Selected Topics: Toxicology

Total Page:16

File Type:pdf, Size:1020Kb

Selected Topics: Toxicology ARTICLE IN PRESS The Journal of Emergency Medicine, Vol. xx, No. xx, pp. xxx, 2007 Copyright © 2007 Elsevier Inc. Printed in the USA. All rights reserved 0736-4679/07 $–see front matter doi:10.1016/j.jemermed.2007.06.018 Selected Topics: Toxicology ANIMAL BITES AND STINGS WITH ANAPHYLACTIC POTENTIAL John H. Klotz, PHD,* Stephen A. Klotz, MD,† and Jacob L. Pinnas, MD† *Department of Entomology, University of California, Riverside, Riverside, California and †Department of Medicine, University of Arizona School of Medicine, Tucson, Arizona Reprint Address: John H. Klotz, PHD, Department of Entomology, University of California, Riverside, CA 92521 e Abstract—Anaphylaxis to animal bites and stings poses INTRODUCTION a significant medical risk of vascular or respiratory reac- tions that vary according to the patient’s response and Historical Perspective and Definition nature of the insult. Emergency Physicians frequently see patients who complain of an allergic reaction to an animal bite or sting. Although Hymenoptera stings, specifically Anaphylaxis, meaning “without protection,” was coined those of wasps, bees, and hornets, account for the majority in the early 1900s by Richet, who, with Portier, dis- of these cases, other invertebrates and vertebrates are ca- covered the phenomenon while conducting experi- pable of causing allergic reactions and anaphylaxis. Many ments on venom from the Portuguese man-of-war and of the causative animals are quite unusual, and their bites sea anemone. They exposed dogs to small doses of and stings are not commonly appreciated as potential venom and then, several weeks later, repeated the causes of anaphylaxis. We conducted a literature review to injection on these healthy dogs. Within seconds of the identify documented reports of anaphylaxis and anaphylac- second injection the dogs became ill, and shortly toid reactions to animal bites and stings. This summary is thereafter, died. Richet and Portier proposed two fac- meant to heighten awareness of the diversity of animals that may cause anaphylaxis, hopefully leading to more rapid tors that were necessary and sufficient to cause an diagnosis and treatment of this dangerous condition. A anaphylactic reaction: “increased sensitivity to a poi- diverse group of animals was found whose bites and stings son after previous injection of the same poison, and an cause anaphylaxis and anaphylactoid reactions. Some case incubation period necessary for this state of increased summaries are presented. A potentially life-saving plan is to sensitivity to develop” (1). direct patients to proper follow-up care to prevent a future Modern definitions of anaphylaxis reflect our more life-threatening reaction, including: prescribing epineph- advanced understanding of its physiological basis: an rine and antihistamines with proper instructions for their acute systemic allergic reaction occurring as a result use; referral to an allergist to determine if skin testing, of the release of chemical mediators after an immu- radioallergosorbent test, and immunotherapy are indicated; nologic reaction, typically IgE-mediated. Since its dis- and reporting the case to state or local Poison Control Centers. In covery, numerous causative agents in addition to some cases it may be helpful to consult an entomologist or a pest control service for help in identification and elimination of certain venom have been implicated, including anaphylactic offenders. © 2007 Elsevier Inc. reactions to foods, medications, latex, vaccines, aller- genic extracts, hormones, animal or human proteins, e Keywords—anaphylaxis; anaphylactoid; systemic reac- colorants, polysaccharides, and exercise (2). Insect tions; insect venoms; animal venoms; bites and stings sting allergies, however, are the only form of anaphy- RECEIVED: 1 August 2005; FINAL SUBMISSION RECEIVED: 6 December 2006; ACCEPTED: 11 February 2007 1 ARTICLE IN PRESS 2 J. H. Klotz et al. laxis for which allergen-specific immunotherapy is METHODS currently available (3). Literature Review Clinically, anaphylactic or anaphylactoid (resembling anaphylaxis but mechanism unknown) reactions can take This article summarizes the various cases that have been almost any form but most commonly present with urti- reported of anaphylactic and anaphylactic-like reactions caria and angioedema, followed by respiratory distress, to animal bites and stings. A MEDLINE search was dizziness, syncope, and shock. In some, death may occur conducted to find these reports employing a keyword (2,4). Gastrointestinal manifestations may accompany search with OVID, using the following terms: anaphy- any of the above signs and symptoms. Toxic reactions laxis, anaphylactoid, systemic reactions, insect venoms, may be caused by multiple stings, up to hundreds or and animal venoms. The search was limited to articles in thousands, and vary with the toxins introduced and the English from 1966–2005. Secondary sources of infor- makeup and size of the individual. Therapy for anaphy- mation on anaphylaxis were identified from references in laxis includes H1 and H2 antihistamines and epinephrine these articles and also were included in this review. by injection, with steroids for the more persistent or The cases of anaphylaxis are categorized taxonomi- refractory cases (5). cally by the offending organisms in Tables 1 and 2. Also Hymenoptera stings are one of the most common shown is evidence for an IgE-mediated basis: i.e., (ϩ)in causes of anaphylaxis (4). Anaphylactic reactions to bites vivo skin test, or (ϩ) in vitro RAST (radioallergosorbent and stings of other arthropods are less common, and even test) reactivity, and the pertinent references. Case pre- fewer have been reported for non-arthropod groups (6). sentations that to date lack evidence for IgE-mediated Taken together, these organisms pose a significant med- reactivity are listed as anaphylactic-like in Table 3. Some ical risk. cases are not covered in the text but are listed in the Table 1. Anaphylactic Reactions to Insect Bites and Stings Evidence for IgE Mediation† Scientific Nomenclature (Common Name)* In Vivo Tests In Vitro Tests References Phylum: Arthropoda Class: Insecta Order: Hymenoptera Family: Vespidae Genus: Vespula (ground-nesting yellowjackets) ϩϩ8–12 Dolichovespula (aerial-nesting yellowjackets) ϩϩ11,12 Vespa (hornets) ϩϩ8,23 Polistes (paper wasps) ϩϩ19,20 Family: Apidae Genus: Apis (honey bees) ϩϩ11,13,14 Bombus (bumble bees) ϩϩ24 Family: Formicidae Genus: Solenopsis (fire ants) ϩϩ16,17 Pogonomyrmex (harvester ants) ϩϩ21,22 Tetramorium ϩ 31 Myrmecia (bulldog ants) ϩϩ32–35 Pachycondyla (Chinese needle and Samsum ants) ϩϩ37–41 Formica (wood ants) ϩϩ43 Order: Hemiptera Family: Reduviidae Genus: Triatoma (kissing bugs) ϩϩ44–46 Order: Diptera Family: Tabanidae Genus: Chrysops (deer flies) ϩϩ52,54 Family: Simuliidae (black flies) ϩϩ48 Culicidae (mosquitoes) ϩ 55 Muscidae Genus: Glossina (tsetse flies) ϩ 60 Order: Lepidoptera Family: Notodontidae Genus: Thaumetopoea (pine processionary caterpillars) ϩϩ62–64 * Common names in parentheses were reported to induce the reaction. † Empty spaces indicate no evidence for IgE mediation. ARTICLE IN PRESS Anaphylactic Reactions to Animals 3 Table 2. Anaphylactic Reactions to Bites and Stings of Invertebrates (Non-insect) and Vertebrates Evidence for IgE Mediation† Scientific Nomenclature (Common Name)* In Vivo Tests In Vitro Tests References Phylum: Arthropoda Class: Arachnida Order: Acari Family: Ixodidae Genus: Ixodes holocyclus (Australian paralysis ticks) ϩϩ67 Ixodes pacificus (western black-legged ticks) ϩ 69,70 Ixodes ricinus ϩ 72 Rhiphicephalus ϩ 71 Family: Argasidae Genus: Argas (pigeon ticks) ϩϩ73,74 Order: Scorpiones Genus: Centruroides (common striped scorpions) ϩϩ77,78 Phylum: Cnidaria Class: Scyphozoa Genus: Chrysaora (sea nettles) ϩ 87,88 Phylum: Chordata Class: Reptilia Order: Squamata Family: Viperidae Genus: Crotalus (rattlesnakes) ϩ 93 Vipera (vipers) ϩϩ94,95 Family: Elapidae Genus: Hemachatus (rinkhals) ϩ 100 Class: Mammalia Order: Rodentia Family: Muridae Genus: Rattus (rats) ϩϩ106,107 Mus (mice) ϩϩ107,109 Gerbillus (gerbils) ϩ 110 Phodopus (hamsters) ϩϩ111,113 * Common names in parentheses were reported to induce the reaction. † Empty spaces indicate no evidence for IgE mediation. tables along with references numbered according to their United States are yellowjackets (Vespula and Dolicho- taxonomic category. Common toxic reactions that do not vespula) and honey bees (Apis), followed by fire ants resemble anaphylaxis are not included in this review (Solenopsis) and paper wasps (Polistes)(8–20). Har- (e.g., spider envenomations). vester ants (Pogonomyrmex), the introduced European hornet (Vespa crabro), bumble bees (Bombus), and sweat bees (Halictids) are of lesser importance (21–26). RESULTS AND DISCUSSION Ant stings, an emerging problem. Ants are not generally Anaphylactic and Anaphylactic-like Reactions to appreciated as causes of anaphylaxis, but a growing Insects (Tables 1 and 3) number of species in North America and on other con- Hymenoptera (bees, wasps, and ants). Of the inverte- tinents are being reported as causes of this medical brates, insects, particularly Hymenoptera, most com- emergency. The following case describes an anaphylac- monly cause anaphylaxis. In stinging bees, wasps, and tic reaction to a sting from a rough harvester ant, ants, the ovipositor of females has been modified into a Pogonomyrmex rugosus (27). stinger. This venom delivery system is a powerful de- fense against vertebrates, which, in the case of humans, Case summary 1. A 41-year-old
Recommended publications
  • RESEARCH ARTICLE Anti-Glioma Effect of Pseudosynanceia
    DOI:10.31557/APJCP.2021.22.7.2295 Effect of Pseudosynanceia Melanostigma Venom on Glioblastoma Cells RESEARCH ARTICLE Editorial Process: Submission:02/14/2021 Acceptance:07/15/2021 Anti-Glioma Effect of Pseudosynanceia Melanostigma Venom on Isolated Mitochondria from Glioblastoma Cells Maral Ramezani, Fatemeh Samiei, Jalal Pourahmad* Abstract Background: Glioblastoma is the most common primary malignant tumor of the central nervous system that occurs in the spinal cord or brain. Pseudosynanceia Melanostigma is a venomous stonefish in the Persian Gulf, which our knowledge about is little. This study’s goal is to investigate the toxicity of stonefish crude venom on mitochondria isolated from U87 cells. Methods: In the first stage, we extracted venom stonefish and then isolated mitochondria have exposed to different concentrations of venom. Finally, mitochondrial toxicity parameters (Succinate dehydrogenase (SDH) activity, Reactive oxygen species (ROS), cytochrome c release, Mitochondrial Membrane Potential (MMP), and mitochondrial swelling) have evaluated. Results: To determine mitochondrial parameters, we used 115, 230, and 460 µg/ml concentrations. The results of our study show that the venom of stonefish selectively increases upstream parameters of apoptosis such as mitochondrial swelling, cytochrome c release, MMP collapse and ROS. Conclusion: This study suggests that Pseudosynanceia Melanostigma crude venom has selectively caused toxicity by increasing active mitochondrial oxygen radicals. This venom could potentially be a candidate for the treatment of glioblastoma. Keywords: Mitochondria- glioblastoma- fish venoms- cell line- tumor- toxicity-Persian Gulf Asian Pac J Cancer Prev, 22 (7), 2295-2302 Introduction freshwater or saltwater. Marine animals most commonly used for animals live in saltwater, i.e. in oceans, seas, Glioblastoma multiform is the most common group of etc.
    [Show full text]
  • Marine Envenomations
    Environmental Marine envenomations Ingrid Berling Geoffrey Isbister Background The majority of marine envenomings are minor and do Marine stings are common but most are minor and do not not require medical intervention. Jellyfish stings are a require medical intervention. Severe and systemic marine frequent reason for presentation to first aid and primary envenoming is uncommon, but includes box jellyfish stings, healthcare providers. A knowledge of the variety of stings Irukandji syndrome, major stingray trauma and blue-ringed and envenoming syndromes that occur in Australia, octopus envenoming. Almost all marine injuries are caused including those that are clinically significant, and available by jellyfish stings, and penetrating injuries from spiny fish, treatments, is necessary for practitioners, particularly those stingrays or sea urchins. working in coastal regions. Objective This article describes the presentation and management Marine envenoming can be considered in two broad categories: of marine envenomations and injuries that may occur in jellyfish stings and penetrating venomous marine injuries. Jellyfish Australia. stings range from the life-threatening major box jellyfish (Chironex Discussion fleckeri) to painful, but generally benign, bluebottle stings common First aid for jellyfish includes tentacle removal, application to most southeastern Australian beaches (Figure 1). Penetrating of vinegar for box jellyfish, and hot water immersion (45°C venomous marine injuries often occur when handling fish, but can for 20 min) for bluebottle jellyfish stings. Basic life support occur to anyone involved in water activities, fresh water or marine. is essential for severe marine envenomings that result in They are typically more painful than just the trauma of the wound, and cardiac collapse or paralysis.
    [Show full text]
  • Rachel Carson for SILENT SPRING
    Silent Spring THE EXPLOSIVE BESTSELLER THE WHOLE WORLD IS TALKING ABOUT RACHEL CARSON Author of THE SEA AROUND US SILENT SPRING, winner of 8 awards*, is the history making bestseller that stunned the world with its terrifying revelation about our contaminated planet. No science- fiction nightmare can equal the power of this authentic and chilling portrait of the un-seen destroyers which have already begun to change the shape of life as we know it. “Silent Spring is a devastating attack on human carelessness, greed and irresponsibility. It should be read by every American who does not want it to be the epitaph of a world not very far beyond us in time.” --- Saturday Review *Awards received by Rachel Carson for SI LENT SPRING: • The Schweitzer Medal (Animal Welfare Institute) • The Constance Lindsay Skinner Achievement Award for merit in the realm of books (Women’s National Book Association) • Award for Distinguished Service (New England Outdoor Writers Association) • Conservation Award for 1962 (Rod and Gun Editors of Metropolitan Manhattan) • Conservationist of the Year (National Wildlife Federation) • 1963 Achievement Award (Albert Einstein College of Medicine --- Women’s Division) • Annual Founders Award (Isaak Walton League) • Citation (International and U.S. Councils of Women) Silent Spring ( By Rachel Carson ) • “I recommend SILENT SPRING above all other books.” --- N. J. Berrill author of MAN’S EMERGING MIND • "Certain to be history-making in its influence upon thought and public policy all over the world." --Book-of-the-Month Club News • "Miss Carson is a scientist and is not given to tossing serious charges around carelessly.
    [Show full text]
  • Medical Problems and Treatment Considerations for the Red Imported Fire Ant
    MEDICAL PROBLEMS AND TREATMENT CONSIDERATIONS FOR THE RED IMPORTED FIRE ANT Bastiaan M. Drees, Professor and Extension Entomologist DISCLAIMER: This fact sheet provides a review of information gathered regarding medical aspects of the red imported fire ant. As such, this fact sheet is not intended to provide treatment recommendations for fire ant stings or reactions that may develop as a result of a stinging incident. Readers are encouraged to seek health-related advice and recommendations from their medical doctors, allergists or other appropriate specialists. Imported fire ants, which include the red imported fire ant - Solenopsis invicta Buren (Hymenoptera: Formicidae), the black imported fire ant - Solenopsis richteri Forel and the hybrid between S. invicta and S. richteri, cause medical problems when sterile female worker ants from a colony sting and inject a venom that cause localized sterile blisters, whole body allergic reactions such as anaphylactic shock and occasionally death. In Texas, S. invicta is the only imported fire ant, although several species of native fire ants occur in the state such as the tropical fire ant, S. geminata (Fabricius), and the desert fire ant, S. xyloni McCook, which are also capable of stinging (see FAPFS010 and 013 for identification keys). Over 40 million people live in areas infested by the red imported fire ant in the southeastern United States. An estimated 14 million people are stung annually. According to The Scripps Howard Texas Poll (March 2000), 79 percent of Texans have been stung by fire ants in the year of the survey, while 20% of Texans report not ever having been stung.
    [Show full text]
  • Allergic Reactions to Bites and Stings
    Allergic Reactions to Bites and Stings ASCIA EDUCATION RESOURCES (AER) PATIENT INFORMATION Most insect bites and stings result in a localised itch and swelling that settles within a few days. Severe allergic reactions (anaphylaxis) to insects are relatively uncommon, and are usually due to bees, wasps or the Australian Jack Jumper ant. Fortunately, effective treatments are available to treat allergic reactions to bites and stings. Stinging insects are a common cause of anaphylaxis Allergies to venoms from stinging insects are one of the most common causes of severe allergic reactions (anaphylaxis) in Australia. Symptoms include an all over rash, swelling of tongue or throat, trouble breathing, gut cramps, diarrhoea, vomiting or even a drop in blood pressure (shock). Although the insects are all hymenoptera (which means membranous winged insects), their venoms are very different. Allergy to one type of stinging insect does not usually increase the risk of reaction to another. The Honey Bee is the most common cause of allergic reactions in Australia. Paper Wasps and European Wasps can sting multiple times. The European Wasp is becoming an increasing problem in Australia, is particularly aggressive and likes to get inside drink cans at barbeques, although the more familiar Paper Wasp is responsible for the majority of serious stings. The Australian Jack Jumper Ant (Myrmecia pilosula) is a medium sized black bull ant prevalent down the eastern side of Australia and Tasmania. It can be recognised by its characteristic hopping motion when it walks. It is a very aggressive ant and its sting can cause severe local pain. Severe allergic reactions are much more common than is seen with more common bull ants.
    [Show full text]
  • Hemiptera: Heteroptera: Reduviidae)
    Zootaxa 4425 (2): 372–384 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4425.2.11 http://zoobank.org/urn:lsid:zoobank.org:pub:188C650E-9303-4A21-A65E-3B88444CE885 A remarkable new species of cavernicolous Collartidini from Madagascar (Hemiptera: Heteroptera: Reduviidae) DOMINIK CHŁOND1, ERIC GUILBERT2, ARNAUD FAILLE2,3, PETR BAŇAŘ4 & LEONIDAS-ROMANOS DAVRANOGLOU5 1University of Silesia, Faculty of Biology and Environmental Protection, Department of Zoology, ul. Bankowa 9, 40-007 Katowice, Poland. E-mail: [email protected] 2Muséum National d'Histoire Naturelle, Département de Systématique et Evolution, UMR 7205 CNRS, CP50 - 45 rue Buffon, 75005 Paris, France. E-mail: [email protected] 3Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain. E-mail: [email protected] 4Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University, Zemědělská 1, Brno, CZ-613 00, Czech Republic. E-mail: [email protected] 5Oxford Flight Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom. E-mail: [email protected] Abstract Mangabea troglodytes sp. nov. (Hemiptera: Heteroptera: Reduviidae: Emesinae) is described based on four specimens collected in a cave of the Namoroka Karstic System, Madagascar, and deposited in the Collection of the Muséum National d’Histoire Naturelle, Paris. The dorsal habitus as well as diagnostic characters of male and female genitalia are extensively illustrated and imaged. A key to species of the genus Mangabea Villiers, 1970 is provided and the degree of cave special- ization of the new species is discussed.
    [Show full text]
  • Spider Bites
    Infectious Disease Epidemiology Section Office of Public Health, Louisiana Dept of Health & Hospitals 800-256-2748 (24 hr number) www.infectiousdisease.dhh.louisiana.gov SPIDER BITES Revised 6/13/2007 Epidemiology There are over 3,000 species of spiders native to the United States. Due to fragility or inadequate length of fangs, only a limited number of species are capable of inflicting noticeable wounds on human beings, although several small species of spiders are able to bite humans, but with little or no demonstrable effect. The final determination of etiology of 80% of suspected spider bites in the U.S. is, in fact, an alternate diagnosis. Therefore the perceived risk of spider bites far exceeds actual risk. Tick bites, chemical burns, lesions from poison ivy or oak, cutaneous anthrax, diabetic ulcer, erythema migrans from Lyme disease, erythema from Rocky Mountain Spotted Fever, sporotrichosis, Staphylococcus infections, Stephens Johnson syndrome, syphilitic chancre, thromboembolic effects of Leishmaniasis, toxic epidermal necrolyis, shingles, early chicken pox lesions, bites from other arthropods and idiopathic dermal necrosis have all been misdiagnosed as spider bites. Almost all bites from spiders are inflicted by the spider in self defense, when a human inadvertently upsets or invades the spider’s space. Of spiders in the United States capable of biting, only a few are considered dangerous to human beings. Bites from the following species of spiders can result in serious sequelae: Louisiana Office of Public Health – Infectious Disease Epidemiology Section Page 1 of 14 The Brown Recluse: Loxosceles reclusa Photo Courtesy of the Texas Department of State Health Services The most common species associated with medically important spider bites: • Physical characteristics o Length: Approximately 1 inch o Appearance: A violin shaped mark can be visualized on the dorsum (top).
    [Show full text]
  • Venoms of Heteropteran Insects: a Treasure Trove of Diverse Pharmacological Toolkits
    Review Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits Andrew A. Walker 1,*, Christiane Weirauch 2, Bryan G. Fry 3 and Glenn F. King 1 Received: 21 December 2015; Accepted: 26 January 2016; Published: 12 February 2016 Academic Editor: Jan Tytgat 1 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (G.F.K.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (C.W.) 3 School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (B.G.F.) * Correspondence: [email protected]; Tel.: +61-7-3346-2011 Abstract: The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide- rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5- trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals.
    [Show full text]
  • Download WAO White Book on Allergy
    WORLD ALLERGY ORGANIZATION WAWAOO WhiteWhite BookBook onon AllergyAllergy WAO White Book on Allergy World Allergy Organization (WAO) White Book on Allergy Copyright 2011 World Allergy Organization WAO White Book on Allergy Editors Prof. Ruby Pawankar, MD, PhD Prof. Giorgio Walter Canonica, MD WAO President Elect (2010-2011) WAO Past President (2010-2011) Allergy and Rhinology Allergy & Respiratory Diseases Nippon Medical School Department of Internal Medicine 1-1-5 Sendagi, Bunkyo-ku University of Genoa Tokyo 113-8603 Padiglione Maragliano, Largo Rosanna Benzi 10 JAPAN 1-16132 Genoa ITALY Prof. Stephen T. Holgate, BSc, MD, DSc, FMed Sci Prof. Richard F. Lockey, MD Member, WAO Board of Directors (2010-2011) WAO President (2010-2011) Medical Research Council Clinical Professor of Division of Allergy & Immunology Immunopharmacology Joy McCann Culverhouse Chair in Allergy & Immunology Infection, Inflammation and Immunity University of South Florida College of Medicine School of Medicine James Haley Veterans Administration Medical Center (111D) University of Southampton 13000 Bruce B. Downs Boulevard Level F, South Block Tampa, Florida 33612 Southampton General Hospital USA Tremona Road Southampton SO16 6YD United Kingdom Acknowledgement On behalf of the World Allergy Organization (WAO), the editors and authors of the WAO White Book on Allergy express their gratitude to the charity, Asthma, Allergy, Inflammation Research (AAIR) and Asian Allergy Asthma Foundation (AAAF) for their support in the production of this publication. The Editors of the White book extend their gratitude to His Excellency Dr. APJ Abdul Kalam, Former President of India and Madame Ilora Finlay Baronness of the House of Lords for their Forewords to the White Book and to the International Primary Care Respiratory Group (IPCRG) and European Federation of Allergy and Airways Diseases Patients ‘Associations (EFA) for their supporting statements.
    [Show full text]
  • Traveler Information
    Traveler Information QUICK LINKS Marine Hazards—TRAVELER INFORMATION • Introduction • Risk • Hazards of the Beach • Animals that Bite or Wound • Animals that Envenomate • Animals that are Poisonous to Eat • General Prevention Strategies Traveler Information MARINE HAZARDS INTRODUCTION Coastal waters around the world can be dangerous. Swimming, diving, snorkeling, wading, fishing, and beachcombing can pose hazards for the unwary marine visitor. The seas contain animals and plants that can bite, wound, or deliver venom or toxin with fangs, barbs, spines, or stinging cells. Injuries from stony coral and sea urchins and stings from jellyfish, fire coral, and sea anemones are common. Drowning can be caused by tides, strong currents, or rip tides; shark attacks; envenomation (e.g., box jellyfish, cone snails, blue-ringed octopus); or overconsumption of alcohol. Eating some types of potentially toxic fish and seafood may increase risk for seafood poisoning. RISK Risk depends on the type and location of activity, as well as the time of year, winds, currents, water temperature, and the prevalence of dangerous marine animals nearby. In general, tropical seas (especially the western Pacific Ocean) are more dangerous than temperate seas for the risk of injury and envenomation, which are common among seaside vacationers, snorkelers, swimmers, and scuba divers. Jellyfish stings are most common in warm oceans during the warmer months. The reef and the sandy sea bottom conceal many creatures with poisonous spines. The highly dangerous blue-ringed octopus and cone shells are found in rocky pools along the shore. Sea anemones and sea urchins are widely dispersed. Sea snakes are highly venomous but rarely bite.
    [Show full text]
  • Bee Venom Allergy in Beekeepers and Their Family Members Ulrich R
    Bee venom allergy in beekeepers and their family members Ulrich R. Mu¨ller Purpose of review Introduction To analyze prevalence of allergic sting reactions, including Hymenoptera venom allergy is one of the major reasons the clinical and diagnostic features as well as management for anaphylaxis. Between 1961 and 2000, it caused 120 options in a population heavily exposed to honeybee stings fatalities in Switzerland – an average of three every year such as beekeepers and their family members. [1]. Extrapolated to Western Europe, this corresponds to Recent findings more than 150 fatal Hymenoptera sting reactions every The higher sting frequency is associated with an increased year in this region. Stings by honeybees and vespids are prevalence of allergic sting reactions. Major risk factors for most often responsible for such reactions. Beekeepers allergic sting reactions in beekepers are: fewer than 10 and their family members are heavily exposed to honey- annual stings, an atopic constitution and symptoms of bee stings and are thus at an especially high risk of upper respiratory allergy during work in the beehive. Bee becoming allergic, and therefore are an interesting popu- venom allergic beekeepers have higher levels of bee lation for the study of epidemiology and immunopatho- venom-specific IgG but lower skin sensitivity and bee genesis of venom allergy and the mechanism of its most venom-specific IgE than normally exposed bee venom effective treatment – venom immunotherapy. Finally, allergic patients. Safety of bee venom immunotherapy is owing to the high degree of exposure of this population, higher in beekeepers than in allergic controls, while efficacy indication and protocols for venom immunotherapy may of this treatment is similar in both groups.
    [Show full text]
  • The Venom Produced by Different Classes of Arthropods and Uses It As a Biological Control Agent
    Archive of SID The venom produced by different classes of arthropods and uses it as a biological control agent Kabir Eyidozehi1, Sultan Ravan2 1Ph.D. student of Agricultural Entomology, University of Zabol, Iran 2 Associate Professor Plant Protection Department, University of Zabol, Iran (Corresponding Author: Kabir Eyidozehi) Abstract Animal kingdom possesses numerous poisonous species that produce venoms or toxins. The biodiversity of venoms and toxins made it a unique source of leads and structural templates from which new therapeutic agents may be developed. Such richness can be useful to biotechnology and/or pharmacology in many ways, with the prospection of new toxins in this field. Venoms of several animal species such as snakes, scorpions, toads, frogs and their active components have shown potential biotechnological applications. Recently, using molecular biology techniques and advanced methods of fractionation, researchers have obtained different native and/or recombinant toxins and enough material to afford deeper insight into the molecular action of these toxins. Now a day to visualize the boundaries between cancerous tissues and normal tissues florescent labeled scorpion venom peptides are used. Still a lot of peptides in scorpion venom are not identified. Further studies are needed to identify therapeutically crucial peptides in scorpion venom. This paper reviews the knowledge about the various aspects related to the name, biological and medical importance of poisonous animals of different major animal phyla. Key words: Poisonous animals, Scorpion, Spider, Venoms, Insects www.SID.ir Archive of SID INTRODUCTION 1. The biological and medical significance of poisonous animals Animal venoms and toxins are now recognized as major sources of bioactive molecules that may be tomorrow’s new drug leads.
    [Show full text]