NASA-ISRO SAR (NISAR) Mission Science Users' Handbook

Total Page:16

File Type:pdf, Size:1020Kb

NASA-ISRO SAR (NISAR) Mission Science Users' Handbook NASA-ISRO SAR Mission (NISAR) NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook Current Project Phase C Planned Launch Date: December 2021 Document Date: April 9, 2018 Version 1 Jet Propulsion Laboratory, California Institute of Technology. © 2018 All rights reserved. NISAR Science Users’ Handbook i Table of Contents 1 INTRODUCTION ......................................................................................................1 2 SCIENCE FOCUS AREAS .......................................................................................6 2.1 Solid Earth Processes: Earthquakes, Volcanoes, and Landslides ........................8 2.2 Ecosystems: Biomass, Disturbance, Agriculture and Inundation ........................10 2.3 Dynamics of Ice: Ice sheets, Glaciers, and Sea Ice ............................................12 2.4 Applications .........................................................................................................14 2.5 Disaster Response ..............................................................................................18 2.6 Ocean Studies and Coastal Processes ...............................................................19 3 MISSION MEASUREMENTS AND REQUIREMENTS ...........................................20 3.1 Measurements of surface deformation and change ............................................20 3.2 Landcover and Forest characterization with L-band SAR ...................................21 3.3 Requirements and Science Traceability ..............................................................23 3.4 Science Traceability to Mission Requirements ....................................................26 4 MISSION CHARACTERISTICS .............................................................................29 4.1 Observing Strategy .............................................................................................29 4.2 Reference Science Orbit .....................................................................................30 4.3 Mission Phases and Timeline..............................................................................34 4.4 Ground Segment Overview .................................................................................37 4.5 Telecommunications ...........................................................................................40 4.6 Mission Planning and Operations........................................................................42 4.7 Instrument design ................................................................................................44 4.8 Flight Systems/Spacecraft ..................................................................................49 4.9 Project Status ......................................................................................................51 5 MISSION DATA PRODUCTS.................................................................................52 5.1 L0 Data Products ................................................................................................54 5.2 L1 Data Products ................................................................................................56 5.3 L2 Data Products ................................................................................................59 5.4 Data Product Delivery/How to access NISAR data .............................................60 6 SCIENCE DATA PRODUCTS AND VALIDATION APPROACHES ......................62 6.1 Solid Earth Science products ..............................................................................62 6.1.1 Theoretical Basis of Algorithm.............................................................. 62 6.1.2 Implementation approach for algorithm ................................................ 66 6.1.3 Planned output products ...................................................................... 72 NISAR Science Users’ Handbook ii 6.2 Ecosystems Products- Biomass ..........................................................................72 6.2.1 Theoretical Basis of Algorithm.............................................................. 73 6.2.2 Implementation approach for algorithm ................................................ 80 6.2.1 Planned output products ...................................................................... 86 6.3 Ecosystems Products- Disturbance ....................................................................88 6.3.1 Theoretical basis of algorithm .............................................................. 88 6.3.2 Implementation approach for algorithm ................................................ 91 6.3.3 Planned output Products ...................................................................... 97 6.4 Ecosystems Products – Inundation .....................................................................97 6.4.1 Implementation approach for algorithm ................................................ 99 6.4.2 Planned output products .................................................................... 103 6.5 Ecosystems Products – Crop Monitoring .......................................................... 103 6.5.1 Theoretical basis of algorithm ............................................................ 104 6.5.2 Implementation approach for algorithm .............................................. 107 6.5.3 Planned Output Products ................................................................... 110 6.6 Cryosphere products- Ice Sheets ...................................................................... 110 6.6.1 Theoretical basis of algorithm ............................................................ 111 6.6.2 Implementation approach for algorithm .............................................. 114 6.6.3 Planned output products .................................................................... 123 6.7 Cryosphere products- Sea Ice........................................................................... 123 6.7.1 Theoretical basis of algorithm ............................................................ 124 6.7.2 Implementation approach for algorithm .............................................. 130 6.7.3 Planned output products .................................................................... 134 7 ERROR SOURCES .............................................................................................. 135 7.1 Polarimetric Error Sources ................................................................................ 135 7.2 Interferometric Error Sources ............................................................................ 137 8 CALIBRATION AND VALIDATION ..................................................................... 141 8.1 Background ....................................................................................................... 141 8.2 Calibration and Validation activities ................................................................... 142 8.3 Calibration/Validation Roles and Responsibilities ............................................. 150 9 CONCLUSIONS ................................................................................................... 152 10 ACKNOWLEDGMENTS ................................................................................... 154 11 REFERENCES.................................................................................................. 156 12 GLOSSARY ...................................................................................................... 176 NISAR Science Users’ Handbook iii 13 APPENDIX A: HISTORICAL BACKGROUND FOR NISAR ............................ 177 14 APPENDIX B: NISAR SCIENCE TEAM ........................................................... 179 14.1 NASA Science Definition Team......................................................................... 179 14.2 ISRO Science Team ......................................................................................... 179 14.3 Project Science Team ....................................................................................... 179 15 APPENDIX C: KEY CONCEPTS ...................................................................... 183 15.1 Basic Radar concepts: Radar imaging, polarimetry, and interferometry ........... 183 15.1.1 Synthetic Aperture Radar ................................................................... 183 15.1.2 Polarimetry ......................................................................................... 185 15.1.3 Interferometric Synthetic Aperture Radar (InSAR) ............................. 187 15.2 Deformation-related Terminology ...................................................................... 189 15.2.1 Deformation and Displacement .......................................................... 189 15.2.2 Strain, Gradients, and Rotation .......................................................... 190 15.2.3 Stress and Rheology .......................................................................... 191 15.3 Ecosystems-Related Terminology ..................................................................... 191 15.3.1 Biomass ............................................................................................. 192 15.3.2 Disturbance ........................................................................................ 192 15.3.3 Recovery ............................................................................................ 192 15.3.4 Classification ...................................................................................... 193 16 APPENDIX D: BASELINE LEVEL 2
Recommended publications
  • Magcon White Paper V3
    Magnetospheric Constellation Tracing the flow of mass and energy from the solar wind through the magnetosphere Larry Kepko and Guan Le NASA Goddard Space Flight Center 1. Executive Summary The Magnetospheric Constellation (MagCon) mission is designed to understand the transport of mass and energy across the boundaries of and within Earth’s magnetosphere using a constellation of up to 36 small satellites. Energy is input into the geospace system at the dayside and flank magnetopause, yet we still do not understand the azimuthal extent of dayside reconnection sites, nor do we have a quantifiable understanding of how much energy enters the magnetosphere during different solar wind conditions. On the nightside, impulsive flows at various spatial and temporal scales occur frequently during storms and substorms and couple to the ionosphere through still unresolved physical mechanisms. A distributed array of small satellites is the required tool for unraveling the physics of magnetospheric mass and energy transport while providing definitive determinations of how major solar events lead to specific types of space weather. MagCon will map the global circulation of magnetic fields and plasma flows within a domain extending from just above the Earth’s surface to ~22 Earth radii (RE) radius, at all local times, on spatial scales from 1-5 RE and minimum time scales of 3-10 seconds. It will reveal simultaneously for the first time both the global spatial structures and temporal evolution of the magnetotail, the dayside and flank magnetopause, and the nightside transition region, leading to the physical understanding of system dynamics and energy transport across all scales.
    [Show full text]
  • A Quantitative Human Spacecraft Design Evaluation Model For
    A QUANTITATIVE HUMAN SPACECRAFT DESIGN EVALUATION MODEL FOR ASSESSING CREW ACCOMMODATION AND UTILIZATION by CHRISTINE FANCHIANG B.S., Massachusetts Institute of Technology, 2007 M.S., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2017 i This thesis entitled: A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization written by Christine Fanchiang has been approved for the Department of Aerospace Engineering Sciences Dr. David M. Klaus Dr. Jessica J. Marquez Dr. Nisar R. Ahmed Dr. Daniel J. Szafir Dr. Jennifer A. Mindock Dr. James A. Nabity Date: 13 March 2017 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Fanchiang, Christine (Ph.D., Aerospace Engineering Sciences) A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization Thesis directed by Professor David M. Klaus Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps.
    [Show full text]
  • James A. Slavin
    James A. Slavin Professor of Space Physics Department of Climate and Space Science & Engineering University of Michigan, College of Engineering Climate & Space Research Building Ann Arbor, MI, 48109 Phone: 240-476-8009 [email protected] EDUCATION: 1982 - Ph.D., Space Physics, University of California at Los Angeles Dissertation: Bow Shock Studies at Mercury, Venus, Earth and Mars with Applications ot the Solar – Planetary Interaction Problem; Advisor: Prof. Robert E. Holzer 1978 - M.S., Geophysics and Space Physics, University of California at Los Angeles 1976 - B.S., Physics, Case Western Reserve University APPOINTMENTS: 2011 - 2018 Chair, Department of Climate and Space Sciences & Engineering, University of Michigan 2005 - 2011 Director, Heliophysics Science Division 1990 - 2004 Head, Electrodynamics Branch 1987 - 1989 Staff Scientist, NASA/GSFC Laboratory for Extraterrestrial Physics 1986 - 1987 Discipline Scientist for Magnetospheric Physics, Space Physics Division, NASA Headquarters 1983 - 1986 Research Scientist, Astrophysics and Space Physics Section, Caltech/Jet Propulsion Laboratory HONORS: 2018 - Heliophysics Summer School Faculty, UCAR High Altitude Observatory 2017 - NASA Group Achievement Award, MESSENGER Project Team 2017 - Asia Oceania Geosciences Society 14th Annual Meeting Distinguished Lecturer in Planetary Sciences 2016 - NASA Group Achievement Award, MMS Instument Suite 2012 - International Academy of Astronautics Laurels for Team Achievement for MESSENGER 2012 - Fellow, American Geophysical Union 2009 - NASA Group
    [Show full text]
  • Using Earth Observation Data to Improve Health in the United States Accomplishments and Future Challenges
    a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges 1800 K Street, NW | Washington, DC 20006 Tel: (202) 887-0200 | Fax: (202) 775-3199 Author E-mail: [email protected] | Web: www.csis.org Lyn D. Wigbels September 2011 ISBN 978-0-89206-668-1 Ë|xHSKITCy066681zv*:+:!:+:! a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges Author Lyn D. Wigbels September 2011 About CSIS At a time of new global opportunities and challenges, the Center for Strategic and International Studies (CSIS) provides strategic insights and bipartisan policy solutions to decisionmakers in government, international institutions, the private sector, and civil society. A bipartisan, nonprofit organization headquartered in Washington, D.C., CSIS conducts research and analysis and devel- ops policy initiatives that look into the future and anticipate change. Founded by David M. Abshire and Admiral Arleigh Burke at the height of the Cold War, CSIS was dedicated to finding ways for America to sustain its prominence and prosperity as a force for good in the world. Since 1962, CSIS has grown to become one of the world’s preeminent international policy institutions, with more than 220 full-time staff and a large network of affiliated scholars focused on defense and security, regional stability, and transnational challenges ranging from energy and climate to global development and economic integration. Former U.S. senator Sam Nunn became chairman of the CSIS Board of Trustees in 1999, and John J.
    [Show full text]
  • The Coastwatcher
    13 JUN-CTWG Op Eval TRANEX TBA-JUL CTWG Encampment 21-23 AUG-CTWG/USAF Evaluation Missions for 15-23 AUG-NER Glider Academy@KSVF America 26-29 AUG-CAP National Conference Semper vigilans! 12 SEP-Cadet Ball-USCGA Semper volans! CADET MEETING REPORT The Coastwatcher 24 February, 2015 Publication of the Thames River Composite Squadron Connecticut Wing Maj Roy Bourque outlined the Squadron Civil Air Patrol Rocketry Program and set deadlines for Cadet submission of plans. 300 Tower Rd., Groton, CT http://ct075.org . The danger of carbon monoxide poisoning was the subject of the safety meeting. C/2dLt Jessica LtCol Stephen Rocketto, Editor Carter discussed the prevention and detection of [email protected] this hazardous gas and opened up the forum to comments and questions from the Cadets. C/CMSgt Virginia Poe, Scribe C/SMSgt Michael Hollingsworth, Printer's Devil C/CMSgt Virginia Poe delivered her Armstrong Lt David Meers & Maj Roy Bourque, Papparazis Lecture on the “The Daily Benefits of the Hap Rocketto, Governor-ASOQB, Feature Editor Aerospace Program.” Vol. IX 9.08 25 February, 2015 Maj Brendan Schultz delivered his Eaker Lecture explaining the value of leadership skills learned in SCHEDULE OF COMING EVENT the Cadet Program and encouraged Cadets to apply their learning to the world outside of CAP. 03 MAR-TRCS Staff Meeting 10 MAR-TRCS Meeting C/SrA Thomas Turner outlined the history of 17 MAR-TRCS Meeting rocket propulsion from Hero's Aeopile to the 21 MAR-CTWG WWII Gold Medal Ceremony landing on the moon. He then explained each of 24 MAR-TRCS Meeting Newton's Three Laws of Dynamics and showed 31 MAR-TRCS Meeting their applications to rocketry.
    [Show full text]
  • Appendix C: Insar
    Dirty Little Secrets about InSAR [EarthScope 2009] C-band interferograms are decorrelated over most of the SAF and Cascadia except urban areas. Envisat is almost out of fuel and the C-band replacement is a few years away. L-band ALOS has almost no data on descending tracks. L-band ALOS has ionospheric phase variations are +/- 10 cm on some interferograms. L-band ALOS has poor orbit control (but excellent orbit occuracy). Less than 2% of the 17 Tbytes of GeoEarthScope data has been downloaded. DESDYNI the US InSAR mission will launch in 2019 (40 years after Seasat). Open source InSAR software is not of “geodetic” quality. Dirty Little Secrets about InSAR [Today] C-band interferograms are decorrelated over most of the SAF and Cascadia except urban areas. Sentinel-1A and B are both functioning. They operate in TOPS mode which is a nightmare! < 10 cm accuracy orbits are essential. L-band ALOS-1 has almost no data on descending tracks. L-band ALOS-/2 has ionospheric phase variations are +/- 100 cm on some interferograms. L-band ALOS has poor orbit control (but excellent orbit occuracy). ALOS-2 data ree morerestricted than ALOS-1 NISAR the US InSAR mission will launch in 2021 (43 years after Seasat). NISAR is only a 3-year mission! Open source InSAR software is getting better but contains some ugly code. Need a programmer to remove the deadwood and streamline the installation and testing. X-band 3 cm TerraSAR COSMO-SkyMed interferogram using data from 19 February 2009 and 9 April 2009. Perpendicular baseline is 480 m, and the satellite’s right-looking angle is 37 degrees.
    [Show full text]
  • Soviet Steps Toward Permanent Human Presence in Space
    SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations.
    [Show full text]
  • GST Responses to “Questions to Inform Development of the National Plan”
    GST Responses to “Questions to Inform Development of the National Plan” Name (optional): Dr. Darrel Williams Position (optional): Chief Scientist, (240) 542-1106; [email protected] Institution (optional): Global Science & Technology, Inc. Greenbelt, Maryland 20770 Global Science & Technology, Inc. (GST) is pleased to provide the following answers as a contribution towards OSTP’s effort to develop a national plan for civil Earth observations. In our response we provide information to support three main themes: 1. There is strong science need for high temporal resolution of moderate spatial resolution satellite earth observation that can be achieved with cost effective, innovative new approaches. 2. Operational programs need to be designed to obtain sustained climate data records. Continuity of Earth observations can be achieved through more efficient and economical means. 3. We need programs to address the integration of remotely sensed data with in situ data. GST has carefully considered these important national Earth observation issues over the past few years and has submitted the following RFI responses: The USGS RFI on Landsat Data Continuity Concepts (April 2012), NASA’s Sustainable Land Imaging Architecture RFI (September 2013), and This USGEO RFI (November 2013) relative to OSTP’s efforts to develop a national plan for civil Earth observations. In addition to the above RFI responses, GST led the development of a mature, fully compliant flight mission concept in response to NASA’s Earth Venture-2 RFP in September 2011. Our capacity to address these critical national issues resides in GST’s considerable bench strength in Earth science understanding (Drs. Darrel Williams, DeWayne Cecil, Samuel Goward, and Dixon Butler) and in NASA systems engineering and senior management oversight (Drs.
    [Show full text]
  • NASA's Earth Science Data Systems Program
    NASA's Earth Science Data Systems Program Program Executive for Earth Science Data Systems Earth Science Division (DK) Science Mission Directorate, NASA Headquarters February 16, 2016 5/25/2016 1 NASA Strategic Plan 2014 • Objective 2.2: Advance knowledge of Earth as a system to meet the challenges of environmental change, and to improve life on our planet. – How is the global Earth system changing? What causes these changes in the Earth system? How will Earth’s systems change in the future? How can Earth system science provide societal benefits? – NASA’s Earth science programs shape an interdisciplinary view of Earth, exploring the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself, which enables scientists to measure global climate changes and to inform decisions by Government, organizations, and people in the United States and around the world. We make the data collected and results generated by our missions accessible to other agencies and organizations to improve the products and services they provide… 5/25/2016 2 Major Components of the Earth Science Data Systems Program • Earth Observing System Data and Information System (EOSDIS) – Core systems for processing, ingesting and archiving data for the Earth Science Division • Competitively Selected Programs – Making Earth System Data Records for Use in Research Environments (MEaSUREs) – Advancing Collaborative Connections for Earth System Science (ACCESS) • International and Interagency Coordination and Development – CEOS Working Group on Information
    [Show full text]
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • List of Missions Using SPICE (PDF)
    1/7/20 Data Restorations Selected Past Users Current/Pending Users Examples of Possible Future Users Apollo 15, 16 [L] Magellan [L] Cassini Orbiter NASA Discovery Program Mariner 2 [L] Clementine (NRL) Mars Odyssey NASA New Frontiers Program Mariner 9 [L] Mars 96 (RSA) Mars Exploration Rover Lunar IceCube (Moorehead State) Mariner 10 [L] Mars Pathfinder Mars Reconnaissance Orbiter LunaH-Map (Arizona State) Viking Orbiters [L] NEAR Mars Science Laboratory Luna-Glob (RSA) Viking Landers [L] Deep Space 1 Juno Aditya-L1 (ISRO) Pioneer 10/11/12 [L] Galileo MAVEN Examples of Users not Requesting NAIF Help Haley armada [L] Genesis SMAP (Earth Science) GOLD (LASP, UCF) (Earth Science) [L] Phobos 2 [L] (RSA) Deep Impact OSIRIS REx Hera (ESA) Ulysses [L] Huygens Probe (ESA) [L] InSight ExoMars RSP (ESA, RSA) Voyagers [L] Stardust/NExT Mars 2020 Emmirates Mars Mission (UAE via LASP) Lunar Orbiter [L] Mars Global Surveyor Europa Clipper Hayabusa-2 (JAXA) Helios 1,2 [L] Phoenix NISAR (NASA and ISRO) Proba-3 (ESA) EPOXI Psyche Parker Solar Probe GRAIL Lucy EUMETSAT GEO satellites [L] DAWN Lunar Reconnaissance Orbiter MOM (ISRO) Messenger Mars Express (ESA) Chandrayan-2 (ISRO) Phobos Sample Return (RSA) ExoMars 2016 (ESA, RSA) Solar Orbiter (ESA) Venus Express (ESA) Akatsuki (JAXA) STEREO [L] Rosetta (ESA) Korean Pathfinder Lunar Orbiter (KARI) Spitzer Space Telescope [L] [L] = limited use Chandrayaan-1 (ISRO) New Horizons Kepler [L] [S] = special services Hayabusa (JAXA) JUICE (ESA) Hubble Space Telescope [S][L] Kaguya (JAXA) Bepicolombo (ESA, JAXA) James Webb Space Telescope [S][L] LADEE Altius (Belgian earth science satellite) ISO [S] (ESA) Armadillo (CubeSat, by UT at Austin) Last updated: 1/7/20 Smart-1 (ESA) Deep Space Network Spectrum-RG (RSA) NAIF has or had project-supplied funding to support mission operations, consultation for flight team members, and SPICE data archive preparation.
    [Show full text]
  • The NISAR Mission – Sensors & Mission Perspective Paul a Rosen Jet Propulsion Laboratory, California Institute of Technology
    The NISAR Mission – Sensors & Mission Perspective Paul A Rosen Jet Propulsion Laboratory, California Institute of Technology ISPRS TC V Mid Term Symposium Indian Institute of Remote Sensing, Dehradun, India November 20th, 2018 Copyright 2018 California Institute of Technology. Government sponsorship acknowledged. NISAR – NASA Science Focus Capturing the Earth in Motion NISAR will image Earth’s dynamic surface over time, providing information on changes in ice sheets and glaciers, the evolution of natural and managed ecosystems, earthquake and volcano deformation, subsidence from groundwater and oil pumping, and the human impact of these and many other phenomena. 2 Versatility of SAR for Studying Earth Change Polarimetric SAR Use of polarization to determine surface properties Applications: • Flood extent (w/ & w/o vegetation) • Land loss/gain • Coastal bathymetry • Biomass • Vegetation type, status • Pollution & pollution impact (water, coastal land) • Water flow in some deltaic islands Interferometric SAR Use of phase change to determine surface displacement Applications: • Geophysical modeling • Subsidence due to fluid withdrawal • Inundation (w/vegetation) • Change in flood extent • Water flow through wetlands 3 Earth’s Dynamic Subsurface ”Secular” motion ”Seasonal” motion • Data 18-year time series (881 igrams) + GPS + Hydraulic head from observation wells + geologic structure model • Spatial pattern of seasonal ground deformation near the center of the basin corresponds to a diffusion process with peak deformation occurring at locations with highest groundwater production. • Seasonal ground deformation associated with shallow aquifers used for the majority of groundwater production Quantifying Ground Deformation in the Los Angeles and Santa Ana • Long -term ground deformation over broader areas - Coastal Basins Due to Groundwater Withdrawal, B. Riel et al., Water correlated with delayed compaction of deeper aquifers and Resources Res., 54, doi:10.1029/2017WR021978, 2018.
    [Show full text]