Convective-Scale Downdrafts in the Principal Rainband of Hurricane Katrina (2005)

Total Page:16

File Type:pdf, Size:1020Kb

Convective-Scale Downdrafts in the Principal Rainband of Hurricane Katrina (2005) Convective-scale Downdrafts in the Principal Rainband of Hurricane Katrina (2005) Anthony Carl Didlake, Jr. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2009 Program Authorized to Offer Degree: Atmospheric Sciences University of Washington Graduate School This is to certify that I have examined this copy of a master’s thesis by Anthony Carl Didlake, Jr. and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Committee Members: ______________________________________________________________________ Robert A. Houze, Jr. ______________________________________________________________________ Clifford F. Mass ______________________________________________________________________ John M. Wallace Date: ____________________________________________ In presenting this thesis in partial fulfillment of the requirements for a master’s degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my written permission. Signature _________________________________ Date _____________________________________ University of Washington Abstract Convective-scale Downdrafts in the Principal Rainband of Hurricane Katrina (2005) Anthony Carl Didlake, Jr. Chair of the Supervisory Committee: Professor Robert A. Houze, Jr. Department of Atmospheric Sciences Airborne Doppler radar data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) document downdrafts in the principal rainband of Hurricane Katrina (2005). Inner-edge downdrafts (IEDs) originating at 6-8 km altitude created a sharp reflectivity gradient along the inner boundary of the rainband. Low-level downdrafts (LLDs), evidently driven by precipitation drag, originated at 2-4 km within the heavy rain cells of each convective element. The IED and LLD were spatially separated by but closely associated with the updrafts within the rainband. The IED was forced aloft by pressure perturbations formed in response to the adjacent buoyant updrafts. Once descending, the air attained negative buoyancy due to evaporative cooling from the rainband precipitation. A convective-scale tangential wind maximum tended to occur in the radial inflow at lower levels in association with the IED, which enhanced the inward flux of angular momentum at low levels. Convergence at the base of the downdrafts on the upwind end of the principal rainband contributed to the principal rainband growing in length. New updraft elements triggered by this convergence led to the formation of new IED and LLD pockets, which were subsequently advected downwind around the storm by the vortex winds while additional new cells continued to form on the upwind end of the band. These processes sustained the principal rainband and helped it to remain nearly stationary relative to the storm center, thus maintaining its impact on the hurricane dynamics over an extended period. TABLE OF CONTENTS Page List of Figures................................................................................................................. ii 1. Introduction..................................................................................................................1 2. Data and methodology.................................................................................................4 2.1. Doppler radar data sets .................................................................................4 2.2. Principal rainband of Hurricane Katrina.......................................................5 2.3. Convective/stratiform separation..................................................................6 2.4. Radial cross section analysis ........................................................................8 2.5. Dropsonde analysis.......................................................................................9 3. Analysis of total rainband..........................................................................................14 3.1. Average updrafts and downdrafts...............................................................14 3.2. Frequency distribution of vertical velocity.................................................15 3.3. Temperature and pressure perturbation fields ............................................16 3.4. Horizontal distribution of vertical velocity.................................................19 4. Forcing of the downdrafts..........................................................................................28 5. Immediate effects and possible impacts of the downdrafts.......................................34 5.1. Sharp inner-edge reflectivity gradient ........................................................34 5.2. Low-level wind maximum (LLWM)..........................................................35 5.3. Increasing the angular momentum of the hurricane vortex........................37 5.4. Growth and sustenance of the principal rainband.......................................38 6. Conceptual model of convection within the principal rainband................................44 7. Conclusions and future work.....................................................................................47 References......................................................................................................................49 Appendix A: Convective/stratiform separation algorithm ............................................53 Appendix B: Thermodynamic retrieval.........................................................................55 i LIST OF FIGURES Figure Number Page 1. Conceptual model of principal rainband (from Hence and Houze 2008) ................3 2. Best track of Hurricane Katrina (2005)..................................................................10 3. Plan view of ELDORA radar data..........................................................................11 4. Convective/stratiform separation and vertical velocity data ..................................12 5. CFADs of radar data...............................................................................................13 6. Average vertical velocity field in cross sections ....................................................22 7. Frequency count of vertical velocities in cross sections ........................................23 8. Mass-transport-weighted CFAD ............................................................................24 9. Conditional probability histograms of downdraft speeds.......................................24 10. Average temperature and pressure perturbations ...................................................25 11. Average buoyancy and dynamic pressure perturbations and vertical gradients.....26 12. Cross section autocorrelation results......................................................................27 13. Buoyancy pressure gradient acceleration field.......................................................31 14. Data from cross section A ......................................................................................32 15. Data from cross section B.......................................................................................33 16. Composite tangential velocity field (from Barnes et al. 1983) ..............................41 17. Radar scans of Tropical Storm Ophelia (2005)......................................................42 18. Schematic of upwind end of principal rainband.....................................................43 19. Schematic of downdrafts in cross section of the principal rainband......................46 ii ACKNOWLEDGEMENTS I thank my advisor, Bob Houze, for his continued advice and support throughout all of the research and writing. I also thank the entire Mesoscale Group, including Stacy Brodzik, Jasmine Cetrone, Deanna Hence, Tomislav Maric, Socorro Medina, Bradley Smull and Jian Yuan. My many discussions with them have been very valuable. Michael Bell and Sandra Yuter were very gracious in providing me with materials necessary for my research. Beth Tully did an amazing job with the figures and also helped with editing the thesis. My research was supported by the National Science Foundation under grants ATM-0432623 and ATM-0743180, and the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. Lastly, I thank my fellow Atmospheric Sciences classmates, and all of my family in Michigan and Connecticut. iii 1 1. INTRODUCTION The principal rainband is a prominent feature of tropical cyclones (Willoughby et al. 1984). It consists of convective cells embedded in stratiform precipitation and spirals inward toward the storm center (Fig. 1a). It is larger than numerous other transient rainbands populating the storm, and it is persistent and nearly stationary relative to the storm. Despite its prominent appearance, the dynamic role and origin of the principal rainband in the larger tropical cyclone remains uncertain. Barnes et al. (1983) and Powell (1990a) showed that the air spiraling inward toward the storm center is subjected to an overturning circulation when it encounters the principal rainband. Hence and Houze (2008) used high-resolution
Recommended publications
  • Program At-A-Glance
    Sunday, 29 September 2019 Dinner (6:30–8:00 PM) ___________________________________________________________________________________________________ Monday, 30 September 2019 Breakfast (7:00–8:00 AM) Session 1: Extratropical Cyclone Structure and Dynamics: Part I (8:00–10:00 AM) Chair: Michael Riemer Time Author(s) Title 8:00–8:40 Spengler 100th Anniversary of the Bergen School of Meteorology Paper Raveh-Rubin 8:40–9:00 Climatology and Dynamics of the Link Between Dry Intrusions and Cold Fronts and Catto Tochimoto 9:00–9:20 Structures of Extratropical Cyclones Developing in Pacific Storm Track and Niino 9:20–9:40 Sinclair and Dacre Poleward Moisture Transport by Extratropical Cyclones in the Southern Hemisphere 9:40–10:00 Discussion Break (10:00–10:30 AM) Session 2: Jet Dynamics and Diagnostics (10:30 AM–12:10 PM) Chair: Victoria Sinclair Time Author(s) Title Breeden 10:30–10:50 Evidence for Nonlinear Processes in Fostering a North Pacific Jet Retraction and Martin Finocchio How the Jet Stream Controls the Downstream Response to Recurving 10:50–11:10 and Doyle Tropical Cyclones: Insights from Idealized Simulations 11:10–11:30 Madsen and Martin Exploring Characteristic Intraseasonal Transitions of the Wintertime Pacific Jet Stream The Role of Subsidence during the Development of North American 11:30–11:50 Winters et al. Polar/Subtropical Jet Superpositions 11:50–12:10 Discussion Lunch (12:10–1:10 PM) Session 3: Rossby Waves (1:10–3:10 PM) Chair: Annika Oertel Time Author(s) Title Recurrent Synoptic-Scale Rossby Wave Patterns and Their Effect on the Persistence of 1:10–1:30 Röthlisberger et al.
    [Show full text]
  • Ex-Hurricane Ophelia 16 October 2017
    Ex-Hurricane Ophelia 16 October 2017 On 16 October 2017 ex-hurricane Ophelia brought very strong winds to western parts of the UK and Ireland. This date fell on the exact 30th anniversary of the Great Storm of 16 October 1987. Ex-hurricane Ophelia (named by the US National Hurricane Center) was the second storm of the 2017-2018 winter season, following Storm Aileen on 12 to 13 September. The strongest winds were around Irish Sea coasts, particularly west Wales, with gusts of 60 to 70 Kt or higher in exposed coastal locations. Impacts The most severe impacts were across the Republic of Ireland, where three people died from falling trees (still mostly in full leaf at this time of year). There was also significant disruption across western parts of the UK, with power cuts affecting thousands of homes and businesses in Wales and Northern Ireland, and damage reported to a stadium roof in Barrow, Cumbria. Flights from Manchester and Edinburgh to the Republic of Ireland and Northern Ireland were cancelled, and in Wales some roads and railway lines were closed. Ferry services between Wales and Ireland were also disrupted. Storm Ophelia brought heavy rain and very mild temperatures caused by a southerly airflow drawing air from the Iberian Peninsula. Weather data Ex-hurricane Ophelia moved on a northerly track to the west of Spain and then north along the west coast of Ireland, before sweeping north-eastwards across Scotland. The sequence of analysis charts from 12 UTC 15 to 12 UTC 17 October shows Ophelia approaching and tracking across Ireland and Scotland.
    [Show full text]
  • The Effects of Diabatic Heating on Upper
    THE EFFECTS OF DIABATIC HEATING ON UPPER- TROPOSPHERIC ANTICYCLOGENESIS by Ross A. Lazear A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN - MADISON 2007 i Abstract The role of diabatic heating in the development and maintenance of persistent, upper- tropospheric, large-scale anticyclonic anomalies in the subtropics (subtropical gyres) and middle latitudes (blocking highs) is investigated from the perspective of potential vorticity (PV) non-conservation. The low PV within blocking anticyclones is related to condensational heating within strengthening upstream synoptic-scale systems. Additionally, the associated convective outflow from tropical cyclones (TCs) is shown to build upper- tropospheric, subtropical anticyclones. Not only do both of these large-scale flow phenomena have an impact on the structure and dynamics of neighboring weather systems, and consequently the day-to-day weather, the very persistence of these anticyclones means that they have a profound influence on the seasonal climate of the regions in which they exist. A blocking index based on the meridional reversal of potential temperature on the dynamic tropopause is used to identify cases of wintertime blocking in the North Atlantic from 2000-2007. Two specific cases of blocking are analyzed, one event from February 1983, and another identified using the index, from January 2007. Parallel numerical simulations of these blocking events, differing only in one simulation’s neglect of the effects of latent heating of condensation (a “fake dry” run), illustrate the importance of latent heating in the amplification and wave-breaking of both blocking events.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • As Diagnosed with a Generalized Omega Equation and Vorticity Equation
    Tellus A: Dynamic Meteorology and Oceanography ISSN: (Print) 1600-0870 (Online) Journal homepage: https://www.tandfonline.com/loi/zela20 The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation Mika Rantanen, Jouni Räisänen, Victoria A. Sinclair, Juha Lento & Heikki Järvinen To cite this article: Mika Rantanen, Jouni Räisänen, Victoria A. Sinclair, Juha Lento & Heikki Järvinen (2020) The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation, Tellus A: Dynamic Meteorology and Oceanography, 72:1, 1-26, DOI: 10.1080/16000870.2020.1721215 To link to this article: https://doi.org/10.1080/16000870.2020.1721215 Tellus A: 2020. © 2020 The Author(s). View supplementary material Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 03 Feb 2020. Submit your article to this journal Article views: 504 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=zela20 SERIES A DYANAMIC METEOROLOGY Tellus AND OCEANOGRAPHY PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation 1Ã 1 1 2 By MIKA RANTANEN , JOUNI RÄISÄNEN , VICTORIA A. SINCLAIR , JUHA LENTO , and HEIKKI JÄRVINEN1, 1Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland; 2CSC–IT Center for Science, Espoo, Finland (Manuscript Received 14 June 2019; in final form 20 November 2019) ABSTRACT Hurricane Ophelia was a category 3 hurricane which underwent extratropical transition and made landfall in Europe as an exceptionally strong post-tropical cyclone in October 2017.
    [Show full text]
  • The Extratropical Transition of Hurricane Ophelia (2017) As Diagnosed with a Generalized Omega Equation and Vorticity Equation
    The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation 1 1 1 1 Mika Rantanen ,​ Jouni Räisänen ,​ Victoria A. Sinclair ​ and Heikki Järvinen ​ ​ ​ ​ 1 I​ nstitute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland Hurricane Ophelia was a category 3 hurricane which underwent an extratropical transition and made landfall in Europe as an exceptionally strong post-tropical cyclone in October 2017. In Ireland, for instance, Ophelia was the worst storm in 50 years and resulted in significant damage and loss of life. In this study, the different physical processes affecting Ophelia’s transformation from a hurricane to a mid-latitude cyclone are studied. For this purpose, we have developed software which uses OpenIFS model output and a system consisting of a generalized omega equation and vorticity equation. By using these two equations, the atmospheric vertical motion and vorticity tendency are separated into the contributions from different physical processes: vorticity advection, thermal advection, friction, diabatic heating, and the imbalance between the temperature and vorticity tendencies. Vorticity advection, which is often considered an important forcing for the development of mid-latitude cyclones, is shown to play a small role in the re-intensification of Ophelia as an extratropical storm. This is because the effects of divergent and non-divergent components of vorticity advection mainly cancelled each other out, resulting in a net effect close to zero. However, our results show that diabatic heating was the dominate forcing in both the tropical and extratropical phases of Ophelia. Furthermore, we calculated in more detail the diabatic heating contributions from different model parameterizations.
    [Show full text]
  • Upgrades to the GFDL/GFDN Hurricane Model for 2014 (A JHT Funded Project) Morris A
    Upgrades to the GFDL/GFDN Hurricane Model for 2014 (A JHT Funded Project) Morris A. Bender, Matthew Morin, Timothy Marchok, Isaac Ginis, Biju Thomas, Richard Yablonsky and Robert Tuleya 68th Interdepartmenal Hurricane Conference Tuesday, March 5th GFDL 2014 Hurricane Model Upgrade • Increased horizontal resolution of inner nest from 1/12th to 1/18th degree with reduced damping of gravity waves in advection scheme • Improved specification of surface exchange coefficients (ch, cd) and surface stress computation in surface physics • Improved specification of surface roughness and wetness over land. • Modified PBL with variable Critical Richardson Number. • Advection of individual micro-physics species. (Yet to test impact of Rime Factor Advection) • Improved targeting of initial storm maximum wind and storm structure in initialization. (Reduces negative intensity bias in vortex specification) • Remove vortex specification in Atlantic for storms of 40 knots and less • Upgrade ocean model to 1/12th degree MPI POM with unified trans-Atlantic basin and 3D ocean for Eastern Pacific basin • Remove global_chgres in analysis step (direct interpolation from hybrid to sigma coordinates) New Cd and Ch formulation New Ch New Cd Current HWRF and GFDL Cd Current HWRF Ch Comparison of New cd and ch with Recent Referenced Studies Cd Ch Impact of Bogusing on Intensity Errors For Storms 40 knots or less Bogus No Bogus Bogusing Significantly Atlantic Degraded performance in Atlantic for weak systems No Bogus Bogus Bogusing Eastern Significantly Improved Pacific
    [Show full text]
  • A Complex Aerosol Transport Event Over Europe During
    A complex aerosol transport event over Europe during the 2017 Storm Ophelia in CAMS forecast systems: analysis and evaluation Dimitris Akritidis1, Eleni Katragkou1, Aristeidis K. Georgoulias1, Prodromos Zanis1, Stergios Kartsios1, Johannes Flemming2, Antje Inness2, John Douros3, and Henk Eskes3 1Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece 2European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK 3Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands Correspondence: D. Akritidis ([email protected]) Abstract. In mid-October 2017 Storm Ophelia crossed over western coastal Europe, inducing the combined transport of Sa- haran dust and Iberian biomass burning aerosols over several European areas. In this study we assess the performance of the Copernicus Atmosphere Monitoring Service (CAMS) forecast systems during this complex aerosol transport event, and the po- tential benefits that data assimilation and regional models could bring. To this end, CAMS global and regional forecast data are 5 analyzed and compared against observations from passive (MODIS: Moderate resolution Imaging Spectroradiometer aboard Terra and Aqua) and active (CALIOP/CALIPSO: Cloud-Aerosol Lidar with Orthogonal Polarization aboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite sensors, and ground-based measurements (EMEP: European Monitoring and Evaluation Programme). The analysis of CAMS global forecast indicates that dust and smoke aerosols, dis- cretely located on the warm and cold front of Ophelia, respectively, are affecting the aerosol atmospheric composition over 10 Europe during the passage of the Storm. The observed MODIS Aerosol Optical Depth (AOD) values are satisfactorily repro- duced by CAMS global forecast system, with a correlation coefficient of 0.77 and a fractional gross error (FGE) of 0.4.
    [Show full text]
  • Hurricane Interaction with the Upper Ocean in the Amazon-Orinoco Plume Region
    Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region Yannis Androulidakis, Vassiliki Kourafalou, George Halliwell, Matthieu Le Hénaff, Heesook Kang, Michael Mehari & Robert Atlas Ocean Dynamics Theoretical, Computational and Observational Oceanography ISSN 1616-7341 Volume 66 Number 12 Ocean Dynamics (2016) 66:1559-1588 DOI 10.1007/s10236-016-0997-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Ocean Dynamics (2016) 66:1559–1588 DOI 10.1007/s10236-016-0997-0 Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region Yannis Androulidakis1 & Vassiliki Kourafalou 1 & George Halliwell2 & Matthieu Le Hénaff2,3 & Heesook Kang1 & Michael Mehari3 & Robert Atlas2 Received: 3 February 2016 /Accepted: 14 September 2016 /Published online: 6 October 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract The evolution of three successive hurricanes the amount of ocean thermal energy provided to these storms (Katia, Maria, and Ophelia) is investigated over the river was greatly reduced, which acted to limit intensification.
    [Show full text]
  • I. INTRODUCTION As Part of the Beaufort
    PAMLICO SOUND REGIONAL HAZARD MITIGATION PLAN SECTION 3. HAZARD IDENTIFICATION AND ANALYSIS I. INTRODUCTION As part of the Beaufort, Carteret, Craven, Hyde, and Pamlico counties hazard mitigation efforts and the preparation of this plan, the five-county region will need to decide on which specific hazards it should focus its attention and resources. To plan for hazards and to reduce losses, the Pamlico Sound Region needs to know: 1) the type of natural hazards that threaten the region, 2) the characteristics of each hazard, 3) the likelihood of occurrence (or probability) of each hazard, 4) the magnitude of the potential hazards, and 5) the possible impacts of the hazards on the community. The following section identifies each hazard that poses an elevated threat to the counties and municipalities located within the Pamlico Sound Region. A rating system that evaluates the potential for occurrence for each identified threat is provided (see Table 39). The following natural hazards were determined to be of concern for the five-county region: 1. Hurricanes 2. Nor’easters 3. Flooding 4. Severe Winter Storms 5. Thunderstorms/Windstorms 6. Tornados 7. Wildfire 8. Earthquakes 9. Dam/Levee Failure 10. Tsunamis 11. Droughts/Heat Waves 12. Coastal Hazards A detailed explanation of these hazards and how they have impacted the five-county region is provided on the following pages. The weather history summaries provided throughout this discussion have been compiled from the National Oceanic and Atmospheric Administration (NOAA) as provided through the National Climatic Data Center (NCDC). The NCDC compiles monthly reports that track weather events and any financial or life loss associated with a given occurrence.
    [Show full text]
  • Tropical Cyclone Report Hurricane Ophelia 6-17 September 2005
    Tropical Cyclone Report Hurricane Ophelia 6-17 September 2005 Jack Beven and Hugh D. Cobb, III National Hurricane Center 24 January 2006 Updated track near Nova Scotia 14 June 2006 Hurricane Ophelia was a category 1 hurricane on the Saffir-Simpson Hurricane Scale that brushed the North Carolina Outer Banks, its center staying just offshore from that coast. The storm’s erratic and slow movement in the vicinity of the North Carolina coastline was similar to Hurricanes Bonnie in August 1998 and Dennis in August 1999. a. Synoptic History Ophelia formed from a non-tropical weather system. A cold front moved off the eastern coast of the United States on 1 September. The front moved southeastward and became part of an elongated trough of low pressure that extended from Tropical Depression Lee east of Bermuda to near the Florida Peninsula. Two areas of low pressure formed in the trough on 4 September. The eastern low, south of Bermuda, eventually became Hurricane Nate. The western low, near the Bahamas, became Ophelia. The pre-Ophelia low initially drifted southward. It began a northward drift on 5 September while the associated shower activity became better organized. Based on satellite, surface, and radar observations, it is estimated the low became a tropical depression near 0600 UTC 6 September between Andros and Grand Bahama Islands. The “best track” chart of the tropical cyclone’s path is given in Fig. 1, with the wind and pressure histories shown in Figs. 2 and 3, respectively. The best track positions and intensities are listed in Table 1. The depression moved generally northward, with the broad circulation center crossing Grand Bahama about 1600 UTC 6 September.
    [Show full text]
  • Hurricanes and Typhoons in the Global Climate System Pier Luigi Vidale 1, Malcolm Roberts2 Kevin Hodges1, P
    Hurricanes and typhoons in the global climate system Pier Luigi Vidale 1, Malcolm Roberts2 Kevin Hodges1, P. Loizou1, Liang Guo1, Armenia Franco-Diaz1, Alex Baker1, Benoit Vanniere1, Rein Haarsma3, Enrico Scoccimarro4, Alessio Bellucci4, Louis-Philippe Caron5 and Jenny Mecking6 (Blue-Action), all PRIMAVERA partners (models and analysis) With many thanks to Suzana Camargo, Tom Knutson and Jim Kosssin 1NCAS-Climate, University of Reading, 2Met Office Hadley Centre, 3Koninklijk Nederlands Meteorologisch Instituut (KNMI), 4Centro Euro-Mediterraneo sui Cambiamenti Climatici S.c.a.r.l (CMCC), 5Barcelona Supercomputing Center (BSC), Barcelona, Spain, 6Southampton Oceanography Centre 7 ECMF 8 ISAC-CNR 9 Oxford University 10 NCAS-CMS Motivation: TCs as rare, albeit significant contributors to climate A B C Contribution of TCs to the extreme rainfall (amount fraction) (%) from July to October, employing TCs tracks from (a) IBTrACS, (b) JRA-55 and (c) ERA-Interim. Climatology for 1998-2015 Franco-Diaz et al. 2019, submitted to Clim Dyn Re-analyses very likely under-estimating the role of TCs in producing precipitation and moisture transports. What is the role of model resolution, model physics, initialisation (Data Assimulation)? Guo et al. 2017 Recent natural catastrophes: comparing 2011 with other years NatCatSERVICE Loss events worldwide 2017 ~300 U$ billion Geographical overview Drought Winter damage, Geophysical events Wildfire Jan – Oct Flood frost (LNU Complex Fires) (Western-, Southern Europe) Jun - Oct (Earthquake, tsunami, 15 Apr - 9 May
    [Show full text]