed geochemically under elevated temperature and • A recent CSIRO study on GHG emissions from pressure conditions.
    [Show full text]
  • Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016
    Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016 i Contents 1.0 Introduction ......................................................................................................................... 1 1.1. Purpose of This Guidance ............................................................................................... 2 1.2. Greenhouse Gas Accounting and Reporting Under Executive Order 13693 ................. 2 1.2.1. Carbon Dioxide Equivalent Applied to Greenhouse Gases .......................................... 3 1.2.2. Federal Reporting Requirements .................................................................................. 4 1.2.3. Distinguishing Between GHG Reporting and Reduction ............................................. 5 1.2.4. Opportunities, Limitations, and Exemptions under Executive Order 13693 ................ 5 1.2.5. Federal Greenhouse Gas Accounting and Reporting Workgroup ................................ 6 1.2.6. Electronic Greenhouse Gas Accounting and Reporting Capability (Annual Greenhouse Gas Data Report Workbook) .................................................................................................. 6 1.2.7. Relationship of the Guidance to Other Greenhouse Gas Reporting Requirements and Protocols ................................................................................................................................. 7 1.2.8. The Public Sector Greenhouse Gas Accounting and Reporting Protocol ..................... 8 2.0 Setting
    [Show full text]
  • Guidelines for Fugitive Emissions Calculations
    Guidelines for Fugitive Emissions Calculations June 2003 Office of Planning, Rule Development, and Area Sources South Coast Air Quality Management District TABLE OF CONTENTS PREFACE 1 COMPONENT IDENTIFICATION AND SCREENING ILLUSTRATION 2 METHOD 1…AVERAGE EMISSION FACTORS 5 DISTRICT’S DEFAULT EMISSION FACTORS 6 METHOD 2…CORRELATION EQUATIONS 7 TABLE IV-3a : CAPCOA-REVISED 1995 EPA CORRELATION EQUATIONS AND FACTORS FOR REFINERIES AND MARKETING TERMINALS 10 METHOD 3…SCREENING VALUE RANGE 11 TABLE IV-2a : 1995 EPA PROTOCOL REFINERY SCREENING VALUE EMISSION FACTORS 14 TABLE IV-2b : 1995 EPA PROTOCOL MARKETING TERMINAL SCREENING VALUE EMISSION FACTORS 15 TABLE IV-2c : CAPCOA OIL AND GAS PRODUCTION SCREENING VALUE EMISSION FACTORS 16 SCREENING DATA REPORTING FILE FORMAT 17 EXAMPLE OF DATA FILE FORMAT 18 EXAMPLE OF SUMMARY REPORT OF EMISSIONS 19 EXAMPLE OF PROCESS UNITS AND CODES 19 SAMPLE OF AER FORM P1 20 SAMPLE OF AER FORM P1U 21 SAMPLE OF AER FORM R3 22 SAMPLE OF AER FORM T1 23 PREFACE The South Coast Air Quality Management District (District) Rule 301 (e) requires facilities operating under District permit to annually report their emissions from all equipment (permitted and non-permitted) to the District. This guidelines document represents a revision to the District’s “Guidelines for Fugitive Emission Calculations – Petroleum Industry”, dated June 1999 to reflect the latest amendments to Rule 1173. This guidelines document provides calculation methods for estimating fugitive emissions (component leaks) from the petroleum industry (i.e.,
    [Show full text]
  • How to Cite Complete Issue More Information About This Article Journal's Webpage in Redalyc.Org Scientific Information System Re
    DYNA ISSN: 0012-7353 ISSN: 2346-2183 Universidad Nacional de Colombia Mariño-Martínez, Jorge Eliecer; Chanci-Bedoya, Rubén Darío; González-Preciado, Angélica Julieth Methane emissions from coal open pits in Colombia DYNA, vol. 87, no. 214, 2020, July-September, pp. 139-145 Universidad Nacional de Colombia DOI: https://doi.org/10.15446/dyna.v87n214.84298 Available in: https://www.redalyc.org/articulo.oa?id=49666177016 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative • Methane emissions from coal open pits in Colombia Jorge Eliecer Mariño-Martínez a, Rubén Darío Chanci-Bedoya b & Angélica Julieth González-Preciado a a Escuela de Ingeniería Geológica, Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Colombia. [email protected], [email protected] b Unidad de Planeación Minero Energética, Colombia. [email protected] Received: December 21th, 2019. Received in revised form: May 25th, 2020. Accepted: June 16th, 2020. Abstract From the agreements on climate change Colombia is committed to measuring and reporting emissions of greenhouse gases (GHG), and among these, the coal mining fugitive emissions. The country has been reporting emissions from international tables-Level 1 of the IPCC, but this proposal is suggesting doing so from exploration of CBM-Level 2 using canisters desorption systems. For the Colombia open pit mining (provinces of Guajira and Cesar) the analyses from international tables and from CBM studies found that emissions from tables- Level 1 (106.02 Gg of methane) exceed the content found in direct measurements-Level 2 (75.92 Gg of methane) in 40%.
    [Show full text]
  • Emissions, Activity Data, and Emission Factors of Fluorinated Greenhouse Gases (F-Gases) in Germany 1995-2002
    Texte Emissions, Activity Data, 15 and Emission Factors of Fluorinated Greenhouse Gases 05 (F-Gases) in Germany ISSN 0722-186X 1995-2002 TEXTE ENVIRONMENTAL RESEARCH OF THE FEDERAL MINISTRY OF THE ENVIRONMENT, NATURE CONSERVATION AND NUCLEAR SAFETY Research Report 201 41 261/01 UBA-FB 000811/e Texte Emissions, Activity Data, and Emission Factors of 15 Fluorinated Greenhouse Gases (F-Gases) in Germany 05 1995-2002 ISSN 0722-186X Adaptation to the Requirements of International Reporting and Implementation of Data into the Centralised System of Emissions (ZSE) by Dr. Winfried Schwarz Öko-Recherche Büro für Umweltforschung und –beratung GmbH, Frankfurt/Main On behalf of the Federal Environmental Agency UMWELTBUNDESAMT This Publication is only available as Download under http://www.umweltbundesamt.de The publisher does not accept responsibility for the correctness, accuracy or completeness of the information, or for the observance of the private rights of third parties. The contents of this publication do not necessarily reflect the official opinions. Publisher: Federal Environmental Agency (Umweltbundesamt) P.O.B. 14 06 06844 Dessau Tel.: +49-340-2103-0 Telefax: +49-340-2103 2285 Internet: http://www.umweltbundesamt.de Edited by: Section III 1.4 Katja Schwaab Berlin, June 2005 Report Cover Sheet 1. Report No. 2. 3. UBA-FB 4. Report Title Emissions, Activity Data, and Emission Factors of Fluorinated Greenhouse Gases (F-Gases) in Germany 1995-2002. Adaptation to the Requirements of International Reporting und Implementation of Data into the Centralised System of Emissions (ZSE) (In German) 5. Authors, Family Names, First Names 8. Report Date 08.06, 2004 Dr. Winfried Schwarz 9.
    [Show full text]
  • Petroleum Industry Guidelines for Reporting Greenhouse Gas Emissions
    GHG 2011 coverspreads 19/04/2011 22:53 Page 1 IPIECA is the global oil and gas industry association for environmental and social issues. It develops, shares and promotes good practices and knowledge to help the industry improve its environmental and industryPetroleum guidelines for reporting greenhouse gas emissions social performance, and is the industry’s principal channel of communication with the United Nations. Through its member-led working groups and executive leadership, IPIECA brings together the collective expertise of oil and gas companies and associations. Its unique position within the industry enables its members to respond effectively to key environmental and social issues. 5th Floor, 209–215 Blackfriars Road, London SE1 8NL, United Kingdom Telephone: +44 (0)20 7633 2388 Facsimile: +44 (0)20 7633 2389 E-mail: [email protected] Internet: www.ipieca.org Petroleum industry guidelines for The American Petroleum Institute is the primary trade association in the United States representing the Climate oil and natural gas industry, and the only one representing all segments of the industry. reporting greenhouse change Representing one of the most technologically advanced industries in the world, API’s membership includes more than 400 corporations involved in all aspects of the oil and gas industry, including 2011 exploration and production, refining and marketing, marine and pipeline transportation and service gas emissions and supply companies to the oil and natural gas industry. API is headquartered in Washington, D.C. and has offices in 27 state capitals and provides its members with representation on state issues in 33 states. API provides a forum for all segments of the oil and natural gas industry to pursue public policy objectives and advance the interests of the industry.
    [Show full text]
  • Guidelines for Reporting VOC Emissions from Component Leaks
    Guidelines for Reporting VOC Emissions from Component Leaks FEBRUARY 2015 TABLE OF CONTENTS PREFACE 1 COMPONENT IDENTIFICATION AND SCREENING ILLUSTRATION 2 METHOD 1…AVERAGE (DEFAULT) EMISSION FACTORS 5 METHOD 2…CORRELATION EQUATIONS 6 METHOD 3…SCREENING VALUE RANGE 7 SPECIFIC INSTRUCTIONS 10 PREFACE The South Coast Air Quality Management District (District) Rule 301(e) requires facilities operation under District permit to annually report their emissions from all equipment (permitted and non-permitted) to the District. This guidelines document represents a revision to the District’s “Guidelines for Fugitive Emission Calculations – Petroleum Industry”, dated June 1999 and “Guidelines for Fugitive Emissions Calculations”, dated June 2003 to reflect the amendments to Rule 1173 and changes in the AER program. This guidelines document provides calculation methods for estimating fugitive emissions (component leaks) from the petroleum industry (i. e., oil and gas production facilities, refineries and marketing terminals), guidelines for component counting and leak quantification, and specific instructions (including examples) for how to report VOC emissions from component leaks. This guidelines document primarily makes reference to the document entitled, “California Guidelines for Estimating Mass Emissions of Fugitive Hydrocarbon Leaks at Petroleum Facilities”, dated February 1999, prepared by the California Air Pollution Control Officers Association (CAPCOA), and the California Air Resources Board (ARB). (The CAPCOA/ARB document represented a multi-year collaborative effort between the industry, the CAPCOA and ARB to provide a consistent approach for estimating fugitive emissions from equipment components used in the California petroleum industry. The CAPCOA/ARB document provides different calculation methodologies as well as component identification and counting guidelines, component-screening procedures and leak quantification methods, which must be followed by facilities in order to more accurately calculate the fugitive emissions.
    [Show full text]