Sialidases in Vertebrates: a Family of Enzymes Tailored for Several Cell Functions*

Total Page:16

File Type:pdf, Size:1020Kb

Sialidases in Vertebrates: a Family of Enzymes Tailored for Several Cell Functions* Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Carbohydrate Chemistry and Biochemistry (Volume 64). The copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research, and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From Eugenio Monti, Erik Bonten, Alessandra D’Azzo, Roberto Bresciani, Bruno Venerando, Giuseppe Borsani, Roland Schauer and Guido Tettamanti for Several Cell Functions. In: Derek Horton, editor, Advances in Carbohydrate Chemistry and Biochemistry (Volume 64). Academic Press, 2010, p. 402. ISBN: 978-0-12-380854-7 © Copyright 2010, Elsevier Inc. Academic Press. Author's personal copy ADVANCES IN CARBOHYDRATE CHEMISTRY AND BIOCHEMISTRY, VOL. 64 SIALIDASES IN VERTEBRATES: A FAMILY OF ENZYMES TAILORED * FOR SEVERAL CELL FUNCTIONS a b b a BY EUGENIO MONTI ,ERIK BONTEN ,ALESSANDRA D’AZZO ,ROBERTO BRESCIANI , c a d BRUNO VENERANDO ,GIUSEPPE BORSANI ,ROLAND SCHAUER and e GUIDO TETTAMANTI a Department of Biomedical Science and Biotechnology, University of Brescia, 25123, Italy b Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, 28105-2794, USA c Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Segrate, 20090, Italy d Institute of Biochemistry, University of Kiel, Kiel, D-24098, Germany e Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Italy I. Introduction 405 II. The Lysosomal Sialidase NEU1 406 1. Background 406 2. Lysosomal Routing and Formation of the Multienzyme Complex 409 3. Human NEU1 Deficiency 411 4. New Functions of NEU1 in Tissue Remodeling and Homeostasis 413 5. Mouse Model of NEU1 Deficiency and Study of Disease Pathogenesis 418 III. The Cytosolic Sialidase NEU2 422 1. General Properties of NEU2 422 2. Crystal Structure of Human Sialidase NEU2 423 3. Functional Implication of NEU2 425 IV. The Plasma Membrane-Associated Sialidase NEU3 429 1. General Properties of NEU3 429 2. Functional Implication of NEU3 431 V. The Particulate Sialidase NEU4 435 1. General Properties of NEU4 435 2. Functional Implication of NEU4 436 VI. Sialidases and Cancer 438 VII. Sialidases and Immunity 439 VIII. Further Evidence for Possible Functional Implications of Sialidases 442 IX. In silico Analysis of Sialidase Gene Expression Patterns 444 X. Amino Acid Sequence Variants in Human Sialidases 448 XI. Sialidases in Teleosts 449 ISBN: 978-0-12-380854-7 DOI: 10.1016/S0065-2318(10)64007-3 403 � 2010 Elsevier Inc. All rights reserved. Author's personal copy 404 EUGENIO MONTI ET AL. XII. Trans-sialidases: What Distinguishes Them from Sialidases? 452 XIII. Final Remarks 459 References 460 ABBREVIATIONS 9-OAcGD3, 9-O-acetylated disialo-ganglioside GD3; ACF, aberrant crypt foci; AKT, serine/theonine-specific protein kinase family; ALL, acute lymphoblastic leukemia; ARIs, axon regeneration inhibitors; ASMC, aortic smooth muscle cells; BCL-2, B-cell leukemia/lymphoma 2 integral membrane protein; BM, bone mar­ row; BMT, bone marrow transplantation; BMEF, bone marrow extracellular fluid; CD, cluster of differentiation; CFU-E, colony-forming unit-erythroid cells; CG, cathepsin G; CHO, Chinese Hamster Ovary (cells); CSER, cell-surface elastin receptor; DRMs, detergent-resistant microdomains; EBP, Elastin-Binding Protein; EBP, human gene encoding the Elastin-Binding Protein; EGF, epidermal growth factor; EGFR, epidermal growth-factor receptor; ELISA, enzyme-linked immuno­ sorbent assay; EMH, extramedullary hematopoiesis; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; EST, Expressed Sequence Tag; β-GAL, human gene encoding the β-galactosidase; β-GAL, β-galactosidase; GEMs, glyco­ sphingolipid-enriched microdomains; GS, galactosialidosis; HeLa, cell line was derived from cervical cancer cells taken from a patient named Henrietta Lacks; HLA, human leukocyte antigen; HPCs, hematopoietic progenitor cells; ICAM-1, Intercellular Adhesion Molecule 1 (also known as cluster of differentiation 54 (CD54)); IFN, interferon; IGF-1R, receptor of insulin-like growth factor-1; IL, interleukin; JNK, protein kinase member of the MAP kinase; LacCer, lacto­ syl-ceramide; LAMP, lysosome-associated membrane protein; Lex,Lewisx anti­ gens; LIMP, lysosome integral membrane protein; M6P, mannose 6-phosphate; MAG, myelin-associated glycoprotein; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated or extracellular signal-regulated protein kinase; MHC, major histocompatibility complex; MMP9, gene encoding the matrix metallopro­ teinase-9; MMP9, matrix metalloproteinase-9; MU, methylumbelliferone; NCAM, neural cell adhesion molecule; NCBI, National Center for Biotechnology Informa­ tion; NE, neutrophil elastase; NEU1, gene encoding the lysosomal sialidase; NEU1, human lysosomal sialidase; Neu1, mouse gene encoding the mouse lysosomal Author contributions: Erik Bonten and Alessandra D’Azzo contributed Section II. Giuseppe Borsani contributed Sections IX–X. Roland Schauer contributed Section XII. The remaining authors, together with Giuseppe Borsani, contributed the other sections. Author's personal copy SIALIDASES IN VERTEBRATES 405 sialidase; Neu1, mouse lysosomal sialidase; Neu5Ac, N-acetylneuraminic acid; NGF, nerve growth factor; NMR, nuclear magnetic resonance; nsSNP, non-synon­ ymous single nucleotide polymorphism; PAG, phosphoprotein associated with GEMs; PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth- factor receptor; PI3K, phosphoinositide-3 kinase; PKC, protein kinase C; PLC, phosphoinositide-specific phospholipase C; PMA, phorbol 12-tetradecanoate 13-acetate; PPCA, protective protein/cathepsin A; Rac, subfamily of the Rho family of GTPases; RD, cell line derived from a human rhabdomyosarcoma; RMS, rhabdomyosarcoma; RSV, respiratory syncytial virus; RT-PCR, reverse tran­ scription-polymerase chain reaction; SFK, Src family protein tyrosine kinases; x x shRNA, short hairpin RNA; sLe , sialyl Lewis antigens; SNP, single nucleotide polymorphism; TERMs, tetraspanin-enriched microdomains; THP-1, human acute monocytic leukemia cell line; TLR, toll-like receptor; TNF, tumor necrosis factor; TrKA, high-affinity catalytic receptor for nerve growth factor; TS, trans-sialidase; Tsk, tight-skin (mouse); VCAM, vascular cell adhesion molecule; VSMC, vascular smooth muscle cells. NOTE Gene and protein symbols are reported according to: H. M. Wain, E. A. Bruford, R. C. Lovering, M. J. Lush, M. W. Wright, and S. Povey, Guidelines for human gene nomenclature, Genomics 79 (2002) 464–470; Refer Guidelines for Nomenclature of Genes, Genetic Markers, Alleles, and Muta­ tions in Mouse and Rat at the Mouse Genome Informatics (MGI) website (http://www. informatics.jax.org/mgihome/nomen/gene.shtml); and Zebrafish Nomenclature Guidelines at the ZFIN website (http://zfin.org/zf_info/nomen.html). Ganglioside nomenclature is according to: L. Svennerholm, Ganglioside designation, Adv. Exp. Med. Biol. 125 (1980) 11. I. INTRODUCTION Sialidases or neuraminidases (EC 3.2.1.18; N-acylneuraminyl glycohydrolases) are a family of exo-glycosidases that catalyze the hydrolytic cleavage of non-reducing sialic acid residues1 ketosidically linked to the saccharide chains of glycoproteins and glycolipids (gangliosides) as well as to oligo- and poly-saccharides. They are widely distributed in nature, from viruses and microorganisms (such as bacteria, protozoa, and fungi) to vertebrates, but are absent in plants, insects, and yeast.2 The molecular Author's personal copy 406 EUGENIO MONTI ET AL. cloning of several mammalian sialidases since 1993 and the great development that 3,4 followed early afterward has been summarized in two reviews. In vertebrates, mammalian sialidases and their target substrates have been impli­ cated in crucial biological processes, including the regulation of cell proliferation/­ differentiation, clearance of plasma proteins, control of cell adhesion, metabolism of gangliosides and glycoproteins, immunocyte function, modification of receptors, and the developmental modeling of myelin. The pivotal and diverse functions of these enzymes, many of which have not yet been discovered, probably account for the existence of four mammalian sialidases, encoded by different genes and defined as lysosomal (NEU1), cytosolic (NEU2), plasma-membrane (NEU3), and mitochondrial/­ lysosomal/-intracellular membranes (NEU4). These enzymes differ in their subcellular localizations, pH optima, kinetic properties, responses to ions and detergents, and substrate specificities. There appears to be little overlap in function of the individual sialidases, even though they share a common mechanism of action. Here we survey the data published since 2002 on vertebrate (mainly mammalian) sialidase biology. The subject is organized as follows: (i) a description of the four different sialidase forms and their functional
Recommended publications
  • Human Cathepsin A/ Lysosomal Carboxypeptidase a Antibody
    Human Cathepsin A/ Lysosomal Carboxypeptidase A Antibody Monoclonal Mouse IgG2A Clone # 179803 Catalog Number: MAB1049 DESCRIPTION Species Reactivity Human Specificity Detects human Cathepsin A/Lysosomal Carboxypeptidase A in direct ELISAs and Western blots. In Western blots, detects the single chain (55 kDa) and heavy chain (32 kDa) forms of recombinant human (rh) Cathepsin A. In Western blots, less than 5% cross­reactivity with rhCathepsin B, C, D, E, L, O, S, X and Z is observed and no cross­reactivity with the light chain (20 kDa) of rhCathepsin A is observed. Source Monoclonal Mouse IgG2A Clone # 179803 Purification Protein A or G purified from hybridoma culture supernatant Immunogen Mouse myeloma cell line NS0­derived recombinant human Cathepsin A/Lysosomal Carboxypeptidase A Ala29­Tyr480 (predicted) Accession # P10619 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL Recombinant Human Cathepsin A/Lysosomal Carboxypeptidase A (Catalog # 1049­SE) Immunoprecipitation 25 µg/mL Conditioned cell culture medium spiked with Recombinant Human Cathepsin A/Lysosomal Carboxypeptidase A (Catalog # 1049­SE), see our available Western blot detection antibodies PREPARATION AND STORAGE Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
    [Show full text]
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Down Regulation of Membrane-Bound Neu3 Constitutes a New
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows IJC International Journal of Cancer Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells Chandan Mandal1, Cristina Tringali2, Susmita Mondal1, Luigi Anastasia2, Sarmila Chandra3, Bruno Venerando2 and Chitra Mandal1 1 Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt of India, 4, Raja S. C. Mullick Road, Kolkata 700032, India 2 Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, and IRCCS Policlinico San Donato, San Donato, Milan, Italy 3 Department of Hematology, Kothari Medical Centre, Kolkata 700027, India Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (230 to 40%) and enzymatic activity toward ganglioside GD1a (225.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (166%) and to a parallel decrease of lactosylceramide (255%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/ Bax ratio, the accumulation of Neu3 transfected cells in the sub G0–G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3.
    [Show full text]
  • Oxidative Stress, a New Hallmark in the Pathophysiology of Lafora Progressive Myoclonus Epilepsy Carlos Romá-Mateo *, Carmen Ag
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy Carlos Romá-Mateo1,2*, Carmen Aguado3,4*, José Luis García-Giménez1,2,3*, Erwin 3,4 3,5 1,2,3# Knecht , Pascual Sanz , Federico V. Pallardó 1 FIHCUV-INCLIVA. Valencia. Spain 2 Dept. Physiology. School of Medicine and Dentistry. University of Valencia. Valencia. Spain 3 CIBERER. Centro de Investigación Biomédica en Red de Enfermedades Raras. Valencia. Spain. 4 Centro de Investigación Príncipe Felipe. Valencia. Spain. 5 IBV-CSIC. Instituto de Biomedicina de Valencia. Consejo Superior de Investigaciones Científicas. Valencia. Spain. * These authors contributed equally to this work # Corresponding author: Dr. Federico V. Pallardó Dept. Physiology, School of Medicine and Dentistry, University of Valencia. E46010-Valencia, Spain. Fax. +34963864642 [email protected] 2 ABSTRACT Lafora Disease (LD, OMIM 254780, ORPHA501) is a devastating neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in most cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin, a phosphatase with dual specificity that is involved in the dephosphorylation of glycogen, and malin, an E3-ubiquitin ligase involved in the polyubiquitination of proteins related with glycogen metabolism. Thus, it has been reported that laforin and malin form a functional complex that acts as a key regulator of glycogen metabolism and that also plays a crucial role in protein homeostasis (proteostasis). In relationship with this last function, it has been shown that cells are more sensitive to ER-stress and show defects in proteasome and autophagy activities in the absence of a functional laforin-malin complex.
    [Show full text]
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
    [Show full text]
  • Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling
    UC Davis UC Davis Previously Published Works Title Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling. Permalink https://escholarship.org/uc/item/0nk8n7xb Journal Scientific reports, 6(1) ISSN 2045-2322 Authors Arabyan, Narine Park, Dayoung Foutouhi, Soraya et al. Publication Date 2016-07-08 DOI 10.1038/srep29525 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling Received: 09 February 2016 Narine Arabyan1, Dayoung Park2, Soraya Foutouhi1, Allison M. Weis1, Bihua C. Huang1, Accepted: 17 June 2016 Cynthia C. Williams2, Prerak Desai1,†, Jigna Shah1,‡, Richard Jeannotte1,3,§, Nguyet Kong1, Published: 08 July 2016 Carlito B. Lebrilla2,4 & Bart C. Weimer1 Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Thesis Layout 3
    University of Groningen Gestational diabetes mellitus and fetoplacental vasculature alterations Silva Lagos, Luis DOI: 10.33612/diss.113056657 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Silva Lagos, L. (2020). Gestational diabetes mellitus and fetoplacental vasculature alterations: Exploring the role of adenosine kinase in endothelial (dys)function. University of Groningen. https://doi.org/10.33612/diss.113056657 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Adenosine kinase and cardiovascular fetal programming in gestational diabetes mellitus Luis Silva1,2, Torsten Plösch3, Fernando Toledo1,4, Marijke M. Faas2,3, Luis Sobrevia1,5,6 1 Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
    [Show full text]
  • Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis
    International Journal of Molecular Sciences Article Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis Bettina Sehnert 1,*, Juliane Mietz 1, Rita Rzepka 1, Stefanie Buchholz 1, Andrea Maul-Pavicic 1, Sandra Schaffer 1, Falk Nimmerjahn 2 and Reinhard E. Voll 1,* 1 Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; [email protected] (J.M.); [email protected] (R.R.); [email protected] (S.B.); [email protected] (A.M.-P.); [email protected] (S.S.) 2 Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; [email protected] * Correspondence: [email protected] (B.S.); [email protected] (R.E.V.); Tel.: +49-761-270-71021 (B.S.); +49-761-270-34490 (R.E.V.) Abstract: Altered sialylation patterns play a role in chronic autoimmune diseases such as rheumatoid arthritis (RA). Recent studies have shown the pro-inflammatory activities of immunoglobulins (Igs) with desialylated sugar moieties. The role of neuraminidases (NEUs), enzymes which are responsible for the cleavage of terminal sialic acids (SA) from sialoglycoconjugates, is not fully understood in RA. We investigated the impact of zanamivir, an inhibitor of the influenza virus neuraminidase, and mammalian NEU2/3 on clinical outcomes in experimental arthritides studies. The severity of arthritis was monitored and IgG titers were measured by ELISA. (2,6)-linked SA was determined on IgG by ELISA and on cell surfaces by flow cytometry. Zanamivir at a dose of 100 mg/kg (zana- Citation: Sehnert, B.; Mietz, J.; 100) significantly ameliorated collagen-induced arthritis (CIA), whereas zana-100 was ineffective Rzepka, R.; Buchholz, S.; in serum transfer-induced arthritis.
    [Show full text]