And Their Pa Laeoe Co Logical Significance

Total Page:16

File Type:pdf, Size:1020Kb

And Their Pa Laeoe Co Logical Significance LATE CRETACEOUS SILICEOUS SPONGES FROM THE MIDDLE VISTULA RIVER VALLEY (CENTRAL POLAND) AND THEIR PA LAEOE CO LOGICAL SIGNIFICANCE Ewa ŚWIERCZEWSKA-GŁADYSZ Geological Department o f the Łódź University, Narutowicza 88, 90-139 Łódź, Poland; e-mail: [email protected] Świerczewska-Gładysz, E., 2006. Late Cretaceous siliceous sponges from the Middle Vistula River Valley (Central Poland) and their palaeoecological significance. Annales Societatis Geologorum Poloniae, 76: 227-296. Abstract: Siliceous sponges are extremely abundant in the Upper Campanian-Maastrichtian opokas and marls of the Middle Vis-ula River VaUey, situated in the western edge of the Lublin Basin, part of the Cre-aceous German-Polish Basin. This is also the only one area in Poland where strata bearing the Late Maastrichtian sponges are exposed. The presented paper is a taxonomic revision of sponges coUected from this region. Based both on existing and newly collected material comprising ca. 1750 specimens, 51 species have been described, including 18 belonging to the Hexactinosida, 15 - to the Lychniscosida and 18 - to Demospongiae. Among them, 28 have not been so far described from Poland. One new genus Varioporospongia, assigned to the family Ventriculitidae Smith and two new species Varioporospongia dariae sp. n. and Aphrocallistes calciformis sp. n. have been described. Comparison of sponge fauna from the area of Podilia, Crimea, Chernihov, and Donbas regions, as well as literature data point to the occurrence of species common in the analysed area and to the basins of Eastern and Western Europe. This in turn indicates good connections between particular basins of the European epicontinental sea dumg the Campanian-Maastrichtian. Analysis of the taxonomic composition of the Middle Vistula assem­ blage suggests that the occurring sponge fauna is transitional between the faunas of Eastern and Western Europe, what may be linked with the central location of the Lublin Basin in the European epicontinental sea. The gradual upward decrease of taxonomic diversity of the Hexactinosida and Lychniscosida in the studied succession points to gradual basin shallowing, what is consistent with the global regressive trend by the end of the Cretaceous. The domination of the Hexactinellida over the lithistids in terms of diversity and abundance in the entire section allows us to estimate the maximum depth of the Late Campanian basin as 200-250 m and to constrain the minimum depth during the latest Maastrichtian as about 100 m. Key words: Sponges, Hexactinosida, Lychniscosida, lithistids, taxonomy, palaeoecology, Upper Cretaceous, Cen tral Po land. Manuscript received 17 May 2005, accepted 19 October 2006 INTRODUCTION Rich sponge fauna with a siHceous skeleton ex-sted ern Europe. The presence of sponges in the Upper Crefa- during the Late Cretaceous in the European continental sea ceous deposits has also been noted from Central and Eastern (Wiedenmayer, 1980; Pisera, 1999). The conditions favour­ Europe. However, sponges in these localities are not known ing development of sponges at that time were linked with in detail due to their poor state of preservation, which is re­ the common marine transgressions which began in the Al- lated to the domination of carbonate-siliceous and chalk fa­ bian (Hancock & Kauffman, 1979). The acme of sponge de­ cies over limestones. velopment occurred in the Campanian, what corresponded The Middle V is ^ a River VaUey (Cen-ral Po-and) is to the global maximum of eustatic rise (Hancock, 1975; one of the are as in Pol and, where the Late Cret ac eous Hancock & Kauffman, 1979; Hancock, 1989). sponges are very abundant. For the first time the presence of Despite large abundance and high taxonomic variabil­ sponges in this area was noted by Pusch (1837). Later, they ity, larger accumu- ations of bodUy preserved sponges are were also mentioned by Sujkowski (1931), Pożaryski not common in the Upper Cretaceous strata. Their distribu­ (1938), and Putzer (1942). Early Cretaceous sponges, com­ tion is restricted to some areas and s^^graphic toei'vals monly occurring in the Albian strata were studied by Hurce­ only (cf. Hancock, 1976). The largest number of sites with wicz (1988). Sponges be-ong to one of the most common rich and well recognised sponge fauna is known from West­ fossil groups also in the Campanian and Maastrichtian Fig. 1. A. Location of studied area on the general map of Poiand; B. Geoiogical sketch - map of the Middle Vistula River Valiey (adopted from: Pożaryski, 1938 and Błaszkiewicz, 1980) strata. Their taxonomic recognition, however, is poor. Only Thus, this region is unique for tracing the changes which single specimens have been described from these deposits took place in the sponge assemblages in the Late Cretaceous (Hurcewicz, 1966, 1968). up to the Creiaceous/Palaeogene boundary, and reierring The Campanian and Maasirichtian sponges from the these changes to the bathymetry of the basin by the end on Middle Vistula River Valley also have a certain palaeoeco- the Cretaceous. logical significance, because they occur in the beds in situ. The pres ented herein taxonomic res earch of sponges Additionally, apart from this area, no outcrops with sponges from the Campanian and Maasirichtian deposits from the of the Maastrichtian age are known from the area of Poland. Middle Vistula River Valley supplements the existing data on the fossil assemblages from this area. It also provides Machakki & Waiaszctyk, 1987; Machakki, 1998). The new facts on the occurrence of sponge fauna in the Late opoka is directly overlain by glauconitic sandstone contain­ Cretaceous in the central part of the Central European Ba­ ing numerous phosphatised Cretaceous and Palaeogene fos­ sin, what in turn aliows broadening the palaeogeographic sils. This bed is considered either the uppermost Cretaceous ranges of some species earlier known from Western Europe (Kongiel, 1935, 1958; Pożaryski, 1938; Putzer, 1942; Rad­ only. wański, 1985; Abdel-Gawad, 1986; Machalski & Wai asz- czyk, 1987) or Palaeogene in age (Pożaryska, 1965, 1967; Krach, 1974, 1981; Błaszkiewicz, 1966, 1979, 1980; Peryt, GEO LOGI CAL SET TING 1980; Hansen et al., 1989; Machalski, 1998; Żarski et al., 1998; Świerczewska-Gładysz, 2000; Świerczewska-Gła- The Cretaceous rocks comprising the Albian through dysz & Olszewska-Nejbert, 2006). The bed passes into ga- Maastrichtian strata are exposed in the western part of the izes with limestones, the so-called siwak, presently assigned Lublin Basin, in the Middle Vistula River Valiey between either to the Montian (Krach, 1968, 1971, 1974; Pożaryska, Annopol and Puławy (Fig. 1A, B). This region was a part of 1965; Liszkowski, 1970) or Danian (Peryt, 1980; Hansen et the German-Polish Basin and in the Late Cretaceous was al., 1989; Machalski, 1998, Żarski et al., 1998). located in the central part of a vast shelf sea in the area of Beside sponges, the most abundant macrofauna include Central Europe. bivalves and snails (Krach, 1931; Pożaryski, 1938; Putzer, The study area comprises the northern part of the Mid­ 1942; Pożaryska & Pożaryski, 1951; Pugaczewska, 1977; dle Vistula River gorge. The exposures (13 sites), in which Abdel-Gawad, 1986; 1990). Of stratigraphic significance the sponge fauna have been coll ected, are situated in the are beiemnites (Nowak, 1913, 1917; Skołozdrówna, 1932; Vistula River Valley along its both sides, at a distance of ca. Kongiel & Matwiejówna, 1937; Kongiel, 1962) and am­ 50 km (Fig. 1B). The Cretaceous deposits occurring in the monites (Łopuski, 1911-12; Nowak, 1913, 1917; Błasz­ study area display poor bedding and dip very gently (ca. 3°) kiewicz, 1966, 1979, 1980; Machalski & Jagt, 1998). Addi­ to the NE and NNE (cf. Pożaryski, 1938). tionally, nautiioids (Łopuski, 1911-1912; Kongiel & Mat­ Detpite numerous papers (Łopuski, 1911-1912; Ma­ wiejówna, 1937; Putzer, 1942), brachiopods (Pożaryska & zurek, 1915; Pożaryski, 1938; Kongiel, 1958, 1962; Poża­ Pożaryski, 1951; Popiel-Barczyk, 1968), corals (Putzer, ryska, 1965, 1967; Błaszkiewicz, 1966, 1980; Gaździcka, 1942), echinoids (Kongiel, 1950; Mączyńska, 1972), and 1978; Peryt, 1980; Pożaryska & Pugaczewska, 1981; bryozoans (Maryańska, 1969) are also present. Abdel-Gawad, 1986; Hansen et al., 1989; Marcinowski & Radwański, 1996; Machalski, 1996; Machalski & Jagt, 1998), the detailed correlation of particular lithological suc­ MA TE RIAL cessions has not bee est abl ished yet. This results from the rather uniform character of the Campanian and Maastrich- The studied material consists of about 1,750 specimens tian sediments. These exposures, except for Nasiłów and (collection of UL XX). The specimens have been collected Bochotnica, lack characteristic correlation beds or horizons. in 13 exposures within the Vistula River Valiey: Ciszyca In this paper, the biostratigraphic zones based on cephalo- Kolonia, Ciszyca Górna, Piotrawin, Solec, Dziurków, pods (Błaszkiewicz, 1980) have been used (Fig. 2). Kłudzie, Dobre, Podgórz, Męćmierz, Kazimi erz - two ob­ The oldest studied deposits are the Upper Campanian servation points, Janowiec, Nasiłów, and Bochotnica - opokas, exposed in the quarries of Ciszyca Kolonia, Ci- three observation points (Figs 1B, 2). Part of the specimens szyca Górna, and Piotrawin (Nostoceras pozaryskii Zone) have been coll ected directly from the exposure walls, ena­ (Fig. 2). The Campanian deposits pass conformably into bling observation of the preservation stage of sponges in macroscopically indistinguishable opokas of the Lower particular beds and their
Recommended publications
  • New Zealand Oceanographic Institute Memoir 100
    ISSN 0083-7903, 100 (Print) ISSN 2538-1016; 100 (Online) , , II COVER PHOTO. Dictyodendrilla cf. cavernosa (Lendenfeld, 1883) (type species of Dictyodendri/la Bergquist, 1980) (see page 24), from NZOI Stn I827, near Rikoriko Cave entrance, Poor Knights Islands Marine Reserve. Photo: Ken Grange, NZOI. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH The Marine Fauna of New Zealand: Index to the Fauna 2. Porifera by ELLIOT W. DAWSON N .Z. Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir 100 1993 • This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication DAWSON, E.W. The marine fauna of New Zealand: Index to the Fauna 2. Porifera / by Elliot W. Dawson - Wellington: New Zealand Oceanographic Institute, 1993. (New Zealand Oceanographic Institute memoir, ISSN 0083-7903, 100) ISBN 0-478-08310-6 I. Title II. Series UDC Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson NIWA Oceanographic (NZOI) National Institute of Water and Atmospheric Research Received for publication: 17 July 1991 © NIWA Copyright 1993 2 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page ABSTRACT 5 INTRODUCTION 5 SCOPE AND ARRANGEMENT 7 SYSTEMATIC LIST 8 Class DEMOSPONGIAE 8 Subclass Homosclcromorpha ..............................................................................................
    [Show full text]
  • Lithistid’ Tetractinellid
    1 Systematics of ‘lithistid’ tetractinellid 2 demosponges from the Tropical Western 3 Atlantic – implications for phylodiversity 4 and bathymetric distribution 1,2 3 4 5 Astrid Schuster , Shirley A. Pomponi , Andrzej Pisera , Paco 5 6 1,7,8 1,8 6 Cardenas´ , Michelle Kelly , Gert Worheide¨ , and Dirk Erpenbeck 1 7 Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, 8 Ludwig-Maximilians-Universitat¨ M ¨unchen, Richard-Wagner Str. 10, 80333 Munich, 9 Germany 2 10 Current address: Department of Biology, NordCEE, Southern University of Denmark, 11 Campusvej 55, 5300 M Odense, Denmark 3 12 Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, 13 Ft Pierce, FL 34946, USA 4 14 Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 15 Warszawa, Poland 5 16 Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Husargatan 17 3, 75123 Uppsala, Sweden 6 18 National Centre for Coasts and Oceans, National Institute of Water and Atmospheric 19 Research, Private Bag 99940, Newmarket, Auckland, 1149, New Zealand 7 20 SNSB-Bayerische Staatssammlung f ¨urPalaontologie¨ und Geologie, Richard-Wagner 21 Str. 10, 80333 Munich, Germany 8 22 GeoBio-CenterLMU, Ludwig-Maximilians-Universitat¨ M ¨unchen, Richard-Wagner Str. 10, 23 80333 Munich, Germany 24 Corresponding author: 1,8 25 Dirk Erpenbeck 26 Email address: [email protected] 27 ABSTRACT PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27673v1 | CC BY 4.0 Open Access | rec: 22 Apr 2019, publ: 22 Apr 2019 28 Background Among all present demosponges, lithistids represent a polyphyletic group with 29 exceptionally well preserved fossils dating back to the Cambrian.
    [Show full text]
  • Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida
    Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Aulocalycoida and Lychniscosida Hexactinellida: Hexasterophora): Orders Hexactinosida, The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges Zealand (Porifera: ISSN 1174–0043; 124 Henry M. Reiswig and Michelle Kelly The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Henry M. Reiswig and Michelle Kelly NIWA Biodiversity Memoir 124 COVER PHOTO Two unidentified hexasterophoran glass sponge species, the first possibly Farrea onychohexastera n. sp. (frilly white honeycomb sponge in several bushy patches), and the second possibly Chonelasma lamella, but also possibly C. chathamense n. sp. (lower left white fan), attached to the habitat-forming coral Solenosmilia variabilis, dominant at 1078 m on the Graveyard seamount complex of the Chatham Rise (NIWA station TAN0905/29: 42.726° S, 179.897° W). Image captured by DTIS (Deep Towed Imaging System) onboard RV Tangaroa, courtesy of NIWA Seamounts Programme (SFAS103), Oceans2020 (LINZ, MFish) and Rob Stewart, NIWA, Wellington (Photo: NIWA). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida:
    [Show full text]
  • An Integrative Systematic Framework Helps to Reconstruct Skeletal
    Dohrmann et al. Frontiers in Zoology (2017) 14:18 DOI 10.1186/s12983-017-0191-3 RESEARCH Open Access An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida) Martin Dohrmann1*, Christopher Kelley2, Michelle Kelly3, Andrzej Pisera4, John N. A. Hooper5,6 and Henry M. Reiswig7,8 Abstract Background: Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Results: Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution.
    [Show full text]
  • Download-The-Data (Accessed on 12 July 2021))
    diversity Article Integrative Taxonomy of New Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region Kareen E. Schnabel 1,* , Qi Kou 2,3 and Peng Xu 4 1 Coasts and Oceans Centre, National Institute of Water & Atmospheric Research, Private Bag 14901 Kilbirnie, Wellington 6241, New Zealand 2 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 3 College of Marine Science, University of Chinese Academy of Sciences, Beijing 100049, China 4 Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; [email protected] * Correspondence: [email protected]; Tel.: +64-4-386-0862 Abstract: The New Zealand fauna of the crustacean infraorder Stenopodidea, the coral and sponge shrimps, is reviewed using both classical taxonomic and molecular tools. In addition to the three species so far recorded in the region, we report Spongicola goyi for the first time, and formally describe three new species of Spongicolidae. Following the morphological review and DNA sequencing of type specimens, we propose the synonymy of Spongiocaris yaldwyni with S. neocaledonensis and review a proposed broad Indo-West Pacific distribution range of Spongicoloides novaezelandiae. New records for the latter at nearly 54◦ South on the Macquarie Ridge provide the southernmost record for stenopodidean shrimp known to date. Citation: Schnabel, K.E.; Kou, Q.; Xu, Keywords: sponge shrimp; coral cleaner shrimp; taxonomy; cytochrome oxidase 1; 16S ribosomal P. Integrative Taxonomy of New RNA; association; southwest Pacific Ocean Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region.
    [Show full text]
  • Summary of Deep Oil and Gas Wells and Reservoirs in the U.S. by 1 211
    UNITED STATES DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY Summary of Deep Oil and Gas Wells and Reservoirs in the U.S. By 1 211 1 T.S. Dyman , D.T. Nielson , R.C. Obuch , J.K. Baird , and R.A. Wise Open-File Report 90-305 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature, Any use of trade names is for descriptive use only and does not imply endorsement by the U.S. Geological Survey. ^Denver, Colorado 80225 Reston, Virginia 22092 1990 CONTENTS Page Abs t r ac t............................................................ 1 Introduction........................................................ 2 Data Management..................................................... 3 Data Analysis....................................................... 6 References.......................................................... 11 Tables Table 1. The ten deepest wells in the U.S. in order of decreasing total depth............................................ 12 / 2. Total wells drilled deeper than 15,000 ft by depth for U.S. based on final well completion class.............. 13 2a. Total deep producing wells (producing at or below 15,000 ft) by depth for U.S. based on final completion class....................................... 14 3. Total wells drilled deeper than 15,000 ft by depth for U.S. based on year of completion................... 15 3a. Total deep producing wells and gas producing wells (producing at or below 15,000 ft) by depth for U.S. based on year of completion............................ 19 4. Total wells drilled deeper than 15,000 ft by depth for U.S. based on region............................... 23 4a. Total deep producing wells and gas producing wells (producing at or below 15,000 ft) for U.S. by region, province, and depth...................................
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Tayside, Central and Fife Tayside, Central and Fife
    Detail of the Lower Devonian jawless, armoured fish Cephalaspis from Balruddery Den. © Perth Museum & Art Gallery, Perth & Kinross Council Review of Fossil Collections in Scotland Tayside, Central and Fife Tayside, Central and Fife Stirling Smith Art Gallery and Museum Perth Museum and Art Gallery (Culture Perth and Kinross) The McManus: Dundee’s Art Gallery and Museum (Leisure and Culture Dundee) Broughty Castle (Leisure and Culture Dundee) D’Arcy Thompson Zoology Museum and University Herbarium (University of Dundee Museum Collections) Montrose Museum (Angus Alive) Museums of the University of St Andrews Fife Collections Centre (Fife Cultural Trust) St Andrews Museum (Fife Cultural Trust) Kirkcaldy Galleries (Fife Cultural Trust) Falkirk Collections Centre (Falkirk Community Trust) 1 Stirling Smith Art Gallery and Museum Collection type: Independent Accreditation: 2016 Dumbarton Road, Stirling, FK8 2KR Contact: [email protected] Location of collections The Smith Art Gallery and Museum, formerly known as the Smith Institute, was established at the bequest of artist Thomas Stuart Smith (1815-1869) on land supplied by the Burgh of Stirling. The Institute opened in 1874. Fossils are housed onsite in one of several storerooms. Size of collections 700 fossils. Onsite records The CMS has recently been updated to Adlib (Axiel Collection); all fossils have a basic entry with additional details on MDA cards. Collection highlights 1. Fossils linked to Robert Kidston (1852-1924). 2. Silurian graptolite fossils linked to Professor Henry Alleyne Nicholson (1844-1899). 3. Dura Den fossils linked to Reverend John Anderson (1796-1864). Published information Traquair, R.H. (1900). XXXII.—Report on Fossil Fishes collected by the Geological Survey of Scotland in the Silurian Rocks of the South of Scotland.
    [Show full text]
  • Geological Studies of the COST GE-1 Well, United States South Atlantic
    GEOLOGICAL SURVEY CIRCULAR 800 Geological Studies of the COST GE-1 Well, United States South Atlantic Outer Continental Shelf Area Geological Studies of the COST GE-1 Well, United States South Atlantic Outer Continental Shelf Area By Peter A. Scholle, Editor GEOLOGICAL SURVEY CIRCULAR 800 1979 United States Department of the Interior CECIL D. ANDRUS, Secretary Geological Survey H. William Menard, Director Use of brand names in this report is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey. Free on application to Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, VA 22202 CONTENTS Page Abstract 1 Introduction 1 Acknowledgments 3 Geologic setting, by William P. Dillon, Kirn D. Klitgord, and Charles K. Paull 4 Regional stratigraphy and structure of the Southeast Georgia Embayment, by Page C. Valentine 7 Data summary and petroleum potential, by Peter A. Scholle 18 Lithologic descriptions, by E. C. Rhodehamel 24 Petrophysical summary, by E. K. Simonis 37 Petrographic summary, by Robert B. Halley ,- 42 Foraminiferal biostratigraphy, paleoecology, and sediment accumulation rates, by C. Wylie Poag and Raymond E. Hall 49 Calcareous nannofossil biostratigraphy and paleoenvironmental interpretation, by Page C. Valentine 64 Radiometric age determinations, by E. K. Simonis 71 Geothermal gradients, by E. I. Robbins 72 Organic geochemistry, by R. E. Miller, D. M. Schultz, G. E. Claypool, M. A. Smith, H. E. Lerch, D. Ligon, C. Gary, and D. K. Owings 74 Geophysical studies, by R. C. Anderson and D. J. Taylor 93 Structure of the Continental Margin near the COST No. GE-1 drill site from a common-depth- point seismic-reflection profile, by William P.
    [Show full text]
  • Geodynamic Evolution of the Rhenodanubian Flysch Zone - Evidence from Apatite and Zircon Fission-Track Geochronology and Morphology Studies on Zircon
    Geodynamic evolution of the Rhenodanubian Flysch Zone - evidence from apatite and zircon fission-track geochronology and morphology studies on zircon Britta TRAUTWEIN, lstvan DuNKL, Joachim KuHLEMANN, Wolfgang FRISCH TRAUTWEIN, B., DUNKL, 1., KUHLEMANN, J. & FRISCH, w„ 2001: Geodynamic evolution of the Rhenodanubian Flysch Zone - evidence from apatite and zircon fission-track geochronology and morphology studies on zircon. - In: P1LLER, W. E. & RAssrn, M. W. (Eds.): Paleogene of the Eastern Alps. - Österr. Akad. Wiss., Schriftenr. Erdwiss. Komm. 14: 111-128, 9 Figs., 2 Tabs., Wien. Abstract: The geodynamic evolution of the East-Alpine Rhenodanubian flysch zone (RDFZ) is reconstructed by fission-track (FT) geochronology and the external habits of zircon. The samples are derived from Paleogene and Cretaceous formations of the RDFZ. Ordovician, Carboniferous and Triassic zircon FT ages and the external morphology of the zircons of the Laab Formation are evidence for a European source area. The zircons of the Greifenstein Formation are derived from the Alpine orogen reflecting the Eoalpine orogeny. Due to the different provenance of these two Paleogene formations, two separate depositional areas are assumed, which are called the Main Flysch basin and the Laab basin. The Laab basin was positioned to the north of the Main Flysch basin. They were either separated by a submarine swell, or the Laab Formation was deposited in less deep water north of the Greifenstein Formation. The thermal evolution of the RDFZ, which represents an accretionary wedge, is deduced from fission-track data. During the Paleogene, the differently buried stratigraphic units in the area between Salzburg and Ybbsitz experienced cooling due to exhumation after accretion of the European continental margin sediments.
    [Show full text]
  • A Unique Assemblage of Epibenthic Sessile Suspension Feeders with Archaic Features in the High-Antarctic
    ARTICLE IN PRESS Deep-Sea Research II 53 (2006) 1029–1052 www.elsevier.com/locate/dsr2 A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic Josep-Maria Gilia,Ã, Wolf E. Arntzb, Albert Palanquesa, Covadonga Orejasb, Andrew Clarkec, Paul K. Daytond, Enrique Islaa, Nuria Teixido´a, Sergio Rossia, Pablo J. Lo´pez-Gonza´leze aInstitut de Cie`ncies del Mar (CMIMA-CSIC), Passeig Marı´tim de la Barceloneta 37-49, 08003 Barcelona, Spain bAlfred-Wegener-Institut fu¨r Polar- und Meeresforschung, Columbusstrasse, 27568 Bremerhaven, Germany cBritish Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK dScripps Institution of Oceanography, La Jolla, CA 92093-0227, USA eDepartamento de Fisiologı´a y Zoologı´a, Universidad de Sevilla, Av Reina Mercedes 6, 41012 Sevilla, Spain Received 17 April 2005; accepted 3 October 2005 Available online 21 July 2006 Abstract We suggest that the epibenthic communities of passive suspension feeders that dominate some high-Antarctic seafloors present unique archaic features that are the result of long isolation, together with the effects of environmental features including reduced terrestrial runoff and favourable feeding conditions. These features probably originated during the Late Cretaceous, when the high-Antarctic environment started to become different from the surrounding oceans. Modern Antarctic communities are thus composed of a mixture of Palaeozoic elements, taxa that migrated from the deep ocean during interglacial periods, and a component of fauna that evolved from common Gondwana Cretaceous ancestors. We explore this hypothesis by revisiting the palaeoecological history of Antarctic marine benthic communities and exploring the abiotic and biotic factors involved in their evolution, including changes in oceanic circulation and production, plankton communities, the development of glaciation, restricted sedimentation, isolation, life histories, and the lack of large predators.
    [Show full text]
  • Programm Und Kurzfassungen – Program and Abstracts
    1 Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Geologie 29 Paläontologie im Blickpunkt 80. Jahrestagung der Paläontologischen Gesellschaft 5. – 8. Oktober 2010 in München Programm und Kurzfassungen – Program and Abstracts München 2010 Zitteliana B 29 118 Seiten München, 1.10.2010 ISSN 1612-4138 2 Editors-in-Chief/Herausgeber: Gert Wörheide, Michael Krings Mitherausgeberinnen dieses Bandes: Bettina Reichenbacher, Nora Dotzler Production and Layout/Bildbearbeitung und Layout: Martine Focke, Lydia Geissler Bayerische Staatssammlung für Paläontologie und Geologie Editorial Board A. Altenbach, München B.J. Axsmith, Mobile, AL F.T. Fürsich, Erlangen K. Heißig, München H. Kerp, Münster J. Kriwet, Stuttgart J.H. Lipps, Berkeley, CA T. Litt, Bonn A. Nützel, München O.W.M. Rauhut, München B. Reichenbacher, München J.W. Schopf, Los Angeles, CA G. Schweigert, Stuttgart F. Steininger, Eggenburg Bayerische Staatssammlung für Paläontologie und Geologie Richard-Wagner-Str. 10, D-80333 München, Deutschland http://www.palmuc.de email: [email protected] Für den Inhalt der Arbeiten sind die Autoren allein verantwortlich. Authors are solely responsible for the contents of their articles. Copyright © 2010 Bayerische Staassammlung für Paläontologie und Geologie, München Die in der Zitteliana veröffentlichten Arbeiten sind urheberrechtlich geschützt. Nachdruck, Vervielfältigungen auf photomechanischem, elektronischem oder anderem Wege sowie
    [Show full text]