The Atomic Model of the Human Protective Protein/Cathepsin A

Total Page:16

File Type:pdf, Size:1020Kb

The Atomic Model of the Human Protective Protein/Cathepsin A Proc. Natl. Acad. Sci. USA Vol. 95, pp. 621–625, January 1998 Genetics The atomic model of the human protective proteinycathepsin A suggests a structural basis for galactosialidosis GABBY RUDENKO*†‡,ERIK BONTEN†,WIM.G.J.HOL*, AND ALESSANDRA D’AZZO†§ *Department of Biological Structure, Howard Hughes Medical Institute, University of Washington, Box 357742, Health Sciences Building Room K-428, Seattle, WA 98195-7742; and †Department of Genetics, St. Jude Children’s Research Hospital, 332 North Lauderdale, Memphis, TN 38105 Communicated by Elizabeth F. Neufeld, University of California School of Medicine, Los Angeles, CA, November 26, 1997 (received for review October 6, 1997) ABSTRACT Human protective proteinycathepsin A 2-kDa peptide, generating the mature and active form (5, 6, 8). (PPCA), a serine carboxypeptidase, forms a multienzyme The enzyme is active at both acidic and neutral pH and functions complex with b-galactosidase and neuraminidase and is re- as cathepsin Aydeamidaseyesterase on a subset of neuropeptides quired for the intralysosomal activity and stability of these two (9–11). The dual and separable activities of the protein may glycosidases. Genetic lesions in PPCA lead to a deficiency of reflect its capacity to participate in a variety of cellular processes b-galactosidase and neuraminidase that is manifest as the not necessarily restricted to the lysosomal compartment, although autosomal recessive lysosomal storage disorder galactosia- its physiologic role is so far unknown. PPCA’s protective function lidosis. Eleven amino acid substitutions identified in mutant resides in its ability to form a multienzyme complex with b-ga- PPCAs from clinically different galactosialidosis patients lactosidase and neuraminidase, contributing to the stability and have now been modeled in the three-dimensional structure of lysosomal activity of both glycosidases (12, 13). Thus, the clinical the wild-type enzyme. Of these substitutions, 9 are located in phenotype of galactosialidosis is apparently dictated by the loss of positions likely to alter drastically the folding and stability of PPCA protective function, with so far no discernible contribution the variant protein. In contrast, the other 2 mutations that are from the cathepsin A deficiency (2). The interaction with PPCA associated with a more moderate clinical outcome and are is especially crucial for neuraminidase, which looses its enzymatic characterized by residual mature protein appeared to have a activity in absence of PPCA, whereas b-galactosidase maintains milder effect on protein structure. Remarkably, none of the at least 10–15% of the normal enzyme values (2). In turn, the mutations occurred in the active site or at the protein surface, severe early-infantile forms of galactosialidosis present with fea- which would have disrupted the catalytic activity or protective tures that are also observed in both the infantile and congenital function. Instead, analysis of the 11 mutations revealed a type II sialidosis, caused by a single neuraminidase deficiency, and substantive correlation between the effect of the amino acid b the GM1-gangliosidosis, caused by a primary defect in -galacto- substitution on the integrity of protein structure and the sidase (14, 15). This is consistent with PPCA deficiencies causing general severity of the clinical phenotype. The high incidence both glycosidases to malfunction. of PPCA folding mutants in galactosialidosis reflects the fact The majority of the mutations identified so far in galacto- that a single point mutation is unlikely to affect both the b sialidosis patients are missense mutations, and as seen in other -galactosidase and the neuraminidase binding sites of PPCA lysosomal storage disorders, the patient’s clinical severity often at the same time to produce the double glycosidase deficiency. depends on the combination of the two mutant alleles encod- Mutations in PPCA that result in defective folding, however, ing different PPCA variants (16–19). Many of these mutations disrupt every function of PPCA simultaneously. were characterized according to their expression levels and functional deficits (16–18). For a few of them, homology Galactosialidosis is a neurodegenerative lysosomal storage dis- modeling has been attempted by using the distantly related ease that is inherited as an autosomal recessive trait (1, 2). wheat serine carboxypeptidase structure (about 30% amino Patients are classified according to age of onset and the severity acid sequence identity) (20, 21). However, a precise structural of symptoms as severe early infantile or milder late infantile and understanding of how any of these mutations result in a y juvenile adult. The clinical features include cardiac and kidney dysfunctional protein can only come from the three- involvement, skeletal dysplasia, dysmorphism, angiokeratoma, dimensional structure of PPCA itself (7). Herein, we have progressive neurological deterioration, reduced life expectancy, modeled 11 amino acid substitutions in the three-dimensional and in some cases, mental retardation. At the biochemical level, b structure of the wild-type PPCA precursor. The results of this galactosialidosis is diagnosed as a combined deficiency of -ga- study give insights into the structural basis of this unusual lactosidase and neuraminidase activities in the lysosomes (3–5) lysosomal disease. that leads to storage of sialyloligosaccharides and glycopeptides in patient’s tissues and body fluids (ref. 2 and references therein). The primary defect, however, stems from the genetic alteration MATERIALS AND METHODS y of a third lysosomal protein, protective protein cathepsin A Modeling studies of the mutations were performed by using (PPCA) (1, 5). the macromolecular modeling package O (22) on a Silicon PPCA is a multifunctional enzyme with distinct protective and Graphics interactive computer graphics system, Indigo XZ catalytic activities (6). It is synthesized as a 452-amino acid (54 kDa) precursor (5), containing four disulfide bridges and two y Abbreviations: PPCA, protective proteinycathepsin A; ER, endoplas- glycosylation sites (5, 7). In the endosomal lysosomal compart- mic reticulum. ment, the precursor undergoes endoproteolytic removal of a Data deposition: The atomic coordinates have been deposited in the Protein Data Bank, Biology Department, Brookhaven National Lab- The publication costs of this article were defrayed in part by page charge oratory, Upton, NY 11973 (reference 1IVY). ‡Present address: Howard Hughes Medical Institute, University of payment. This article must therefore be hereby marked ‘‘advertisement’’ in Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, accordance with 18 U.S.C. §1734 solely to indicate this fact. Room Y4–206, Dallas, TX 75235-9050. © 1998 by The National Academy of Sciences 0027-8424y98y95621-5$2.00y0 §To whom reprint requests should be addressed. e-mail: alessandra. PNAS is available online at http:yywww.pnas.org. [email protected]. 621 Downloaded by guest on September 27, 2021 622 Genetics: Rudenko et al. Proc. Natl. Acad. Sci. USA 95 (1998) R4000. Further analysis of the effects of each amino acid W37R, S62L, and L208P, hydrogen bond donors or acceptors substitution, including interatomic contacts and solvent- are buried in the protein interior with no possibility for a accessible surface calculations, was carried out by using pro- partner. Loss of a hydrogen bonding partner is probably grams from the CCP4 suite (23). The atomic structure used for particularly detrimental for L208P, where a proline residue in this analysis has been refined to 2.2 Å with a crystallographic the middle of helix Ha2 disrupts the hydrogen bonding pattern 5 Rfactor of 21.3% (Rfree 26.8%) (7). Figures were drawn with (Fig. 2f). The mutations Q21R and W37R introduce a posi- MOLSCRIPT (24) and RASTER3D (25). tively charged residue in the interior of the protein with no apparent possibility of charge compensation, thereby decreas- RESULTS ing the stability of these mutants. Internal cavities, formed by the introduction of smaller residues, might also contribute to We divided the 11 amino acid substitutions identified in PPCA protein destabilization for Y367C and L208P. For Y367C, variants from different galactosialidosis patients into two introducing an extra free cysteine could have promoted the groups according to the ability of the mutant proteins to reach formation of improper disulfide bonds and concomitant mis- the lysosomes. Nine of the variants (17, 18) do not compart- folded intermediates. Although it is difficult to predict the mentalize in lysosomes and have the following amino acid precise effects of these mutations on protein structure without substitutions: Q21R, S23Y, W37R, S62L, V104M, L208P, the crystal structure of the different mutant proteins, overall Y367C, M378T, and G411S (group 1). Mutations Y221N and the impact of the group 1 mutations on protein folding is F412V result in a diminished but significant amount of protein expected to be severe. still detectable in the lysosomes (group 2) (16, 18). A 12th Similarly to Y367C, mutation M378T was modeled in the mutation (SpDEx7) that generates an alternative splice site is native structure without causing any strain because the sub- leaky and allows for a small amount of correctly spliced mRNA stituted residue is smaller than the wild-type amino acid. resulting in low levels of wild-type protein (17). The mutations However, it was shown that no functional protein is produced S23Y, S62L, V104M, L208P, Y367C,
Recommended publications
  • Diagnosis of Sickle Cell Disease and HBB Haplotyping in the Era of Personalized Medicine: Role of Next Generation Sequencing
    Journal of Personalized Medicine Article Diagnosis of Sickle Cell Disease and HBB Haplotyping in the Era of Personalized Medicine: Role of Next Generation Sequencing Adekunle Adekile 1,*, Nagihan Akbulut-Jeradi 2, Rasha Al Khaldi 2, Maria Jinky Fernandez 2 and Jalaja Sukumaran 1 1 Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; jalajasukumaran@hotmail 2 Advanced Technology Company, Hawali 32060, Kuwait; [email protected] (N.A.-J.); [email protected] (R.A.); [email protected] (M.J.F.) * Correspondence: [email protected]; Tel.: +965-253-194-86 Abstract: Hemoglobin genotype and HBB haplotype are established genetic factors that modify the clinical phenotype in sickle cell disease (SCD). Current methods of establishing these two factors are cumbersome and/or prone to errors. The throughput capability of next generation sequencing (NGS) makes it ideal for simultaneous interrogation of the many genes of interest in SCD. This study was designed to confirm the diagnosis in patients with HbSS and Sβ-thalassemia, identify any ß-thal mutations and simultaneously determine the ßS HBB haplotype. Illumina Ampliseq custom DNA panel was used to genotype the DNA samples. Haplotyping was based on the alleles on five haplotype-specific SNPs. The patients studied included 159 HbSS patients and 68 Sβ-thal patients, previously diagnosed using high performance liquid chromatography (HPLC). There was Citation: Adekile, A.; considerable discordance between HPLC and NGS results, giving a false +ve rate of 20.5% with a S Akbulut-Jeradi, N.; Al Khaldi, R.; sensitivity of 79% for the identification of Sβthal.
    [Show full text]
  • Human Cathepsin A/ Lysosomal Carboxypeptidase a Antibody
    Human Cathepsin A/ Lysosomal Carboxypeptidase A Antibody Monoclonal Mouse IgG2A Clone # 179803 Catalog Number: MAB1049 DESCRIPTION Species Reactivity Human Specificity Detects human Cathepsin A/Lysosomal Carboxypeptidase A in direct ELISAs and Western blots. In Western blots, detects the single chain (55 kDa) and heavy chain (32 kDa) forms of recombinant human (rh) Cathepsin A. In Western blots, less than 5% cross­reactivity with rhCathepsin B, C, D, E, L, O, S, X and Z is observed and no cross­reactivity with the light chain (20 kDa) of rhCathepsin A is observed. Source Monoclonal Mouse IgG2A Clone # 179803 Purification Protein A or G purified from hybridoma culture supernatant Immunogen Mouse myeloma cell line NS0­derived recombinant human Cathepsin A/Lysosomal Carboxypeptidase A Ala29­Tyr480 (predicted) Accession # P10619 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL Recombinant Human Cathepsin A/Lysosomal Carboxypeptidase A (Catalog # 1049­SE) Immunoprecipitation 25 µg/mL Conditioned cell culture medium spiked with Recombinant Human Cathepsin A/Lysosomal Carboxypeptidase A (Catalog # 1049­SE), see our available Western blot detection antibodies PREPARATION AND STORAGE Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
    [Show full text]
  • Diagnosis of Hemochromatosis in Family Members of Probands: a Comparison of Phenotyping And
    Diagnosis of hemochromatosis in family members of probands: A comparison of phenotyping and James C. Barton, MD', Barry E. Rothenberg, PhP, Luigi F. Bertoli, MD1,and Ronald I: Acton, Php Purpose: We wanted to compare phenotyping and HFE genotyping for diagnosis of hemochromatosis in 150 family members of 61 probands. Methods: Phenotypes were defined by persistent transferrin saturation elevation, iron over- load, or both; genotypes were defined by HFE mutation analysis. Results: Twenty-five family members were C282Y homozygotes; 23 of these (92%)had a hemochromatosis phenotype. Twenty-three family members had HFEgenotype C282Y/H63D; eight of these (35%)had a hemochromatosis phenotype. Six of 102 (6%)family members who inher- ited other HFE genotypes had a hemochromatosis phenotype. Conclusion: Phenotyping and genotyping are comple- mentary in diagnosing hemochromatosis among family members of probands. Genetics in Medicine, 1999; 1(3):8%93 Key words: hemochromatosis, iron overload, HFE mutation, genetic counselinF! INTRODUCTION persons who participated were Caucasians and were volunteers, Hemochromatosis is an autosomal recessive disorder that but were not otherwise selected. All probands were adults (218 affects approximately 0.5% of Caucasians of European descent.'s2 years of age); all family members (except an 11-year-old boy) Iron absorption in homozygotes is inappropriately high for body were also adults. We tabulated data on all evaluable family mem- iron content, and many subjects have progressive iron deposi- bers and their corresponding
    [Show full text]
  • Compound Heterozygous C282Y/H63D Mutation in Hemochromatosis: a Case Report
    Open Journal of Clinical Diagnostics, 2016, 6, 30-35 http://www.scirp.org/journal/ojcd ISSN Online: 2162-5824 ISSN Print: 2162-5816 Compound Heterozygous C282Y/H63D Mutation in Hemochromatosis: A Case Report Zazour Abdelkrim*, Wafaa Khannoussi, Amine El Mekkaoui, Ghizlane Kharrasse, Zahi Ismaili Hepato-Gastro-Enterology Unit, Mohammed VI University Hospital Oujda, Oujda, Morocco How to cite this paper: Abdelkrim, Z., Abstract Khannoussi, W., El Mekkaoui, A., Kharrasse, G. and Ismaili, Z. (2016) Compound Hete- Hereditary hemochromatosis is a condition characterized by iron overload, which is rozygous C282Y/H63D Mutation in He- both treatable and preventable. It’s mainly related to hepcidin deficiency related to mochromatosis: A Case Report. Open Jour- mutations in genes involved in hepcidin regulation. Iron overload increases the risk nal of Clinical Diagnostics, 6, 30-35. http://dx.doi.org/10.4236/ojcd.2016.63006 of disease such as liver cirrhosis, heart disease and diabetes. Two HFE genotypes have been commonly described in cases of iron overload, C282Y homozygosity and Received: July 25, 2016 C282Y/H63D compound heterozygoty. The diagnosis of this rare disease now can be Accepted: September 18, 2016 explored by biological and imaging tools. We report a case of compound hetero- Published: September 21, 2016 zygous C282Y/H63D discovered by family screening for elevated serum ferritin. Copyright © 2016 by authors and Scientific Research Publishing Inc. Keywords This work is licensed under the Creative Commons Attribution International Iron Overload, Compound Heterozygoty, Phlebotomy License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access 1. Introduction HFE hemochromatosis is a genetic disease related to mutation in HFE gene [1].
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Tay Sachs Disease Carrier Screening in the Ashkenazi Jewish Population
    Tay Sachs Disease carrier screening in the Ashkenazi Jewish population A needs assessment and review of current services Hilary Burton Sara Levene Corinna Alberg Alison Stewart March 2009 www.phgfoundation.org PHG Foundation Team Dr Hilary Burton Programme Director Ms Corinna Alberg Project Manager Dr Alison Stewart Principal Associate Guy’s & St Thomas’ NHS Foundation Trust Team Ms Sara Levene Registered Genetic Counsellor, Guy’s & St Thomas’ NHS Foundation Trust Dr Christine Patch Consultant Genetic Counsellor and Manager, Guy’s & St Thomas’ NHS Foundation Trust Report authors The Project Team would like to express their thanks to all members of the Advisory Group who gave so freely of Hilary Burton their time and expertise, and particularly to Sue Halliday for chairing the Advisory Group meetings and for her Sara Levene assistance in steering the work. Thanks are also due to Corinna Alberg* Guy’s Hospital for providing us with meeting rooms. Alison Stewart The work was funded through a contract with the UK Newborn Screening Programme Centre and we would like to thank the Programme Centre Director, Dr Barbara Judge, and the Strategic Director, Dr David Elliman, for Published by PHG Foundation Strangeways Research Laboratory Worts Causeway Cambridge CB1 8RN UK First edition, March 2009 © 2009 PHG Foundation ISBN 978-1-907198-00-7 * To whom correspondence should be addressed: [email protected] The PHG Foundation is the working name of the Foundation for Genomics and Population Health, an independent charitable organisation (registered in England and Wales, charity No. 1118664 company No. 5823194), which works with partners to achieve better health through the responsible and evidence-based application of biomedical science.
    [Show full text]
  • Urine RAS Components in Mice and People with Type 1 Diabetes and Chronic Kidney Disease
    Articles in PresS. Am J Physiol Renal Physiol (May 3, 2017). doi:10.1152/ajprenal.00074.2017 Title: Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease Running title: Urine RAS components in diabetic kidney disease Authors: Jan Wysocki, MD-PhD, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Anne Goodling, BA. Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA Mar Burgaya, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Kathryn Whitlock, MS. Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA John Ruzinski, BS. Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA Daniel Batlle, MD, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Maryam Afkarian, MD-PhD, Division of Nephrology, Department of Medicine, University of California, Davis, CA 95616 Corresponding author: Maryam Afkarian, MD-PhD, 4150 V Street, Suite 3500, Sacramento, CA 95817. Telephone: (916) 734-3774 Fax: (916) 734-7920. Email: [email protected]. Abstract word count: 250 Key words: diabetic kidney disease, renin angiotensin system, angiotensinogen, cathepsin D, angiotensin converting
    [Show full text]
  • ©Ferrata Storti Foundation
    Original Articles T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response Peter Van Loo,1,2,3 Thomas Tousseyn,4 Vera Vanhentenrijk,4 Daan Dierickx,5 Agnieszka Malecka,6 Isabelle Vanden Bempt,4 Gregor Verhoef,5 Jan Delabie,6 Peter Marynen,1,2 Patrick Matthys,7 and Chris De Wolf-Peeters4 1Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium; 2Department of Human Genetics, K.U.Leuven, Leuven, Belgium; 3Bioinformatics Group, Department of Electrical Engineering, K.U.Leuven, Leuven, Belgium; 4Department of Pathology, University Hospitals K.U.Leuven, Leuven, Belgium; 5Department of Hematology, University Hospitals K.U.Leuven, Leuven, Belgium; 6Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway, and 7Department of Microbiology and Immunology, Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium Citation: Van Loo P, Tousseyn T, Vanhentenrijk V, Dierickx D, Malecka A, Vanden Bempt I, Verhoef G, Delabie J, Marynen P, Matthys P, and De Wolf-Peeters C. T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolero- genic host immune response. Haematologica. 2010;95:440-448. doi:10.3324/haematol.2009.009647 The Online Supplementary Tables S1-5 are in separate PDF files Supplementary Design and Methods One microgram of total RNA was reverse transcribed using random primers and SuperScript II (Invitrogen, Merelbeke, Validation of microarray results by real-time quantitative Belgium), as recommended by the manufacturer. Relative reverse transcriptase polymerase chain reaction quantification was subsequently performed using the compar- Ten genes measured by microarray gene expression profil- ative CT method (see User Bulletin #2: Relative Quantitation ing were validated by real-time quantitative reverse transcrip- of Gene Expression, Applied Biosystems).
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function
    Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms
    [Show full text]
  • The Molecular Basis of Phenylketonuria and Hyperphenylalaninemia in Latvia
    Natalja Pronina THE MOLECULAR BASIS OF PHENYLKETONURIA AND HYPERPHENYLALANINEMIA IN LATVIA Doctoral Thesis Speciality: Medical Genetics Supervisor: Dr. med., asoc. Professor Rita Lugovska Supported by European Social Fund RIGA, 2012 CONTENTS ABBREVIATIONS 4 SUMMARY 6 KOPSAVILKUMS 8 INTRODUCTION 10 THE AIM OF THE STUDY 12 THE TASKS OF THE STUDY 12 Scientific Novelty of the Study 13 Practical Novelty of the Study 13 1 LITERATURE REVIEW 14 1.1 HUMAN METABOLISM AND METABOLIC DIASEASES 14 1.1.1 Inheritance of metabolic diseases 16 1.1.2 Phenotype-genotype correlations for IEMs 17 1.2 PHENYLALANINE 17 1.2.1 Phenylalanine metabolism 18 1.2.2 Human phenylalanine Hydroxylase enzyme 22 1.3 PHENYLKETONURIA 24 1.3.1 Clinical abnormalities of PKU patients 24 1.3.2 Diagnosis of PKU 25 1.3.3 Classification of PKU clinical forms 26 1.3.4 PKU treatment 27 1.3.5 Possible PKU treatment strategies in future 28 1.3.6 Epidemiology of PKU 29 1.4 PHENYLALANINE HYDROXYLASE (PAH) GENE 29 1.4.1 PAH gene location and structure 29 1.4.2 PAH gene mutations 32 1.4.3 Mutation effect on enzyme function 34 1.4.4 PAH gene polymorphic alleles 35 1.4.5 RFLP in the PAH gene 37 1.4.6 Variable number of tandem repeats in PAH gene 37 1.4.7 Short tandem repeats in the PAH gene 38 1.5 R408W MUTATION IN PAH GENE 39 1.5.1 Genetic diversity within the R408W mutations lineages in Europe 42 1.6 CORRELATIONS BETWEEN PAH GENOTYPE AND METABOLIC PHENOTYPE 43 1.6.1 Mutations associated with (BH4)- responsiveness 44 2 1.7 DISTRIBUTION OF PHENYLKETONURIA MUTATIONS IN EUROPE 45 1.7.1 PKU mutations
    [Show full text]
  • Evidence for an Association Between Compound Heterozygosity for Germ Line Mutations in the Hemochromatosis (HFE) Gene and Increased Risk of Colorectal Cancer
    1460 Cancer Epidemiology, Biomarkers & Prevention Evidence for an Association between Compound Heterozygosity for Germ Line Mutations in the Hemochromatosis (HFE) Gene and Increased Risk of Colorectal Cancer James P. Robinson,1 Victoria L. Johnson,1 Pauline A. Rogers,2 Richard S. Houlston,2 Earmonn R. Maher,3 D. Timothy Bishop,4 D. Gareth R. Evans,5 Huw J.W. Thomas,1 Ian P.M. Tomlinson,1,6 Andrew R.J. Silver,1 and Colorectal Cancer Gene Identification (CORGI) consortium 1Cancer Research UK Colorectal Cancer Unit, St Mark’s Hospital, Harrow, United Kingdom; 2Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; 3Section of Medical and Molecular Genetics, University of Birmingham, Birmingham, United Kingdom; 4Genetic Epidemiology Division, Cancer Research UK Clinical Centre in Leeds, St. James’s University Hospital, Leeds, United Kingdom; 5Academic Unit of Medical Genetics and Regional Genetics Service, St. Mary’s Hospital, Manchester, United Kingdom; and 6Molecular and Population Genetics Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom Abstract Whereas a recent study reported an increased risk of contrast, individuals compound heterozygous for both colorectal cancer associated with any HFE germ line mutations (15 cases versus 5 controls) had thrice the odds mutation (C282Y or H63D), other investigators have of developing colorectal cancer (odds ratio, 3.03; 95% concluded there is no increased risk, or that any increase confidence interval, 1.06-8.61) compared with those with a is dependent on polymorphisms in HFE-interacting genes single mutation. This finding did not quite reach statistical such as the transferrin receptor (TFR). We have established significance after allowing for multiple post hoc testing the frequency of HFE mutations in colorectal cancer (Pobserved = 0.038 versus P = 0.025, with Bonferonni patients (n = 327) with a family history of the disease correction).
    [Show full text]
  • Post Mortem Proteolytic Degradation of Myosin Heavy Chain in Skeletal Muscle of Atlantic Cod
    Faculty of Biosciences, Fisheries and Economics Norwegian College of Fishery Science Post mortem proteolytic degradation of myosin heavy chain in skeletal muscle of Atlantic cod Pål Anders Wang A dissertation for the degree of Philosophiae Doctor Spring 2011 Post mortem proteolytic degradation of myosin heavy chain in skeletal muscle of Atlantic cod. Pål Anders Wang A dissertation for the degree of philosophiae doctor University of Tromsø Faculty of Biosciences, Fisheries and Economics Norwegian college of Fishery Science Spring 2011 Contents 1 Acknowledgements.......................................................................................................... II 2 List of publications........................................................................................................ III 3 Sammendrag...................................................................................................................IV 4 Abstract............................................................................................................................ V 5 Introduction ...................................................................................................................... 1 5.1 Fish muscle structure and composition.................................................................. 1 5.1.1 General structure and composition ................................................................ 1 5.1.2 Myosin ............................................................................................................... 3 5.2 Post
    [Show full text]