11. How Many Neutrons Does an Atom of Nitrogen Have? Nitrogen Has a Mass of 14 and 7 Protons, So 14-7=7 Neutrons 12

Total Page:16

File Type:pdf, Size:1020Kb

11. How Many Neutrons Does an Atom of Nitrogen Have? Nitrogen Has a Mass of 14 and 7 Protons, So 14-7=7 Neutrons 12 Practice Questions Topic 1 For questions 1-9, match the description with the correct sub atomic particle(s) a. Electron b. Proton c. Neutron d. Proton & neutron e. Proton & electron c 1. Responsible for stabilizing the nucleus c 6. Does not have a charge; i.e. has a neutral a 2. Can be transferred or shared; responsible for charge chemical bonding between atoms b 7. Attracts and holds electrons to the atom b 3. Has a positive charge e 8. Creates Coulombic attraction d 4. Located in the nucleus a 9. Has a tiny mass that is practically zero d 5. Makes up most of the mass of an atom 10. How many protons does an atom of beryllium have? Beryllium as 4 protons 11. How many neutrons does an atom of nitrogen have? Nitrogen has a mass of 14 and 7 protons, so 14-7=7 neutrons 12. How many neutrons are in an atom of cesium? Cesium has a mass of 133 and 55 protons, so 133-55= 78 neutrons 13. How many electrons are there in a neutral atom of sodium? There are 11 electrons in a neutral sodiim atom 14. How many electrons are there in a sodium ion? Na loses 1 e- when it forms an ion, so there are 10 e- in a Na ion 15. How many electrons are in a neutral iodine atom? There are 53 e- in a neutral iodine atom 16. How many electrons are there in a iodide ion? Iodine gains 1e-, so there are 54 e- in an iodide ion 17. Iron has two oxidation numbers, 2 and 3. How many electrons are in an ion of iron (II) and in an iron (III) 18. Whichion? of the four universal forces --note, this should introduce 24 e- 23e- questions 19-23--there is no answer for #18 For questions 10-22, match the universal force with its role.Note the numbering error--- should be 19 through 22. 19. Hold matter together d a. Strong force 20. Holds the atom together b b. Electromagnetic force 21. Holds the nucleus together a c. Weak force 22. Hold particles in the nucleus together c d. Gravitational force 23. Rank those forces from strongest to weakest: strong, electromagnetic, weak, gravitational 24. Write the number 2,600,000,000 in scientific notation 2.6 x 10 9 25. Write the number 0.0000000000000000000000000642 in scientific notation 6.42 x 10 -26 Topic 2 questions 26. Forces that hold atoms together are intra molecular forces 27. Forces that hold compounds together are inter molecular forces Use the table to the right to answer questions 28 & 29 28. Which list below correctly ranks the molecules from lowest to highest boiling points? a. H2O N2 O2 He c. He H2O N2 O2 b. N2 H2O He O2 d. He N2 O2 H2O *** 29. Which list below correctly ranks the molecules from weakest to strongest intermolecular forces? a. H2O N2 O2 He c. He H2O N2 O2 b. N2 H2O He O2 d. He N2 O2 H2O *** 30. In order to freeze into ice, the molecules that make up water have to: a. get hotter c. speed up b. get colder d. slow down *** Use the phase diagram for CO2 to answer the following questions 31 to 34: 31. To change carbon dioxide from a liquid to a gas you would need to ____________. a. Increase the temperature and/or decrease the pressure *** b. Decrease the temperature and/or increase the pressure c. Decrease both the temperature and pressure d. Increase both the temperature and the pressure 32. Increasing the pressure around a liquid will… a. increase the boiling point of the liquid. *** b. decrease the boiling point of the liquid. c. not affect the boiling point of the liquid 33. To change carbon dioxide from a liquid to a solid you would need to ____________ (hint: make sure you look closely at Figure 2 when choosing your answer). a. Increase the temperature and/or decrease the pressure b. Decrease the temperature and/or increase the pressure *** c. Decrease both the temperature and pressure d. Increase both the temperature and the pressure 34. Increasing the temperature of carbon dioxide from -100° C to -40° C at 1 atm of pressure would change it from a solid to a vapor. This process is known as a. Freezing b. Melting c. Condensation d. Sublimation*** Topic 3 questions Figure 1 depicts energy levels in an atom of an unknown element that has been heated, and produced green, indigo, red, yellow, and violet color emissions. The direction of the arrow indicates which direction the electron moves. 35. Which arrow represents the electron gaining energy? a. a F b. b c. c d. d e. e f. f Figure 1 9 36. Which arrow represents the transition that produced a green photon? a. a d. d b. b B e. e c. c f. f 37. Which arrow represents the transition that produced an indigo photon? a. a A d. d b. b e. e c. c f. f 38. Which arrow represents the transition that produced a red photon? a. a d. d D b. b e. e c. c f. f 39. Which arrow represents the transition that produced a yellow photon? a. a d. d b. b e. e c. c C f. f 40. Which arrow represents the transition that produced a violet photon? a. a b. b c. c d. d e. e E f. f Use Figure 3 to answer question 41. 41. Which spectral lines are showing blue shift and which ones are showing red shift? The spectral lines of A & D have shifted towards longer wavelength (RED), whil B & C have shifted to the BLUE Topic 4 questions 42. Summarize how the periodic trends of atomic radius, electronegativity, and ionization energy change as you move down a group and across a period. A complete answer will summarize how each trend relates to Coulombic attraction. Atomic radius increases as you move down a group, causing Coulombic attraction to decrease, because of this Coulombic attraction decrease ionization energy and eletronegativity also decrease as you move down a group. 10 43. What is an ion? An ion is a charged atom with an uneven number of electrons because its lost or gained them 44. What type of ions do metals form? What type of ions do non-metals form? Metals form positive ions b/c they've 45. How many valence electrons and electron shells do each of the following elements have: lost electrons. Non- a. Helium 2 valence electons, 1 electron shells metals form negative b. Chlorine 7 valence electrons, 3 electron shells ions b/c they've gain Sodium c. 1 valence elctron, 3 electron shells electrons d. Calcium 2 valence electrons, 4 electron shells e. Sulfur 6 valence elctrons, 3 electron shells 46. Pick two different elements on the periodic table, and determine based on their positions, which one has the higher ionization energy and larger atomic radius. Answers will vary depending on the elements you chose, but that radius increases down, and decreases across. Ionization energy is opposite. Topic 5 47. Summarize the similarities and differences between ionic and covalent bonds. **Ionic bonds form through the transfer of electrons between cations (metals) and anions (non-metals). Their electronegativity difference is ~ greater than or equal to 1.7 ** Covalent bonds form through the the sharing of electrons between non-metals. Polar covalent bonds show electronegativity difference between 1.69 and 0.4; they display an uneven sharing of electrons. Non-polar bonds show an electronegativity difference less than or equal to 0.4, and evenly share electrons 48. What is the octet rule, and how can it be used to determine the number of electrons an atom will gain or lose when it becomes an ion? Atoms want to gain or lose electrons to stabilize, and the most stable elements are those with full valence shells: the Noble gases. All but Helium have 8 valence electrons, and the prefix for 8 is "oct-", hence the "octet rule." Metals have fewer valence electrons than non-metals, and its "easier" for them to lose electrons to stabilize and take on the electron configuration of the closest Noble gas, which are "behind" them on the periodic table. Non-metals are the opposite, they gain electrons to take on the configuration of the closest Noble gas, which are "in front" of them on the periodic table. 49. Be sure to complete the Naming Compounds and Acids worksheet to practice naming compounds and writing their formula. see answer key for that assignment 11 .
Recommended publications
  • Neutron Stars
    Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons.
    [Show full text]
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Photons from 252Cf and 241Am-Be Neutron Sources H
    Neutronenbestrahlungsraum Calibration Laboratory LB6411 Am-Be Quelle [email protected] Photons from 252Cf and 241Am-Be neutron sources H. Hoedlmoser, M. Boschung, K. Meier and S. Mayer Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland At the accredited PSI calibration laboratory neutron reference fields traceable to the standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany are available for the calibration of ambient and personal dose equivalent (rate) meters and passive dosimeters. The photon contribution to H*(10) in the neutron fields of the 252Cf and 241Am-Be sources was measured using various photon dose rate meters and active and passive dosimeters. Measuring photons from a neutron source involves considerable uncertainties due to the presence of neutrons, due to a non-zero neutron sensitivity of the photon detector and due to the energy response of the photon detectors. Therefore eight independent detectors and methods were used to obtain a reliable estimate for the photon contribution as an average of the individual methods. For the 241Am-Be source a photon contribution of approximately 4.9% was determined and for the 252Cf source a contribution of 3.6%. 1) Photon detectors 2) Photons from 252Cf and 241Am-Be neutron sources Figure 1 252Cf decays through -emission (~97%) and through spontaneous fission (~3%) with a half-life of 2.65 y. Both processes are accompanied by photon radiation. Furthermore the spectrum of fission products contains radioactive elements that produce additional gamma photons. In the 241Am-Be source 241Am decays through -emission and various low energy emissions: 241Am237Np + + with a half life of 432.6 y.
    [Show full text]
  • TEK 8.5C: Periodic Table
    Name: Teacher: Pd. Date: TEK 8.5C: Periodic Table TEK 8.5C: Interpret the arrangement of the Periodic Table, including groups and periods, to explain how properties are used to classify elements. Elements and the Periodic Table An element is a substance that cannot be separated into simpler substances by physical or chemical means. An element is already in its simplest form. The smallest piece of an element that still has the properties of that element is called an atom. An element is a pure substance, containing only one kind of atom. The Periodic Table of Elements is a list of all the elements that have been discovered and named, with each element listed in its own element square. Elements are represented on the Periodic Table by a one or two letter symbol, and its name, atomic number and atomic mass. The Periodic Table & Atomic Structure The elements are listed on the Periodic Table in atomic number order, starting at the upper left corner and then moving from the left to right and top to bottom, just as the words of a paragraph are read. The element’s atomic number is based on the number of protons in each atom of that element. In electrically neutral atoms, the atomic number also represents the number of electrons in each atom of that element. For example, the atomic number for neon (Ne) is 10, which means that each atom of neon has 10 protons and 10 electrons. Magnesium (Mg) has an atomic number of 12, which means it has 12 protons and 12 electrons.
    [Show full text]
  • Centripetal Force Is Balanced by the Circular Motion of the Elctron Causing the Centrifugal Force
    STANDARD SC1 b. Construct an argument to support the claim that the proton (and not the neutron or electron) defines the element’s identity. c. Construct an explanation based on scientific evidence of the production of elements heavier than hydrogen by nuclear fusion. d. Construct an explanation that relates the relative abundance of isotopes of a particular element to the atomic mass of the element. First, we quickly review pre-requisite concepts One of the most curious observations with atoms is the fact that there are charged particles inside the atom and there is also constant spinning and Warm-up 1: List the name, charge, mass, and location of the three subatomic circling. How does atom remain stable under these conditions? Remember particles Opposite charges attract each other; Like charges repel each other. Your Particle Location Charge Mass in a.m.u. Task: Read the following information and consult with your teacher as STABILITY OF ATOMS needed, answer Warm-Up tasks 2 and 3 on Page 2. (3) Death spiral does not occur at all! This is because the centripetal force is balanced by the circular motion of the elctron causing the centrifugal force. The centrifugal force is the outward force from the center to the circumference of the circle. Electrons not only spin on their own axis, they are also in a constant circular motion around the nucleus. Despite this terrific movement, electrons are very stable. The stability of electrons mainly comes from the electrostatic forces of attraction between the nucleus and the electrons. The electrostatic forces are also known as Coulombic Forces of Attraction.
    [Show full text]
  • Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)
    Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS) Paper submitted for the 2008 Carolina International Symposium on Neutrino Physics Yu Efremenko1,2 and W R Hix2,1 1University of Tennessee, Knoxville TN 37919, USA 2Oak Ridge National Laboratory, Oak Ridge TN 37981, USA E-mail: [email protected] Abstract. In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions. 1. Introduction It seems that only yesterday we gathered together here at Columbia for the first Carolina Neutrino Symposium on Neutrino Physics. To my great astonishment I realized it was already eight years ago. However by looking back we can see that enormous progress has been achieved in the field of neutrino science since that first meeting. Eight years ago we did not know which region of mixing parameters (SMA. LMA, LOW, Vac) [1] would explain the solar neutrino deficit. We did not know whether this deficit is due to neutrino oscillations or some other even more exotic phenomena, like neutrinos decay [2], or due to the some other effects [3]. Hints of neutrino oscillation of atmospheric neutrinos had not been confirmed in accelerator experiments. Double beta decay collaborations were just starting to think about experiments with sensitive masses of hundreds of kilograms. Eight years ago, very few considered that neutrinos can be used as a tool to study the Earth interior [4] or for non- proliferation [5].
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • Introduction to Chemistry
    Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable.
    [Show full text]
  • Improved Algorithms and Coupled Neutron-Photon Transport For
    Submitted to ‘Chinese Physics C’ Improved Algorithms and Coupled Neutron-Photon Transport for Auto-Importance Sampling Method * Xin Wang(王鑫)1,2 Zhen Wu(武祯)3 Rui Qiu(邱睿)1,2;1) Chun-Yan Li(李春艳)3 Man-Chun Liang(梁漫春)1 Hui Zhang(张辉) 1,2 Jun-Li Li(李君利)1,2 Zhi Gang(刚直)4 Hong Xu(徐红)4 1 Department of Engineering Physics, Tsinghua University, Beijing 100084, China 2Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing 100084, China 3 Nuctech Company Limited, Beijing 100084, China 4 State Nuclear Hua Qing (Beijing) Nuclear Power Technology R&D Center Co. Ltd., Beijing 102209, China Abstract: The Auto-Importance Sampling (AIS) method is a Monte Carlo variance reduction technique proposed for deep penetration problems, which can significantly improve computational efficiency without pre-calculations for importance distribution. However, the AIS method is only validated with several simple examples, and cannot be used for coupled neutron-photon transport. This paper presents improved algorithms for the AIS method, including particle transport, fictitious particle creation and adjustment, fictitious surface geometry, random number allocation and calculation of the estimated relative error. These improvements allow the AIS method to be applied to complicated deep penetration problems with complex geometry and multiple materials. A Completely coupled Neutron-Photon Auto-Importance Sampling (CNP-AIS) method is proposed to solve the deep penetration problems of coupled neutron-photon transport using the improved algorithms. The NUREG/CR-6115 PWR benchmark was calculated by using the methods of CNP-AIS, geometry splitting with Russian roulette and analog Monte Carlo, respectively.
    [Show full text]
  • 8.1 the Neutron-To-Proton Ratio
    M. Pettini: Introduction to Cosmology | Lecture 8 PRIMORDIAL NUCLEOSYNTHESIS Our discussion at the end of the previous lecture concentrated on the rela- tivistic components of the Universe, photons and leptons. Baryons (which are non-relativistic) did not figure because they make a trifling contribu- tion to the energy density. However, from t ∼ 1 s a number of nuclear reactions involving baryons took place. The end result of these reactions was to lock up most of the free neutrons into 4He nuclei and to create trace amounts of D, 3He, 7Li and 7Be. This is Primordial Nucleosynthesis, also referred to as Big Bang Nucleosynthesis (BBN). 8.1 The Neutron-to-Proton Ratio Before neutrino decoupling at around 1 MeV, neutrons and protons are kept in mutual thermal equilibrium through charged-current weak interactions: + n + e ! p +ν ¯e − p + e ! n + νe (8.1) − n ! p + e +ν ¯e While equilibrium persists, the relative number densities of neutrons and protons are given by a Boltzmann factor based on their mass difference: n ∆m c2 1:5 = exp − = exp − (8.2) p eq kT T10 where 10 ∆m = (mn − mp) = 1:29 MeV = 1:5 × 10 K (8.3) 10 and T10 is the temperature in units of 10 K. As discussed in Lecture 7.1.2, this equilibrium will be maintained so long as the timescale for the weak interactions is short compared with the timescale of the cosmic expansion (which increases the mean distance between parti- cles). In 7.2.1 we saw that the ratio of the two rates varies approximately as: Γ T 3 ' : (8.4) H 1:6 × 1010 K 1 This steep dependence on temperature can be appreciated as follows.
    [Show full text]
  • Elements Make up the Periodic Table
    Page 1 of 7 KEY CONCEPT Elements make up the periodic table. BEFORE, you learned NOW, you will learn • Atoms have a structure • How the periodic table is • Every element is made from organized a different type of atom • How properties of elements are shown by the periodic table VOCABULARY EXPLORE Similarities and Differences of Objects atomic mass p. 17 How can different objects be organized? periodic table p. 18 group p. 22 PROCEDURE MATERIALS period p. 22 buttons 1 With several classmates, organize the buttons into three or more groups. 2 Compare your team’s organization of the buttons with another team’s organization. WHAT DO YOU THINK? • What characteristics did you use to organize the buttons? • In what other ways could you have organized the buttons? Elements can be organized by similarities. One way of organizing elements is by the masses of their atoms. Finding the masses of atoms was a difficult task for the chemists of the past. They could not place an atom on a pan balance. All they could do was find the mass of a very large number of atoms of a certain element and then infer the mass of a single one of them. Remember that not all the atoms of an element have the same atomic mass number. Elements have isotopes. When chemists attempt to measure the mass of an atom, therefore, they are actually finding the average mass of all its isotopes. The atomic mass of the atoms of an element is the average mass of all the element’s isotopes.
    [Show full text]
  • How and Why to Go Beyond the Discovery of the Higgs Boson
    How and Why to go Beyond the Discovery of the Higgs Boson John Alison University of Chicago http://hep.uchicago.edu/~johnda/ComptonLectures.html Lecture Outline April 1st: Newton’s dream & 20th Century Revolution April 8th: Mission Barely Possible: QM + SR April 15th: The Standard Model April 22nd: Importance of the Higgs April 29th: Guest Lecture May 6th: The Cannon and the Camera May 13th: The Discovery of the Higgs Boson May 20th: Problems with the Standard Model May 27th: Memorial Day: No Lecture June 3rd: Going beyond the Higgs: What comes next ? 2 Reminder: The Standard Model Description fundamental constituents of Universe and their interactions Triumph of the 20th century Quantum Field Theory: Combines principles of Q.M. & Relativity Constituents (Matter Particles) Spin = 1/2 Leptons: Quarks: νe νµ ντ u c t ( e ) ( µ) ( τ ) ( d ) ( s ) (b ) Interactions Dictated by principles of symmetry Spin = 1 QFT ⇒ Particle associated w/each interaction (Force Carriers) γ W Z g Consistent theory of electromagnetic, weak and strong forces ... ... provided massless Matter and Force Carriers Serious problem: matter and W, Z carriers have Mass ! 3 Last Time: The Higgs Feild New field (Higgs Field) added to the theory Allows massive particles while preserve mathematical consistency Works using trick: “Spontaneously Symmetry Breaking” Zero Field value Symmetric in Potential Energy not minimum Field value of Higgs Field Ground State 0 Higgs Field Value Ground state (vacuum of Universe) filled will Higgs field Leads to particle masses: Energy cost to displace Higgs Field / E=mc 2 Additional particle predicted by the theory. Higgs boson: H Spin = 0 4 Last Time: The Higgs Boson What do we know about the Higgs Particle: A Lot Higgs is excitations of v-condensate ⇒ Couples to matter / W/Z just like v X matter: e µ τ / quarks W/Z h h ~ (mass of matter) ~ (mass of W or Z) matter W/Z Spin: 0 1/2 1 3/2 2 Only thing we don’t (didn’t!) know is the value of mH 5 History of Prediction and Discovery Late 60s: Standard Model takes modern form.
    [Show full text]