Windsof Change

Total Page:16

File Type:pdf, Size:1020Kb

Windsof Change NATURE|Vol 438|3 November 2005 NEWS FEATURE In a spin: understanding what drives changes in Winds of the intensity of a storm means gathering data from the heart of change hurricanes. Hurricanes can grow more intense in a matter of hours, but exactly why remains a mystery. Mark Schropeflies into the eye of a storm to investigate. n the space of one October day, Hurricane Wilma escalated from a tropical storm to become the strongest hurricane from the IAtlantic basin on record. It was a shift that no one saw coming, and Mexico’s Yucatán Peninsula bore the unexpectedly strong brunt of the storm. Over the past few decades, hurricane fore- casters have dramatically improved their pre- dictions of the paths that storms might follow. The accuracy of such ‘track predictions’ made 72 hours before a hurricane reaches land, for instance, have improved by more than 50% since 1970, according to the US National Oceanic and Atmospheric Administration (NOAA). But over the same period, models for hurricane intensity have remained rela- tively primitive. The turbulence that drives the internal dynamics of a hurricane is mind-bog- glingly complex. And without understanding that turbulence, and its effects on a storm’s intensity, forecasters haven’t really been able to improve their overall long-range forecasts. This year, correcting that situation became Intensity Change Experiment (RAINEX) seemingly endlessly along the US southeastern a high priority for hurricane research centres combines a massive set of plane observations coast, allowing the team to observe how a across the United States. During the most with experimental models. During August storm maintains its intensity over relatively active Atlantic hurricane season on record, and September, RAINEX coordinated three cold water. Later that month, Hurricane Rita several new research programmes have wres- aircraft equipped with Doppler radar to fly suddenly blew up in strength to reach the tled with the question of intensity. The move into the hearts of storms. All of the planes were highest, category 5, rating. may come not a moment too soon: two recent WP-3D Orion ‘hurricane hunters’, more com- Aboard one of the P-3 flights into the heart studies have suggested that hurricanes might monly known as P-3s. Two of them were run of Rita after it had subsided to category 2, Brad grow more intense in the future because of by NOAA; the third was owned by the Navy Smull from the University of GSFC WashingtonSCHMALTZ/MODIS/NASA J. climate change1,2. If so, the millions of people and carried ELDORA, the most advanced in Seattle described the hurricane’s unpre- who live in vulnerable coastal areas will be at Doppler radar currently on hurricane duty. dictability. “During an eight-hour flight, the greater risk than ever, further underscoring storm went from category 3 to category 5,” he the importance of good forecasts. Whirlwind start said over the din of the plane’s engines and the “If you have accurate track and intensity Four years ago, when researchers first proposed hurricane. “That’s very exciting.” Repeatedly forecasts that people can rely on, it will have a RAINEX, they had no idea that their first year flying through the hurricane to reach Rita’s eye huge societal benefit,” says Richard Anthes, a of action would bring them a nearly ideal set of brought its own kind of excitement, and it was hurricane specialist and president of the Uni- storms. As coastal residents were battered by difficult for me, a first-timer on the plane, to versity Corporation for Atmospheric Research hurricane after hurricane, the RAINEX team appreciate how relatively weak the storm had in Boulder, Colorado. “You would save enor- gathered a bounty of data that may one day help become. At times I had to clutch the handrail mous amounts of energy and protect huge protect against such devastation. running the length of the P-3’s ceiling to steady numbers of lives.” In August, Hurricane Katrina tantalized myself as the plane bucked. One of the most extensive new programmes forecasters as its bands of rain organized them- One of the hypotheses that RAINEX is test- is a three-year, US$3-million plan to investi- selves symmetrically around the storm’s eye, ing is the idea that hurricanes grow in intensity gate how, why and when a hurricane’s intensity and then failed to develop into a feature that because the bands of rain that swirl around the changes. Funded by the National Science could have weakened the storm’s intensity. storm inject energy into the storm’s eye. When Foundation, the Hurricane Rainband and In September, Hurricane Ophelia spun the winds immediately around the eye — 21 © 2005Nature PublishingGroup NEWS FEATURE NATURE|Vol 438|3 November 2005 known as the eyewall — are strengthening, rainbands tend to spiral into the eye. At other times, the outer rainbands can begin to form their own circle, or secondary eyewall, around the eye. If this happens, the secondary eyewall often starves the inner eye of energy so that it begins to fall apart. And in some cases the sec- ondary eyewall lasts long enough to become the primary eyewall, and even begins to strengthen further. Knowing exactly when and how this eyewall replacement happens is important for hurri- cane forecasts. But finding out means studying the flow of energy within a storm, which is no simple task. Hurricanes are fuelled when evaporation transfers heat from the ocean into the atmos- phere. The resulting water vapour releases energy as it rises and condenses into clouds; Researchers collect data (above) as they fly through Hurricane Rita onboard a P-3 plane (below). this process heats the surround- ing air, causing it, too, to rise. All factors play the biggest role in influencing this upward movement of air where a hurricane goes, but internal dynamicsSCHROPE M. causes the pressure below it to are also important. drop and winds to start blowing. Along with RAINEX, various other projects Surprisingly, estimates suggest under way this year will help hurricane that there is little difference researchers to answer the many questions between the amount of energy about intensity changes. Several fall under the transferred from the ocean to a umbrella of the Intensity Forecasting Experi- tropical storm and to a category ment (IFEX), which is managed by NOAA’s 5 hurricane. But scientists are Hurricane Research Division in Miami. hard-pressed to explain why, in a IFEX covers a variety of projects, including hurricane, much of the transfer studies of tropical cyclones forming in their is concentrated in the relatively small area of vertical profiles of temperature and wind. The earliest stages in the eastern Pacific, as well the eye. These zones of energy transfer are cru- planes can’t fly straight down to acquire that, as storms decaying in the northern Pacific. cial to controlling a storm’s shifts in intensity, nor can they fly safely at levels below 5,000 Historically, researchers have tended to study but are hard to study because they can be small feet, so they use instruments called drop- only mature storms, leading to deficiencies and move around rapidly. sondes. At key points the plane releases in understanding the complete storm cycle. dropsondes, which radio back real-time infor- Another IFEX programme has been testing Flight coordinators mation on temperature, pressure and wind unmanned aircraft for monitoring the lower Getting a good picture of how the eyewall and speed until they hit the water. levels of storms at resolutions much higher rain bands interact requires observing both But improving understanding of hurricane than is possible with dropsondes. structures simultaneously. But typical hurri- intensity takes more than data from planes. Many hurricane experts are confident that cane reconnaissance flights can’t do that “Observation doesn’t really give you the full all this work will soon pay off. Anthes, for one, because they mainly crisscross a storm’s eye. picture,” says Wen-Chau Lee, a RAINEX says that better observational and satellite data, The RAINEX plan uses three planes: one fly- investigator at the National Center for Atmos- combined with improved computers, should ing through the eye, one flying on the inside pheric Research in Boulder. “Even with eight- help to improve intensity forecasts in coming edge of the main rainband, and the other tak- hour coordinated flights, we’re still getting years. “I see no fundamental reason why we ing the outside edge of the band — something only snapshots, and we don’t sample the storm shouldn’t be able to predict intensity much that had never been done before. “It’s really for the entire 24 hours.” better,” he says. “We just need very high-reso- fantastic that we have been able to accomplish lution models and good understanding of this,” says Smull. Whipping up a storm cloud physics and dynamics.” Coordinating this aeronautical dance wasn’t Making sense out of these snapshots requires One such high-resolution tool is already easy. The planes maintained a satellite connec- computer modelling. At the operations centre under development at NOAA’s Environmental tion to a computer chat room, so that scientists in Miami, researchers use experimental mod- Modeling Center in Camp Springs, Maryland. in the air could ‘talk’ to each other and to the els to compare their predictions with data Called the Hurricane Weather Research and command centre in Miami, Florida. Flight arriving from the hurricane flights. Forecasting model, it is scheduled to begin paths were constantly updated based on radar If scientists could better understand why operation in 2007. It will incorporate the con- data as well as the chat-room information.
Recommended publications
  • Program At-A-Glance
    Sunday, 29 September 2019 Dinner (6:30–8:00 PM) ___________________________________________________________________________________________________ Monday, 30 September 2019 Breakfast (7:00–8:00 AM) Session 1: Extratropical Cyclone Structure and Dynamics: Part I (8:00–10:00 AM) Chair: Michael Riemer Time Author(s) Title 8:00–8:40 Spengler 100th Anniversary of the Bergen School of Meteorology Paper Raveh-Rubin 8:40–9:00 Climatology and Dynamics of the Link Between Dry Intrusions and Cold Fronts and Catto Tochimoto 9:00–9:20 Structures of Extratropical Cyclones Developing in Pacific Storm Track and Niino 9:20–9:40 Sinclair and Dacre Poleward Moisture Transport by Extratropical Cyclones in the Southern Hemisphere 9:40–10:00 Discussion Break (10:00–10:30 AM) Session 2: Jet Dynamics and Diagnostics (10:30 AM–12:10 PM) Chair: Victoria Sinclair Time Author(s) Title Breeden 10:30–10:50 Evidence for Nonlinear Processes in Fostering a North Pacific Jet Retraction and Martin Finocchio How the Jet Stream Controls the Downstream Response to Recurving 10:50–11:10 and Doyle Tropical Cyclones: Insights from Idealized Simulations 11:10–11:30 Madsen and Martin Exploring Characteristic Intraseasonal Transitions of the Wintertime Pacific Jet Stream The Role of Subsidence during the Development of North American 11:30–11:50 Winters et al. Polar/Subtropical Jet Superpositions 11:50–12:10 Discussion Lunch (12:10–1:10 PM) Session 3: Rossby Waves (1:10–3:10 PM) Chair: Annika Oertel Time Author(s) Title Recurrent Synoptic-Scale Rossby Wave Patterns and Their Effect on the Persistence of 1:10–1:30 Röthlisberger et al.
    [Show full text]
  • Ex-Hurricane Ophelia 16 October 2017
    Ex-Hurricane Ophelia 16 October 2017 On 16 October 2017 ex-hurricane Ophelia brought very strong winds to western parts of the UK and Ireland. This date fell on the exact 30th anniversary of the Great Storm of 16 October 1987. Ex-hurricane Ophelia (named by the US National Hurricane Center) was the second storm of the 2017-2018 winter season, following Storm Aileen on 12 to 13 September. The strongest winds were around Irish Sea coasts, particularly west Wales, with gusts of 60 to 70 Kt or higher in exposed coastal locations. Impacts The most severe impacts were across the Republic of Ireland, where three people died from falling trees (still mostly in full leaf at this time of year). There was also significant disruption across western parts of the UK, with power cuts affecting thousands of homes and businesses in Wales and Northern Ireland, and damage reported to a stadium roof in Barrow, Cumbria. Flights from Manchester and Edinburgh to the Republic of Ireland and Northern Ireland were cancelled, and in Wales some roads and railway lines were closed. Ferry services between Wales and Ireland were also disrupted. Storm Ophelia brought heavy rain and very mild temperatures caused by a southerly airflow drawing air from the Iberian Peninsula. Weather data Ex-hurricane Ophelia moved on a northerly track to the west of Spain and then north along the west coast of Ireland, before sweeping north-eastwards across Scotland. The sequence of analysis charts from 12 UTC 15 to 12 UTC 17 October shows Ophelia approaching and tracking across Ireland and Scotland.
    [Show full text]
  • The Effects of Diabatic Heating on Upper
    THE EFFECTS OF DIABATIC HEATING ON UPPER- TROPOSPHERIC ANTICYCLOGENESIS by Ross A. Lazear A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN - MADISON 2007 i Abstract The role of diabatic heating in the development and maintenance of persistent, upper- tropospheric, large-scale anticyclonic anomalies in the subtropics (subtropical gyres) and middle latitudes (blocking highs) is investigated from the perspective of potential vorticity (PV) non-conservation. The low PV within blocking anticyclones is related to condensational heating within strengthening upstream synoptic-scale systems. Additionally, the associated convective outflow from tropical cyclones (TCs) is shown to build upper- tropospheric, subtropical anticyclones. Not only do both of these large-scale flow phenomena have an impact on the structure and dynamics of neighboring weather systems, and consequently the day-to-day weather, the very persistence of these anticyclones means that they have a profound influence on the seasonal climate of the regions in which they exist. A blocking index based on the meridional reversal of potential temperature on the dynamic tropopause is used to identify cases of wintertime blocking in the North Atlantic from 2000-2007. Two specific cases of blocking are analyzed, one event from February 1983, and another identified using the index, from January 2007. Parallel numerical simulations of these blocking events, differing only in one simulation’s neglect of the effects of latent heating of condensation (a “fake dry” run), illustrate the importance of latent heating in the amplification and wave-breaking of both blocking events.
    [Show full text]
  • As Diagnosed with a Generalized Omega Equation and Vorticity Equation
    Tellus A: Dynamic Meteorology and Oceanography ISSN: (Print) 1600-0870 (Online) Journal homepage: https://www.tandfonline.com/loi/zela20 The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation Mika Rantanen, Jouni Räisänen, Victoria A. Sinclair, Juha Lento & Heikki Järvinen To cite this article: Mika Rantanen, Jouni Räisänen, Victoria A. Sinclair, Juha Lento & Heikki Järvinen (2020) The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation, Tellus A: Dynamic Meteorology and Oceanography, 72:1, 1-26, DOI: 10.1080/16000870.2020.1721215 To link to this article: https://doi.org/10.1080/16000870.2020.1721215 Tellus A: 2020. © 2020 The Author(s). View supplementary material Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 03 Feb 2020. Submit your article to this journal Article views: 504 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=zela20 SERIES A DYANAMIC METEOROLOGY Tellus AND OCEANOGRAPHY PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation 1Ã 1 1 2 By MIKA RANTANEN , JOUNI RÄISÄNEN , VICTORIA A. SINCLAIR , JUHA LENTO , and HEIKKI JÄRVINEN1, 1Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland; 2CSC–IT Center for Science, Espoo, Finland (Manuscript Received 14 June 2019; in final form 20 November 2019) ABSTRACT Hurricane Ophelia was a category 3 hurricane which underwent extratropical transition and made landfall in Europe as an exceptionally strong post-tropical cyclone in October 2017.
    [Show full text]
  • The Extratropical Transition of Hurricane Ophelia (2017) As Diagnosed with a Generalized Omega Equation and Vorticity Equation
    The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation 1 1 1 1 Mika Rantanen ,​ Jouni Räisänen ,​ Victoria A. Sinclair ​ and Heikki Järvinen ​ ​ ​ ​ 1 I​ nstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland Hurricane Ophelia was a category 3 hurricane which underwent an extratropical transition and made landfall in Europe as an exceptionally strong post-tropical cyclone in October 2017. In Ireland, for instance, Ophelia was the worst storm in 50 years and resulted in significant damage and loss of life. In this study, the different physical processes affecting Ophelia’s transformation from a hurricane to a mid-latitude cyclone are studied. For this purpose, we have developed software which uses OpenIFS model output and a system consisting of a generalized omega equation and vorticity equation. By using these two equations, the atmospheric vertical motion and vorticity tendency are separated into the contributions from different physical processes: vorticity advection, thermal advection, friction, diabatic heating, and the imbalance between the temperature and vorticity tendencies. Vorticity advection, which is often considered an important forcing for the development of mid-latitude cyclones, is shown to play a small role in the re-intensification of Ophelia as an extratropical storm. This is because the effects of divergent and non-divergent components of vorticity advection mainly cancelled each other out, resulting in a net effect close to zero. However, our results show that diabatic heating was the dominate forcing in both the tropical and extratropical phases of Ophelia. Furthermore, we calculated in more detail the diabatic heating contributions from different model parameterizations.
    [Show full text]
  • A Complex Aerosol Transport Event Over Europe During
    A complex aerosol transport event over Europe during the 2017 Storm Ophelia in CAMS forecast systems: analysis and evaluation Dimitris Akritidis1, Eleni Katragkou1, Aristeidis K. Georgoulias1, Prodromos Zanis1, Stergios Kartsios1, Johannes Flemming2, Antje Inness2, John Douros3, and Henk Eskes3 1Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece 2European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK 3Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands Correspondence: D. Akritidis ([email protected]) Abstract. In mid-October 2017 Storm Ophelia crossed over western coastal Europe, inducing the combined transport of Sa- haran dust and Iberian biomass burning aerosols over several European areas. In this study we assess the performance of the Copernicus Atmosphere Monitoring Service (CAMS) forecast systems during this complex aerosol transport event, and the po- tential benefits that data assimilation and regional models could bring. To this end, CAMS global and regional forecast data are 5 analyzed and compared against observations from passive (MODIS: Moderate resolution Imaging Spectroradiometer aboard Terra and Aqua) and active (CALIOP/CALIPSO: Cloud-Aerosol Lidar with Orthogonal Polarization aboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite sensors, and ground-based measurements (EMEP: European Monitoring and Evaluation Programme). The analysis of CAMS global forecast indicates that dust and smoke aerosols, dis- cretely located on the warm and cold front of Ophelia, respectively, are affecting the aerosol atmospheric composition over 10 Europe during the passage of the Storm. The observed MODIS Aerosol Optical Depth (AOD) values are satisfactorily repro- duced by CAMS global forecast system, with a correlation coefficient of 0.77 and a fractional gross error (FGE) of 0.4.
    [Show full text]
  • Convective-Scale Downdrafts in the Principal Rainband of Hurricane Katrina (2005)
    Convective-scale Downdrafts in the Principal Rainband of Hurricane Katrina (2005) Anthony Carl Didlake, Jr. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2009 Program Authorized to Offer Degree: Atmospheric Sciences University of Washington Graduate School This is to certify that I have examined this copy of a master’s thesis by Anthony Carl Didlake, Jr. and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Committee Members: ______________________________________________________________________ Robert A. Houze, Jr. ______________________________________________________________________ Clifford F. Mass ______________________________________________________________________ John M. Wallace Date: ____________________________________________ In presenting this thesis in partial fulfillment of the requirements for a master’s degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my written permission. Signature _________________________________ Date _____________________________________ University of Washington Abstract Convective-scale Downdrafts in the Principal Rainband of Hurricane Katrina (2005) Anthony Carl Didlake, Jr. Chair of the Supervisory Committee: Professor Robert A. Houze, Jr. Department of Atmospheric Sciences Airborne Doppler radar data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) document downdrafts in the principal rainband of Hurricane Katrina (2005). Inner-edge downdrafts (IEDs) originating at 6-8 km altitude created a sharp reflectivity gradient along the inner boundary of the rainband.
    [Show full text]
  • I. INTRODUCTION As Part of the Beaufort
    PAMLICO SOUND REGIONAL HAZARD MITIGATION PLAN SECTION 3. HAZARD IDENTIFICATION AND ANALYSIS I. INTRODUCTION As part of the Beaufort, Carteret, Craven, Hyde, and Pamlico counties hazard mitigation efforts and the preparation of this plan, the five-county region will need to decide on which specific hazards it should focus its attention and resources. To plan for hazards and to reduce losses, the Pamlico Sound Region needs to know: 1) the type of natural hazards that threaten the region, 2) the characteristics of each hazard, 3) the likelihood of occurrence (or probability) of each hazard, 4) the magnitude of the potential hazards, and 5) the possible impacts of the hazards on the community. The following section identifies each hazard that poses an elevated threat to the counties and municipalities located within the Pamlico Sound Region. A rating system that evaluates the potential for occurrence for each identified threat is provided (see Table 39). The following natural hazards were determined to be of concern for the five-county region: 1. Hurricanes 2. Nor’easters 3. Flooding 4. Severe Winter Storms 5. Thunderstorms/Windstorms 6. Tornados 7. Wildfire 8. Earthquakes 9. Dam/Levee Failure 10. Tsunamis 11. Droughts/Heat Waves 12. Coastal Hazards A detailed explanation of these hazards and how they have impacted the five-county region is provided on the following pages. The weather history summaries provided throughout this discussion have been compiled from the National Oceanic and Atmospheric Administration (NOAA) as provided through the National Climatic Data Center (NCDC). The NCDC compiles monthly reports that track weather events and any financial or life loss associated with a given occurrence.
    [Show full text]
  • Tropical Cyclone Report Hurricane Ophelia 6-17 September 2005
    Tropical Cyclone Report Hurricane Ophelia 6-17 September 2005 Jack Beven and Hugh D. Cobb, III National Hurricane Center 24 January 2006 Updated track near Nova Scotia 14 June 2006 Hurricane Ophelia was a category 1 hurricane on the Saffir-Simpson Hurricane Scale that brushed the North Carolina Outer Banks, its center staying just offshore from that coast. The storm’s erratic and slow movement in the vicinity of the North Carolina coastline was similar to Hurricanes Bonnie in August 1998 and Dennis in August 1999. a. Synoptic History Ophelia formed from a non-tropical weather system. A cold front moved off the eastern coast of the United States on 1 September. The front moved southeastward and became part of an elongated trough of low pressure that extended from Tropical Depression Lee east of Bermuda to near the Florida Peninsula. Two areas of low pressure formed in the trough on 4 September. The eastern low, south of Bermuda, eventually became Hurricane Nate. The western low, near the Bahamas, became Ophelia. The pre-Ophelia low initially drifted southward. It began a northward drift on 5 September while the associated shower activity became better organized. Based on satellite, surface, and radar observations, it is estimated the low became a tropical depression near 0600 UTC 6 September between Andros and Grand Bahama Islands. The “best track” chart of the tropical cyclone’s path is given in Fig. 1, with the wind and pressure histories shown in Figs. 2 and 3, respectively. The best track positions and intensities are listed in Table 1. The depression moved generally northward, with the broad circulation center crossing Grand Bahama about 1600 UTC 6 September.
    [Show full text]
  • 2017 North Atlantic Hurricane Season Review
    2017 North Atlantic Hurricane Season Review RMS REPORT Executive Summary THE 2017 NORTH ATLANTIC HURRICANE SEASON will be remembered as one of the most active, damaging, and costliest seasons on record. The 2017 season saw 17 named storms, with 10 of these storms (Franklin through Ophelia) reaching hurricane strength and occurring consecutively within a hyperactive period between August and October. The season will be remembered for its six major hurricanes and specifically for the impacts of three of these storms: Harvey, Irma, and Maria. Hurricane Harvey, the first U.S. major hurricane (Category 3 or greater on the Saffir-Simpson Hurricane Wind Scale) to make landfall since Hurricane Wilma in 2005, made landfall near Rockport, Texas, as a Category 4 storm in late August, thus ending the contiguous U.S. major hurricane landfall drought at 4,323 days. Harvey brought record-breaking rainfall to southeast Texas that resulted in widespread catastrophic and unprecedented inland flooding across the Houston metropolitan area, damaging more than 300,000 structures. The RMS best estimate is that the insured loss from Hurricane Harvey will likely be between US$25 and US$35 billion. This estimate represents the insured loss associated with wind, storm surge, and inland flood damage across Texas and Louisiana. Florida saw its first Category 4 hurricane landfall since 2004 when Hurricane Irma made landfall over the Florida Keys in mid-September. The system later came ashore near Naples, Florida as a Category 3 storm, causing widespread wind damage and flooding across the state. Before impacting Florida, Irma tracked through the Caribbean as a Category 5 hurricane and caused extensive devastation on many islands, ultimately ranking as the strongest hurricane on record to impact the Leeward Islands.
    [Show full text]
  • UCC Library and UCC Researchers Have Made This Item Openly Available
    UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title The impact of hurricane Debbie (1961) and hurricane Charley (1986) on Ireland Author(s) Hickey, Kieran R.; Connolly-Johnston, Christina Editor(s) Hickey, Kieran R. Publication date 2012-12-05 Original citation HICKEY, K. R. and CONNOLLY-JOHNSTON, C. (2012) 'The Impact of Hurricane Debbie (1961) and Hurricane Charley (1986) on Ireland' In: HICKEY, K. R.(eds). Advances in hurricane research: modelling, meteorology, preparedness and impacts. Croatia: InTech, pp 183-198. http://dx.doi.org/10.5772/54039 Type of publication Book chapter Link to publisher's http://dx.doi.org/10.5772/3399 version http://dx.doi.org/10.5772/54039 Access to the full text of the published version may require a subscription. Rights © 2012 Hickey and Connolly-Johnston; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/3.0/ Item downloaded http://hdl.handle.net/10468/2494 from Downloaded on 2021-09-27T06:30:10Z Chapter 9 The Impact of Hurricane Debbie (1961) and Hurricane Charley (1986) on Ireland Kieran R. Hickey and Christina Connolly-Johnston Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54039 1. Introduction Ireland has long been in receipt of the tail-end of a small number of Atlantic hurricanes and is the most affected country in Europe by these storms.
    [Show full text]
  • An Analysis of Storm Ophelia Which Struck Ireland on the 16Th October 2017
    Storm Ophelia An Analysis of Storm Ophelia which struck Ireland on the 16th October 2017 Met Éireann Glasnevin Hill, Dublin 9 2018 Storm Ophelia Table of Contents 1. Introduction ……………………………………………………………………………………………………………………….3 2. Storm Evolution.…………………………………………………………………………………………………………………4 3. Comparison with other Severe Storms……………………………………………………………………………..6 4. Storm event analysis………………………………………………………………………………………………………….7 4.1 Storm Ophelia 4.2 The first signs of the storm 4.3 Forecasts and Advisories 4.4 The Day of the Storm: Monday 16th October 5. Forecast performance……………………………………………………………………………………………………….13 6. Impacts …………………………………………………………………………………………………………………………….14 7. Conclusions and Summary ……………………………………………………………………………………………..15 References ……………………………………………...………………………………………………………………………………..16 Appendix …………………………………………………………………………………………………………………………………….17 Page 2 Storm Ophelia, An Analysis 1. Introduction Hurricanes and tropical storms that form in the tropical Atlantic, usually from August to October, which is the peak of the Atlantic hurricane season, are occasionally picked up by the North Atlantic jet stream and swept north-eastwards towards Europe. By the time they reach Ireland, they are usually no longer classified as hurricanes, having transi- tioned into what are known as post or extra-tropical storms but can be quite powerful and damaging. Extra-Tropical Storm Ophelia (also known as Storm Ophelia) was not the only tropical system to affect Ireland in the 2017-2018 windstorm season. The remnants of Hurricane Gert and Nate had already brought heavy rainfall and flooding to some parts of Ireland in August and October but little in the way of wind. Ophelia is the farthest east Major Hurricane (Category 3 or higher) on record in the Atlantic Basin. It made landfall over Ireland as an extra-tropical storm on the morning of the 16th October 2017 resulting in observed wind speeds of up to 156 km/h, in a (3-second mean) gust, at Roche’s Point station, County Cork.
    [Show full text]