Completegwworkshop Docv1j10:16:15
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Martin Pfleiderer
Online publications of the Gesellschaft für Popularmusikforschung/ German Society for Popular Music Studies e. V. Ed. by Eva Krisper and Eva Schuck w w w . gf pm- samples.de/Samples17 / pf l e i de r e r . pdf Volume 17 (2019) - Version of 25 July 2019 BEYOND MAJOR AND MINOR? THE TONALITY OF POPULAR MUSIC AFTER 19601 Martin Pfleiderer While the functional harmonic system of major and minor, with its logic of progression based on leading tones and cadences involving the dominant, has largely departed from European art music in the 20th century, popular music continues to uphold a musical idiom oriented towards major-minor tonality and its semantics. Similar to nursery rhymes and children's songs, it seems that in popular songs, a radiant major affirms plain and happy lyrics, while a darker minor key underlines thoughtful, sad, or gloomy moods. This contrast between light and dark becomes particularly tangible when both, i.e. major and minor, appear in one song. For example, in »Tanze Samba mit mir« [»Dance the Samba with Me«], a hit song composed by Franco Bracardi and sung by Tony Holiday in 1977, the verses in F minor announce a dark mood of desire (»Du bist so heiß wie ein Vulkan. Und heut' verbrenn' ich mich daran« [»You are as hot as a volcano and today I'm burning myself on it«]), which transitions into a happy or triumphant F major in the chorus (»Tanze Samba mit mir, Samba Samba die ganze Nacht« [»Dance the samba with me, samba, samba all night long«]). But can this finding also be transferred to other areas of popular music, such as rock and pop songs of American or British prove- nance, which have long been at least as popular in Germany as German pop songs and folk music? In recent decades, a broad and growing body of research on tonality and harmony in popular music has emerged. -
The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely. -
THE MODES of ANCIENT GREECE by Elsie Hamilton
THE MODES OF ANCIENT GREECE by Elsie Hamilton * * * * P R E F A C E Owing to requests from various people I have consented with humility to write a simple booklet on the Modes of Ancient Greece. The reason for this is largely because the monumental work “The Greek Aulos” by Kathleen Schlesinger, Fellow of the Institute of Archaeology at the University of Liverpool, is now unfortunately out of print. Let me at once say that all the theoretical knowledge I possess has been imparted to me by her through our long and happy friendship over many years. All I can claim as my own contribution is the use I have made of these Modes as a basis for modern composition, of which details have been given in Appendix 3 of “The Greek Aulos”. Demonstrations of Chamber Music in the Modes were given in Steinway Hall in 1917 with the assistance of some of the Queen’s Hall players, also 3 performances in the Etlinger Hall of the musical drama “Sensa”, by Mabel Collins, in 1919. A mime “Agave” was performed in the studio of Madame Matton-Painpare in 1924, and another mime “The Scorpions of Ysit”, at the Court Theatre in 1929. In 1935 this new language of Music was introduced at Stuttgart, Germany, where a small Chamber Orchestra was trained to play in the Greek Modes. Singers have also found little difficulty in singing these intervals which are not those of our modern well-tempered system, of which fuller details will be given later on in this booklet. -
The Hungarian Rhapsodies and the 15 Hungarian Peasant Songs: Historical and Ideological Parallels Between Liszt and Bartók David Hill
James Madison University JMU Scholarly Commons Dissertations The Graduate School Spring 2015 The unH garian Rhapsodies and the 15 Hungarian Peasant Songs: Historical and ideological parallels between Liszt and Bartók David B. Hill James Madison University Follow this and additional works at: https://commons.lib.jmu.edu/diss201019 Part of the Musicology Commons Recommended Citation Hill, David B., "The unH garian Rhapsodies and the 15 Hungarian Peasant Songs: Historical and ideological parallels between Liszt and Bartók" (2015). Dissertations. 38. https://commons.lib.jmu.edu/diss201019/38 This Dissertation is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Dissertations by an authorized administrator of JMU Scholarly Commons. For more information, please contact [email protected]. The Hungarian Rhapsodies and the 15 Hungarian Peasant Songs: Historical and Ideological Parallels Between Liszt and Bartók David Hill A document submitted to the graduate faculty of JAMES MADISON UNIVERSITY In Partial Fulfillment of the Requirements for the degree of Doctor of Musical Arts School of Music May 2015 ! TABLE!OF!CONTENTS! ! Figures…………………………………………………………………………………………………………….…iii! ! Abstract……………………………………………………………………………………………………………...iv! ! Introduction………………………………………………………………………………………………………...1! ! PART!I:!SIMILARITIES!SHARED!BY!THE!TWO!NATIONLISTIC!COMPOSERS! ! A.!Origins…………………………………………………………………………………………………………….4! ! B.!Ties!to!Hungary…………………………………………………………………………………………...…..9! -
Chapter 26 Scales a La Mode
CHAPTER 26 SCALES A LA MODE Musical innovation is full of danger to the State, for when modes of music change, the laws of the State always change with them. PLATO WHAT IS A MODE? A mode is a type of scale. Modes are used in music like salsa, jazz, country, rock, fusion, speed metal, and more. The reason the Chapter image is of musicians jamming is that modes are important to understanding (and using) jazz theory, and helpful if you’re trying to understand improvisation. Certain modes go with certain chords. For more information about modes and their specific uses in jazz, read James Levine’s excellent book, Jazz Theory. On the Web at http://is.gd/iqufof These are also called “church modes” because they were first used in the Catholic Church back in Medieval times (remember good old Guido d’ Arezzo?). The names of the modes were taken from the Greek modes, but other than the names, they have no relation to the Greek modes. The two modes that have been used the most, and the only two most people know, are now called the Major and natural minor scales. Their original names were the Ionian mode (Major), and the Aeolian mode (natural minor). The other modes are: dorian, phrygian, lydian, mixolydian, and locrian. Modes are easy to understand. We’ll map out each mode’s series of whole and half steps and use the key of C so there aren’t any sharps or flats to bother with. THE MODES IONIAN Ionian is used in nearly all Western music, from Acid Rock to Zydeco. -
Jazz Harmony Iii
MU 3323 JAZZ HARMONY III Chord Scales US Army Element, School of Music NAB Little Creek, Norfolk, VA 23521-5170 13 Credit Hours Edition Code 8 Edition Date: March 1988 SUBCOURSE INTRODUCTION This subcourse will enable you to identify and construct chord scales. This subcourse will also enable you to apply chord scales that correspond to given chord symbols in harmonic progressions. Unless otherwise stated, the masculine gender of singular is used to refer to both men and women. Prerequisites for this course include: Chapter 2, TC 12-41, Basic Music (Fundamental Notation). A knowledge of key signatures. A knowledge of intervals. A knowledge of chord symbols. A knowledge of chord progressions. NOTE: You can take subcourses MU 1300, Scales and Key Signatures; MU 1305, Intervals and Triads; MU 3320, Jazz Harmony I (Chord Symbols/Extensions); and MU 3322, Jazz Harmony II (Chord Progression) to obtain the prerequisite knowledge to complete this subcourse. You can also read TC 12-42, Harmony to obtain knowledge about traditional chord progression. TERMINAL LEARNING OBJECTIVES MU 3323 1 ACTION: You will identify and write scales and modes, identify and write chord scales that correspond to given chord symbols in a harmonic progression, and identify and write chord scales that correspond to triads, extended chords and altered chords. CONDITION: Given the information in this subcourse, STANDARD: To demonstrate competency of this task, you must achieve a minimum of 70% on the subcourse examination. MU 3323 2 TABLE OF CONTENTS Section Subcourse Introduction Administrative Instructions Grading and Certification Instructions L esson 1: Sc ales and Modes P art A O verview P art B M ajor and Minor Scales P art C M odal Scales P art D O ther Scales Practical Exercise Answer Key and Feedback L esson 2: R elating Chord Scales to Basic Four Note Chords Practical Exercise Answer Key and Feedback L esson 3: R elating Chord Scales to Triads, Extended Chords, and Altered Chords Practical Exercise Answer Key and Feedback Examination MU 3323 3 ADMINISTRATIVE INSTRUCTIONS 1. -
I. the Term Стр. 1 Из 93 Mode 01.10.2013 Mk:@Msitstore:D
Mode Стр. 1 из 93 Mode (from Lat. modus: ‘measure’, ‘standard’; ‘manner’, ‘way’). A term in Western music theory with three main applications, all connected with the above meanings of modus: the relationship between the note values longa and brevis in late medieval notation; interval, in early medieval theory; and, most significantly, a concept involving scale type and melody type. The term ‘mode’ has always been used to designate classes of melodies, and since the 20th century to designate certain kinds of norm or model for composition or improvisation as well. Certain phenomena in folksong and in non-Western music are related to this last meaning, and are discussed below in §§IV and V. The word is also used in acoustical parlance to denote a particular pattern of vibrations in which a system can oscillate in a stable way; see Sound, §5(ii). For a discussion of mode in relation to ancient Greek theory see Greece, §I, 6 I. The term II. Medieval modal theory III. Modal theories and polyphonic music IV. Modal scales and traditional music V. Middle East and Asia HAROLD S. POWERS/FRANS WIERING (I–III), JAMES PORTER (IV, 1), HAROLD S. POWERS/JAMES COWDERY (IV, 2), HAROLD S. POWERS/RICHARD WIDDESS (V, 1), RUTH DAVIS (V, 2), HAROLD S. POWERS/RICHARD WIDDESS (V, 3), HAROLD S. POWERS/MARC PERLMAN (V, 4(i)), HAROLD S. POWERS/MARC PERLMAN (V, 4(ii) (a)–(d)), MARC PERLMAN (V, 4(ii) (e)–(i)), ALLAN MARETT, STEPHEN JONES (V, 5(i)), ALLEN MARETT (V, 5(ii), (iii)), HAROLD S. POWERS/ALLAN MARETT (V, 5(iv)) Mode I. -
Harmonic Resources in 1980S Hard Rock and Heavy Metal Music
HARMONIC RESOURCES IN 1980S HARD ROCK AND HEAVY METAL MUSIC A thesis submitted to the College of the Arts of Kent State University in partial fulfillment of the requirements for the degree of Master of Arts in Music Theory by Erin M. Vaughn December, 2015 Thesis written by Erin M. Vaughn B.M., The University of Akron, 2003 M.A., Kent State University, 2015 Approved by ____________________________________________ Richard O. Devore, Thesis Advisor ____________________________________________ Ralph Lorenz, Director, School of Music _____________________________________________ John R. Crawford-Spinelli, Dean, College of the Arts ii Table of Contents LIST OF FIGURES ............................................................................................................................... v CHAPTER I........................................................................................................................................ 1 INTRODUCTION ........................................................................................................................... 1 GOALS AND METHODS ................................................................................................................ 3 REVIEW OF RELATED LITERATURE............................................................................................... 5 CHAPTER II..................................................................................................................................... 36 ANALYSIS OF “MASTER OF PUPPETS” ...................................................................................... -
11-Music Scales
Scales in Music Gary Hardegree Department of Philosophy University of Massachusetts Amherst, MA 01003 1. Introduction......................................................................................................................................1 2. The Fundamental Unit – The Octave...............................................................................................2 1. An Aside on Logarithmic Scales .........................................................................................5 2. Cents and Sensibility............................................................................................................6 3. The Pythagorean Construction of the Major Scale..........................................................................7 4. Ptolemaic Tuning...........................................................................................................................10 5. Mean-Tone Temperament (Tuning by Major Thirds) ...................................................................11 6. Problems with Perfect Tuning........................................................................................................12 1. An Aside on The Circle of Fifths and the Circle of Thirds................................................14 2. Back to the Problem of Tuning by Fifths...........................................................................14 3. Ptolemaic Tuning Makes Matters Even Worse! ................................................................15 4. Mean-Tone Temperament’s Wolves..................................................................................17 -
CIS 3000 Scales Tutorial
CIS 3000: Introduction to Game Design 1 CIS 3000 Scales Tutorial by Benjamin Hennessy 1. Introduction 2. The Major Scale 3. The (Natural) Minor Scale 4. The Modal Scales 5. The Other Minor Scales a. Harmonic Minor b. Melodic Minor 6. Using Scales While Composing Some graphical content courtesy of musictheory.net . CIS 3000: Introduction to Game Design 2 Introduction A scale is an ordered sequence of notes. Typical ly, a scale spans one octave (twelve half steps on the piano roll, ie from C to C) and contains seven note s (eight if we count the repeated note at the octave). Which seven notes we select out of the possible twelve in a one octave range determines what kind of scale we have. Note: there are scales which have more or less than seven notes, but we will only be focusing on those with se ven, or the heptatonic scales. The Major Scale First we’ll discuss the major scale . A major scale is made up of this sequence of whole steps (W) and half steps ( h): W W h W W W h Knowing this sequence is useful because you can create scales regardless of the starting note. Here is an example of a major scale starting on C in both traditional staff notation and Reason’s piano roll notation: You might notice how the re are no sharps or flats in the C scale, or that all of the notes correspond to the wh ite keys on the piano roll. Here’s what the major scale looks like when we start on the D instead: Notice how there a re now two sharps in the scale, corresponding to the two black keys on the piano roll. -
A-Beginner-Guide-To-Modes.Pdf
A BEGINNER GUIDE TO MODES Here are a few charts to help break down modes, including scale patterns, chord patterns, and the characteristic “colour note / chord” within each scale. Just like with the idea of parallel major and minor scales, you can choose to write solely within one scale (say, D dorian), OR you can borrow a chord from a parallel mode while still using chords from your original scale (i.e., writing in F minor [aeolian] and using a Db major chord, but also using a Bb major chord, borrowed from Dorian mode). The Modes by Numeric Pattern (Rose boxes indicate the scale’s ‘colour note’ or what gives it its character; blue boxes show a potential secondary colour note.) MODE 1 2 3 4 5 6 7 IONIAN 1 2 3 4 5 6 7 DORIAN 1 2 b3 4 5 6 b7 PHRYGIAN 1 b2 b3 4 5 b6 b7 LYDIAN 1 2 3 #4 5 6 7 MIXOLYDIAN 1 2 3 4 5 6 b7 AEOLIAN 1 2 b3 4 5 b6 b7 LOCRIAN 1 b2 b3 4 b5 b6 b7 IONIAN mode is the major scale, so this mode begins on the 1st degree of the major scale. DORIAN mode begins on the 2nd scale degree of the relative ionian mode (major scale) PHRYGIAN mode begins on the 3rd scale degree of the relative ionian mode (major scale) LYDIAN mode begins on the 4th scale degree of the relative ionian mode (major scale) MIXOLYDIAN mode begins on the 5th scale degree of the relative ionian mode (major scale) AEOLIAN mode (minor scale) begins on the 6th degree of the relative ionian mode (major scale). -
The Consecutive-Semitone Constraint on Scalar Structure: a Link Between Impressionism and Jazz1
The Consecutive-Semitone Constraint on Scalar Structure: A Link Between Impressionism and Jazz1 Dmitri Tymoczko The diatonic scale, considered as a subset of the twelve chromatic pitch classes, possesses some remarkable mathematical properties. It is, for example, a "deep scale," containing each of the six diatonic intervals a unique number of times; it represents a "maximally even" division of the octave into seven nearly-equal parts; it is capable of participating in a "maximally smooth" cycle of transpositions that differ only by the shift of a single pitch by a single semitone; and it has "Myhill's property," in the sense that every distinct two-note diatonic interval (e.g., a third) comes in exactly two distinct chromatic varieties (e.g., major and minor). Many theorists have used these properties to describe and even explain the role of the diatonic scale in traditional tonal music.2 Tonal music, however, is not exclusively diatonic, and the two nondiatonic minor scales possess none of the properties mentioned above. Thus, to the extent that we emphasize the mathematical uniqueness of the diatonic scale, we must downplay the musical significance of the other scales, for example by treating the melodic and harmonic minor scales merely as modifications of the natural minor. The difficulty is compounded when we consider the music of the late-nineteenth and twentieth centuries, in which composers expanded their musical vocabularies to include new scales (for instance, the whole-tone and the octatonic) which again shared few of the diatonic scale's interesting characteristics. This suggests that many of the features *I would like to thank David Lewin, John Thow, and Robert Wason for their assistance in preparing this article.