Article (Published Version)

Total Page:16

File Type:pdf, Size:1020Kb

Article (Published Version) Article Downslope re-sedimentation from a short-living carbonate platform: Record from the Upper Triassic Hosselkus limestone (Northern California) FUCELLI, Andréa, GOLDING, Martyn, MARTINI, Rossana Abstract Despite their discontinuous occurrence and poor preservation, knowledge about Triassic carbonates from North America has increased considerably during recent years. Their characterization represents a uniqueway to better assess evolution and recovery of the biosphere after the major Permo-Triassic biological crisis in the Panthalassa Ocean. The Eastern Klamath terrane, located in Northern California, is a key terrane due to its geographic position. It is placed halfway between the terranes of the Canadian Cordillera and the Northern Mexico counterparts, both extensively studied and characterized in recent decades, leaving a gap in knowledge along the Pacific coast of the United States. A few kilometers north-east of Redding, Shasta County, California, Upper Triassic carbonates (i.e., the Hosselkus limestone) crop out as a narrow north–south belt about 20 km long, near the artificial reservoir of Lake Shasta. All the accessible localities in this region have been extensively sampled for microfacies and micropaleontological analysis, leading to new insights about the depositional condition and age of the Hosselkus [...] Reference FUCELLI, Andréa, GOLDING, Martyn, MARTINI, Rossana. Downslope re-sedimentation from a short-living carbonate platform: Record from the Upper Triassic Hosselkus limestone (Northern California). Sedimentary Geology, 2021, vol. 422, no. 105967 DOI : 10.1016/j.sedgeo.2021.105967 Available at: http://archive-ouverte.unige.ch/unige:153791 Disclaimer: layout of this document may differ from the published version. 1 / 1 Sedimentary Geology 422 (2021) 105967 Contents lists available at ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Downslope re-sedimentation from a short-living carbonate platform: Record from the Upper Triassic Hosselkus limestone (Northern California) Andrea Fucelli a,⁎, Martyn Golding b, Rossana Martini a a University of Geneva, Department of Earth Sciences, 13 rue des Maraîchers, 1205 Genève, Switzerland b Geological Survey of Canada Geological Survey of Canada, Pacific Division, 1500-605 Robson Street, Vancouver, BC V6B 5J3, Canada article info abstract Article history: Despite their discontinuous occurrence and poor preservation, knowledge about Triassic carbonates from North Received 22 April 2021 America has increased considerably during recent years. Their characterization represents a unique way to better Received in revised form 14 July 2021 assess evolution and recovery of the biosphere after the major Permo-Triassic biological crisis in the Panthalassa Accepted 19 July 2021 Ocean. The Eastern Klamath terrane, located in Northern California, is a key terrane due to its geographic position. Available online 24 July 2021 It is placed halfway between the terranes of the Canadian Cordillera and the Northern Mexico counterparts, both fi Editor: Dr. Brian Jones extensively studied and characterized in recent decades, leaving a gap in knowledge along the Paci c coast of the United States. A few kilometers north-east of Redding, Shasta County, California, Upper Triassic carbonates (i.e., the Hosselkus limestone) crop out as a narrow north–south belt about 20 km long, near the artificial reser- Keywords: voir of Lake Shasta. All the accessible localities in this region have been extensively sampled for microfacies and Upper Triassic micropaleontological analysis, leading to new insights about the depositional condition and age of the Hosselkus Northern California limestone. A depositional model has been proposed for the first time, corresponding to a steep slope system sub- Microfacies jected to platform progradation and collapse, recording shallow water facies and associated fauna in the form of Conodonts calcareous breccia. Numerous conodont specimens have dated the whole succession as Upper Carnian. Identifi- Slope deposits cation of shallow water organisms, associated to a reliable stratigraphic interval, allowed comparison of the Panthalassa Hosselkus limestone with other Upper Triassic carbonates from the Panthalassan domain. Despite the faunal af- finities, especially with buildups developed at middle-paleolatitudes, the Hosselkus limestone is among the oldest of the terrane-based carbonates in Eastern Panthalassa. Thanks to peculiar geodynamical and bathymetri- cal conditions, allowing carbonate deposition slightly earlier than in other terranes, the Hosselkus limestone probably acted like a pioneer reef and may have had a great influence in the further expansion of carbonate buildups in the eastern part of the Panthalassa Ocean. © 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction and providing a conspicuous amount of new insights (Stanley, 1979a, 1979b; Blodgett and Stanley, 2008; Chablais et al., 2010b; Rigaud During recent decades, knowledge about Panthalassan carbonates et al., 2010; Martindale et al., 2015; Peybernes et al., 2016a, 2016b; remained far lower with respect to their Tethyan counterparts. This is Heerwagen and Martini, 2018). Within the Eastern Klamath terrane, mostly due to the poor preservation of the rocks and to the lack of any continuous outcrops of Upper Triassic limestone occur in the Lake significant continuity in the outcrops, after their stacking in different Shasta area, offering a rare opportunity to deepen our knowledge tectonic settings (i.e., accretionary complexes and terranes) along the about Panthalassan paleoenvironments in a geographically strategic Circum-Pacific region (Zonneveld et al., 2007; Chablais et al., 2010a; area and to compare the results with other Triassic carbonates scattered Peybernes et al., 2016a, 2016b; Peyrotty et al., 2020a, 2020b). Neverthe- along the Pacificcoast(Silberling and Tozer, 1971; Tozer, 1982; Blodgett less, carbonate rocks remain one of the most valuable tools to constrain and Stanley, 2008; Martindale et al., 2015). The Hosselkus limestone paleogeography and paleoecology of the no longer extant Panthalassa crops out midway between widely studied terranes of North America, Ocean, drawing in recent years the attention of several researchers becoming a linking point for the complete knowledge of the area's tec- tonic and paleoenvironmental evolution. Preservation of these carbon- ates is mediocre and studies carried out in the past mostly focused on ⁎ Corresponding author. E-mail addresses: [email protected] (A. Fucelli), [email protected] macro-fauna description (Diller, 1906; Smith, 1927; Sanborn, 1960; (M. Golding), [email protected] (R. Martini). Albers and Robertson, 1961; Sbeta, 1970; McCormick, 1986). However, https://doi.org/10.1016/j.sedgeo.2021.105967 0037-0738/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). A. Fucelli, M. Golding and R. Martini Sedimentary Geology 422 (2021) 105967 despite the poor preservation, other significant information about depo- underlying Pit Formation is marked by a lithologic transition from sitional environment, hydrodynamic conditions and micropaleontology non-calcareous to calcareous dark beds and it is often hidden by dense can be obtained thanks to precise microfacies description. vegetation. South-east of Gray Rocks, numerous limestone bodies This paper deals with new comprehensive field observations of the emerge from the dense vegetation along the banks of Lake Shasta Hosselkus limestone that, coupled with microfacies analysis, allowed (Fig. 4C, D). North of these locality, sub-vertical outcrops arise sporadi- the recognition of a peculiar depositional setting and the assignment cally up to 20 km away from Gray Rocks, along the North Fork of Squaw of an accurate chronostratigraphic range for limestone deposition. Creek (Fig. 5C, D). They are aligned with the direction of the main crest, These findings, together with the remarkable dataset developed by but with a reduced thickness of 75 m. Ten km south-east of Gray Rocks, the REEFCADE project (Rossana Martini 2007–2022), as well as infor- the Hosselkus limestone crops out in two main quarries along Highway mation from the literature, allowed a comparison between the 299, named Gravel Pit and Bear Gulch quarries (Fig. 5A, B). There we can Hosselkus limestone and other Upper Triassic carbonates formed on dif- observe two limestone domes around 200 m wide, with dubious dip ferent terranes in North America. Thanks to peculiar regional conditions due to the massive nature of the carbonate, but possibly showing the (i.e., bathymetry and the cessation of volcanism), the Hosselkus lime- contact with the overlying Brock Shales. Last, a small outcrop, occurring stone could have acted as foothold for subsequent reef colonization as a lens of a few tens of meters, crops out in Bear Mountain, on the across the eastern portion of the Panthalassa Ocean. south bank of Shasta Lake. This lens turned out to be fundamental in the interpretation of the limestone evolution, thanks to the peculiar fa- 2. Geological setting cies and stratigraphic contacts. Here, the improved preservation of the limestone allowed a precise description of the processes involved in The Hosselkus limestone and the other formations cropping out in Hosselkus limestone deposition,
Recommended publications
  • Geology and Paleontology of the Southwest Quarter of the Big Bend Quadrangle Shasta County, California
    GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By ALBERT F. SANBORN Geologist, Standard Oil Company of California Salt Lake City, Utah Special Report 63 CALIFORNIA DIVISION OF MINES FERRY BUILDING, SAN FRANCISCO, 1960 STATE OF CALIFORNIA EDMUND G. BROWN, Governor DEPARTMENT OF NATURAL RESOURCES eWITT NELSON, Director DIVISION OF MINES IAN CAMPBELL, Chief Special Report 63 Price 75$ , GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By Albert F. Sandorn * OUTLINE OF REPORT ABSTRACT Abstract 3 The area covered by this report is the southwest quarter of the Big Bend quadrangle in the vicinity of lntroductu.il 3 the town of Big Bendj Shasta County) California. General stratigraphy 5 This region, which has been geologically unknown, contains sedimentary volcanic strata of Triassic system _ 5 and Mesozoic an( Pit formation (Middle and Upper Triassic) 5 * Cenozoic ages. Hosselkus limestone (Upper Triassic) 7 The Mesozoic deposits are composed of pyroclastic Brock shale (Upper Triassic) 7 rocks, lava flows, tuffaceous sandstone, argillite, and Modin formation (Upper Triassic) 8 limestone. The Mesozoic formations, from the oldest Hawkins Creek member T0 the youngest, are the Pit formation of Middle and I Devils Canyon member 10 jate Triassic age ; the Hosselkus limestone, the Brock Kosk member ll shale, and the Modin formation of Late Triassic age; . the Arvison formation of Early Jurassic age ; and the s sy em -—- -- - --- Bagley andesite and Potem formation of Early and Arvison formation (Lower Jurassic) 11 „•,,, T . ,-.., ., e ,. , ' „ , . .. .. __ . , T 1( Middle Jurassic age. Or the seven formations mapped,rr Nature of the contact of the Triassic and Jurassic svstems 14 ,.
    [Show full text]
  • Taylorsville Region, California
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR 353 GEOLOGY OF THE TAYLORSVILLE REGION, CALIFORNIA BY J. S. DILLER WASHINGTON GOVERNMENT PRINTING OFFICE 1908 t f CONTENTS. Page Introduction.............................................................. 7 Location and extent................................................... 7 Outline of geography and geology of region.............................. 7 Topography............................................................... 9 Relief. ............................................................... 9 Diamond Mountain block.......................................... 9 The escarpment. .............................................. 10 The plateau slope.............................................. 10 Valleys on southwest border.................................... 10 Genesee Valley............................................. 10 Indian Valley............................................. 10 Mountain Meadows........................................ 11 Jura Valley................................................ 11 Grizzly Mountain block........................................... 11 Crest line and escarpment..................................... 11 Southwest slope............................................... .12 Drainage.............................................................. 12 Descriptive geology........................................................ 13 General statement........'............................................... 13 Sedimentary rocks....................................................
    [Show full text]
  • Geology and Ore Deposits of East Shasta Copper-Zinc District Shasta County, California
    Geology and Ore Deposits of East Shasta Copper-Zinc District Shasta County, California GEOLOGICAL SURVEY PROFESSIONAL PAPER 338 Prepared in cooperation 'with the State of California^ Department of Natural Resources , Division of Mines Geology and Ore Deposits of East Shasta Copper-Zinc District Shasta County, California By JOHN P. ALBERS and JACQUES F. ROBERTSON GEOLOGICAL SURVEY PROFESSIONAL PAPER 338 Prepared in cooperation with the State of California^ Department of Natural Resources^ Division of Mines UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library catalog card for this publication appears after page 107. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Abstract.._________________________________________ 1 General geology and geologic history Continued Introduction.______________________________________ 4 Sedimentary and volcanic rocks Continued Location and accessibility________________________ 4 Bully Hill rhyolite. _____ __ - 30 Topography _ _________________________________ 4 Porphyritic quartz keratophyre ___ 31 Climate and vegetation__________________________ 4 Nonporphy ritic quartz keratophyre ___ 31 Previous work in district_______________________ 6 Fragmental quartz keratophyre __ 32 Purpose of this report and methods of investigation. _ 6 Columnar structure_____________---- 33 Fieldwork and acknowledgments________________ 6 Vermicular intergrowths of quartz and General geology and geologic history__________________ 7 34 Sedimentary and volcanic deposits._______________ 10 Pit formation. _____ _______ _______ 35 Copley greenstone._________________________ 10 Shale, mudstone, and siltstone ________ 36 Nonf ragmental mafic lava _______________ 11 Pyroclastic rocks____________-_-----_-_- 36 Block lava_____________________________ 11 Lava flows______---_____-_ ___________ 37 Pyroclastic rocks _______________________ 11 Limestone.
    [Show full text]
  • Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada
    Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada By N. J. SILBERLING GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 A study of upper Paleozoic and lower Mesozoic marine sedimentary and volcanic rocks, with descriptions of Upper Triassic cephalopods and pelecypods UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_ ________________________________________ 1 Paleontology Continued Introduction _______________________________________ 1 Systematic descriptions-------------------------- 38 Class Cephalopoda___--_----_---_-_-_-_-_--_ 38 Location and description of the area ______________ 2 Order Ammonoidea__-__-_______________ 38 Previous work__________________________________ 2 Genus Klamathites Smith, 1927_ __ 38 Fieldwork and acknowledgments________________ 4 Genus Mojsisovicsites Gemmellaro, 1904 _ 39 Stratigraphy _______________________________________ 4 Genus Tropites Mojsisovics, 1875_____ 42 Genus Tropiceltites Mojsisovics, 1893_ 51 Cambrian (?) dolomite and quartzite units__ ______ 4 Genus Guembelites Mojsisovics, 1896__ 52 Pablo formation (Permian?)____________________ 6 Genus Discophyllites Hyatt,
    [Show full text]
  • THE Geologlcal SURVEY of INDIA Melvioirs
    MEMOIRS OF THE GEOLOGlCAL SURVEY OF INDIA MElVIOIRS OF THE GEOLOGICAL SURVEY OF INDIA VOLUME XXXVI, PART 3 THE TRIAS OF THE HIMALAYAS. By C. DIENER, PH.0., Professor of Palceontology at the Universz'ty of Vienna Published by order of the Government of India __ ______ _ ____ __ ___ r§'~-CIL04l.~y_, ~ ,.. __ ..::-;:;_·.•,· ' .' ,~P-- - _. - •1~ r_. 1..1-l -. --~ ·~-'. .. ~--- .,,- .'~._. - CALCU'l"l'A: V:/f/ .. -:-~,_'."'' SOLD AT THE Ol<'FICE OF THE GEOLOGICAL SURVEY o'U-1kI>i'A,- 27, CHOWRINGHim ROAD LONDON: MESSRS. KEGAN PAUT,, TRENCH, TRUBNER & CO. BERLIN : MESSRS. FRIEDLANDEH UND SOHN 1912. CONTENTS. am I• PA.GE, 1.-INTBODUCTION l 11.-LJ'rERA.TURE • • 3· III.-GENERAL DE\'ELOPMEKT OF THE Hrn:ALAYA.K TRIAS 111 A. Himalayan Facies 15 1.-The Lower Trias 15 (a) Spiti . Ip (b) Painkhanda . ·20 (c) Eastern Johar 25 (d) Byans . 26 (e) Kashmir 27 (/) Interregional Correlation of fossiliferous horizons 30 (g) Correlation with the Ceratite beds of the Salt Range 33 (Ti) Correlation with the Lower Trias of Europe, Xorth America and Siberia . 36 (i) The Permo-Triassic boundary . 42 II.-The l\Iiddle Trias. (Muschelkalk and Ladinic stage) 55 (a) The Muschelkalk of Spiti and Painkhanda v5 (b) The Muschelkalk of Kashmir . 67 (c) The llluschelka)k of Eastern Johar 68 (d) The l\Iuschelkalk of Byans 68 (e) The Ladinic stage.of Spiti 71 (f) The Ladinic stage of Painkhanda, Johar and Byans 75 (g) Correl;i.tion "ith the Middle Triassic deposits of Europe and America . 77 III.-The Upper Trias (Carnie, Korie, and Rhretic stages) 85 (a) Classification of the Upper Trias in Spiti and Painkhanda 85 (b) The Carnie stage in Spiti and Painkhanda 86 (c) The Korie and Rhretic stages in Spiti and Painkhanda 94 (d) Interregional correlation and homotaxis of the Upper Triassic deposits of Spiti and Painkhanda with those of Europe and America 108 (e) The Upper Trias of Kashmir and the Pamir 114 A.-Kashmir .
    [Show full text]
  • Sheet 2 0F 2
    U. S. DEPARTMENT OF THE INTERIOR OPEN-FILE REPORT 02-490 U. S. GEOLOGICAL SURVEY SHEET 2 0F 2 CORRELATION OF THE KLAMATH MOUNTAINS AND SIERRA NEVADA Z 156 Sheet 2: Successive accretionary episodes of the Klamath Mountains and northern part of Sierra Nevada, Bc Galice Fm Bc Bc showing related plutonic, volcanic, and metamorphic events Z~160 Z139 Z155 Z 148 By William P. Irwin -160 Z 154 W e P s r o t e t r o 2003 Z~160 n W K e l H 148 a s m Z 174 t e Z~161 a r n t h K t Z 162 e l a r r m a a n t e h Bc t T H 165 e Z162 r Z 149 r a Z 153 Z 142-145 n e f j f j YREKA YREKA f j f j YREKA YREKA YREKA YREKA YREKA YREKA ( P Z 146 e r m F P ( o M r i F F F a o F r e o o F o h 138 n t t o o t r Z 150 r r o a P r t H 167 t ane ane t J t o r t m ane E ane r ane o t ane J o J E J a o o J ane n Z 162 Z~567 t o o J o s a Yreka Yreka r o n Yreka e p n t o r Yreka n e e Yreka n s l Yreka h N Yreka e y n Yreka e r s e P subterr o ( subterr n s P o subterr subterrane e subterr s D subterr J subterr t s Z 415 s r r e t r u s e o e e t o H subterr Z 193-208 t h r r t Z~160 N d e P t v r t t a r e a o e o r t a o N r o a s r e T r N Z~159 F y Z 174 r N r o N n n r s r -164 a n r o r r f W o a P i t R o o t a r i o i e a e n o o r a c h r a n r r r r t n P s k e a e r n Z 404 k o t h H 418 t n e o w h s t e h s t F r t h F c t e o Tr i nity T i o o t t c l o e e e RS 162 F e o F e r 439 Tr i nity t F r r o r w a a Tr i nity F o r o s r o C n t subterrane Tr inity r o r Tr i nity Tr i nity k n n a r n Tr i nity o r l Tr i nity a subterrane b 136 e d k r k P
    [Show full text]
  • Evolution Et Extinction Des Reptiles Marins Au Cours Du Mesozoique
    EVOLUTION ET EXTINCTION DES REPTILES MARINS AU COURS DU MESOZOIQUE par Nathalie BARDET * SOMMAIRE Page Résumé, Abstract . 178 Introduction ..................................................................... 179 Matériel et méthode . 181 La notion de reptile marin . 181 Etude systématique . 182 Etude stratigraphique. 183 Méthodes d'analyse. 183 Systématique et phylogénie. 184 Le registre fossile des reptiles marins . 184 Affinités et phylogénie des reptiles marins. 186 Analyses taxinomique et stratigraphique. 187 Testudines (Chelonia) . 187 Squamata, Lacertilia . 191 Squamata, Serpentes. 193 Crocodylia ............................................................... 194 Thalattosauria . 195 Hupehsuchia . 196 Helveticosauroidea . 197 Pachypleurosauroidea . 197 Sauropterygia .... 198 Placodontia. 198 * Laboratoire de Paléontologie des Vertébrés, URA 1761 du CNRS, Université Pierre et Marie Curie, Case 106,4 Place Jussieu, 75252 Paris cédex 05, France. Mots-clés: Reptiles marins, Tortues, Lézards, Serpents, Crocodiles, Thalattosaures, Hupehsuchiens, Helveticosaures, Pachypleurosaures, Nothosaures, Placodontes, Plésiosaures, Ichthyosaures, Mésozoïque, Evolution, Extinction, Assemblages et Renouvellements fauniques. Key-words: Marine Reptiles, Turtles, Lizards, Snakes, Crocodiles, Thalattosaurs, Hupehsuchians, Helveticosaurs, Pachypleurosaurs, Nothosaurs, Placodonts, Plesiosaurs, Ichthyosaurs, Mesozoic, Evolution, Extinction, Faunal Assemblages and Turnovers. Palaeovertebrata. Montpellier. 24 (3-4): 177-283, 13 fig. (Reçu le 4 Juillet 1994,
    [Show full text]
  • University of Nevada Reno Paleoecology of Upper Triassic
    University of Nevada Reno Paleoecology of Upper Triassic Bioherms in the Pilot Mountains, Mineral County, West-Central Nevada A tiles is submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Diane Elinor Cornwall May 1979 University of Nevada Reno ACKNOWLEDGEMENTS I would like to thank Dr. James R. Firby for his supervision, support and for his guidance through those difficult "rough spots." Dan Howe was a constant source of interesting ideas and enthusiasm, especially during the early stages of the thesis project. Throughout my research Fred Gustafson and I worked together, he always being an interested and understanding coworker and friend throughout the lonely weeks of research. Dr. Joseph Lintz, Jr. was invaluable in his assistance in procurement of materials and equipment and in his unselfish desire to solve any problem. I thank Dr. Mead for joining my committee. I greatly appreciate those hearty souls who ventured out into the desert with me and braved the hazards and extremes; these include Barbara Foster, Mickie Dunn, Micheal Judge and my parents who spent all their vacations in my field area. I would also like to acknowledge the moral support given by my parents, special and other friends. i n ABSTRAC In the Pilot Mountains, Mineral County, Nevada, up to five horizons of bioherms are present within the top 76 meters of the lower member of the Upper Triassic (Karnian) Luning Formation. These bio­ herms are located in the carbonate portions of small terrigenous- carbonate rhythms. The biohermal mounds, less than 15 meters high^exhibit four of Wilson's (1975) seven facies.
    [Show full text]
  • Devil's Rock, Hosselkus
    25. Devil’s Rock-Hosselkus (Devil’s Rock, Hosselkus Limestone) (Keeler-Wolf and Keeler-Wolf 1975, Keeler-Wolf 1989h, Cheng 1997b) Location This established RNA is on the Shasta-Trinity National Forest. It is centered approximately 24 miles (39 km) NE. of Redding. The area includes all or portions of sects. 21, 22, 23, 26, 27, 28, 32, 33, 34 T35N, R2W and sects. 3, 4, 5, 8, 9, and 16 T34N, R2W MDBM (40°51'N., 122°06'W.), USGS Devil’s Rock, Goose Gap, and Minnesota Mtn. quads (fig. 51). Ecological subsection – Eastern Klamath Mountains (M261Ai). Target Elements Limestone Ecosystem (unique element), California Black Oak (Quercus kelloggii), and Canyon Live Oak (Quercus chrysolepis) Distinctive Features Limestone Values: A variety of important values can be attributed to the presence of extensive beds of Triassic limestone in the area (fig. 52). These include the localized endemic plant Eupatorium shastensis, wider ranging plants endemic to limestone substrates (e.g., Cheilanthes cooperae, Adiantum capillaris-veneris), localized endemic land snails (Shasta sideband snail [Monodenia Figure 51—Devil’s troglodytes], a category 2 candidate for listing by Rock-Hosselkus the U.S. Fish and Wildlife Service, which means existing information indicates RNA taxa may warrant listing, but substantial biological information necessary to support a proposed rule is lacking), a localized endemic salamander (Shasta Dashed line = salamander [Hydromantes shastae], a State-listed threatened species), a rich Ecological study area; assemblage of Triassic invertebrate fossils (including ammonites, brachiopods, Solid gray line = corals, in all more than 200 species of invertebrates), the best representation of N. RNA Boundary American Triassic marine reptiles (including five species and three genera of icthyosaurs and the only known remains of the order Thalatosauria in the W.
    [Show full text]
  • Paleozoic and Mesozoic Rocks of the Almanor 151 Quadrangle, Plumas
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Paleozoic and Mesozoic rocks of the Almanor 15 1 quadrangle, Plumas County, California by A. S. Jayko Open-file Report 88-757 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey 1988 Menlo Park Text to accompany Paleozoic and Mesozoic rocks of the Almanor 15 f quadrangle, Plumas County, California INTRODUCTION The first geologic studies of the Lake Almanor area were published in the late eighteen hundreds by Diller (1892, 1895) and Turner (1898). Subsequent work by McMath (1958, 1966) and by Eldridge Moores and his students including Robinson (1975), D'Allura and others (1977) and Hannah (1980) established much of the stratigraphic and structural framework represented on this geologic map (Figure 1), although significant reinterpretation of some of the earlier recognized features and units has resulted from this investigation. The geology shown on the quadrangle map was mapped during the course of this investigation with the exception of parts of sections 13 and 18, T27N and R8E, which were compiled from Hanna (1980). Field studies were conducted during June to September of 1985, September of 1986, June and July of 1987, and October of 1988. The Almanor quadrangle straddles part of the .geographic and geologic boundary between the Sierra Nevada range on the south and the Cascade Range on the north. The terrain is generally mountainous and heavily forested (by conifers) with elevations ranging from 2,300 feet near Gansner Bar in the southwest corner of the quadrangle to 7,^00 feet on Dyer Mountain in the northeast corner of the quadrangle.
    [Show full text]
  • Description of the Redding Quadrangle
    DESCRIPTION OF THE REDDING QUADRANGLE By J. S. Diller. INTRODUCTION. lava and tuff intermingled with the sedimentary hay, stands first among the farm products, with conveniently distinguish it from the plain of the Sac­ rocks and covering them in many places. The barley next, and small amounts of corn, oats, and ramento Valley proper. The Piedmont Plain is Location and area. The Redding quadrangle whole body of sediments and lavas is penetrated rye. The orchards yield prunes and peaches for for the most part dry, sterile, and usually strewn lies in the northern part of California and is by many dikes and masses of coarse granular plu- shipment, with grapes, pears, almonds, figs, and a with numerous lava fragments, making the roads bounded by meridians 122° and 122° 30'. west tonic rocks, such as granodiorite, gabbro, and ser­ few apples for home consumption. The genera­ across it extremely rough, in strong contrast with longitude and parallels 40° 30' and 41° north pentine. This complex of sedimentary and igneous tion of electricity for light and power is a thriving the sand and gravel plain of the Sacramento Valley. latitude. It measures a little over 34 miles from rocks was uplifted, forming the Klamath Moun­ industry. Fishing deserves mention, and the prop­ This arises from the fact that the Piedmont Plain north to south and nearly 27 miles from east to tains, at the close of the Jurassic, Erosion agation of fish is of great importance. McCloud is generally underlain by volcanic material in the west, and contains about 905 square miles, a lit­ and subsidence during the Cretaceous brought River, on account of its large supply of cool water, form of lava flows or agglomerate tuff, and it is tle less than one-fourth the area of Shasta County.
    [Show full text]
  • Classification and Phylogeny of the Diapsid Reptiles
    zoological Journal Ofthe Linnean Society (1985), 84: 97-164. With 17 figures Classification and phylogeny of the diapsid reptiles MICHAEL J. BENTON Department of zoology and University Museum, Parks Road, Oxford OX1 3PW, U.El. * Received June 1983, revised and accepted for publication March 1984 Reptiles with two temporal openings in the skull are generally divided into two groups-the Lepidosauria (lizards, snakes, Sphenodon, ‘eosuchians’) and the Archosauria (crocodiles, thecodontians, dinosaurs, pterosaurs). Recent suggestions that these two are not sister-groups are shown to be unproven, whereas there is strong evidence that they form a monophyletic group, the Diapsida, on the basis of several synapomorphies of living and fossil forms. A cladistic analysis of skull and skeletal characters of all described Permo-Triassic diapsid reptiles suggests some significant rearrangements to commonly held views. The genus Petrolacosaurus is the sister-group of all later diapsids which fall into two large groups-the Archosauromorpha (Pterosauria, Rhynchosauria, Prolacertiformes, Archosauria) and the Lepidosauromorpha (Younginiformes, Sphenodontia, Squamata). The pterosaurs are not archosaurs, but they are the sister-group of all other archosauromorphs. There is no close relationship betwcen rhynchosaurs and sphenodontids, nor between Prolacerta or ‘Tanystropheus and lizards. The terms ‘Eosuchia’, ‘Rhynchocephalia’ and ‘Protorosauria’ have become too wide in application and they are not used. A cladistic classification of the Diapsida is given, as well as a phylogenetic tree which uses cladistic and stratigraphic data. KEY WORDS:-Reptilia ~ Diapsida - taxonomy ~ classification - cladistics - evolution - Permian - Triassic. CONTENTS Introduction ................... 98 Historical survey .................. 99 Monophyly of the Diapsida ............... 101 Romer (1968). ................. 102 The three-taxon statements .............. 102 Lmtrup (1977) and Gardiner (1982) ...........
    [Show full text]