Image Library - SEARCH: Process Ids(3301 Ids)

Total Page:16

File Type:pdf, Size:1020Kb

Image Library - SEARCH: Process Ids(3301 Ids) ��� Image Library - SEARCH: Process ids(3301 ids) Parameters Records Included All records Filter Image by Orientation: None Aspect Ratio: Normalized 3:2 Result Summary Total Records: 3301 Re-render images: 6 per row 5000 Records Per Page - Pages: 1 TDWG-0962 [Dorsal] BIOUG25546-A10 [Dorsal] CCDB-08823-H10 [Dorsal] BIOUG05579-F03 [Dorsal] BIOUG25475-D05 [Dorsal] TDWG-0966 [Dorsal] Agelenopsis pennsylvanica Agelenopsis utahana Anyphaena pectorosa Hibana gracilis Wulfila saltabundus Araneus diadematus BIN URI: BOLD:AAB5726 BIN URI: BOLD:AAB0090 BIN URI: BOLD:AAD6926 BIN URI: BOLD:AAN6394 BIN URI: BOLD:AAC6924 BIN URI: BOLD:AAA4125 BIOUG09536-C04 BIOUG11734-D09 [Dorsal] BIOUG00614-C05 [Dorsal] BIOUG20041-G10 [Dorsal] BIOUG01959-F10 [Dorsal] 09PROBE-01594 [Dorsal] [Dorsal] Araneus guttulatus Araneus marmoreus Araniella displicata Eustala Larinioides patagiatus Araneus gemmoides [skewed] BIN URI: BOLD:AAN6304 BIN URI: BOLD:AAB8543 BIN URI: BOLD:AAA8399 BIN URI: BOLD:AAN5451 BIN URI: BOLD:AAA3681 BIN URI: BOLD:AAJ7963 BIOUG00889-G02 [Dorsal] CCDB-05292-D06 [Dorsal] BIOUG01027-G03 [Dorsal] BIOUG04082-G05 [Dorsal] BIOUG22880-E04 [Dorsal] 09PROBE-633 [Dorsal] Neoscona arabesca Clubiona abboti Clubiona canadensis Clubiona lutescens Clubiona moesta Clubiona norvegica BIN URI: BOLD:AAA4123 BIN URI: BOLD:AAD1564 BIN URI: BOLD:AAB2563 BIN URI: BOLD:AAO3476 BIN URI: BOLD:AAP3591 BIN URI: BOLD:AAB3472 01ARONT-H08 [Dorsal] BIOUG03866-A07 [Dorsal] 08BBARAC-0333 [Dorsal] BIOUG06347-F11 [Dorsal] 08BBARAC-0004 [Dorsal] BIOUG05539-G09 [Dorsal] Clubiona pallidula Clubiona pygmaea Clubiona riparia Dictyna brevitarsa Dictyna volucripes Emblyna hentzi BIN URI: BOLD:AAI4087 BIN URI: BOLD:ACB9565 BIN URI: BOLD:AAC8797 BIN URI: BOLD:AAN2653 BIN URI: BOLD:ACE2869 BIN URI: BOLD:AAI6251 BIOUG05745-C04 [Dorsal] TDWG-0963 [Dorsal] BIOUG03453-B04 [Dorsal] BIOUG20599-C06 [Dorsal] CCDB-05258-C04 [Dorsal] BIOUG05599-D07 [Dorsal] Emblyna peragrata Cheiracanthium mildei Orodrassus canadensis Sergiolus Agyneta simplex Agyneta unimaculata BIN URI: BOLD:ACR9718 BIN URI: BOLD:AAB7601 BIN URI: BOLD:ACD2419 BIN URI: BOLD:ACV6055 BIN URI: BOLD:AAF2396 BIN URI: BOLD:AAH0003 BIOUG21943-A04 [Dorsal] BIOUG00627-H10 [Dorsal] GBOL14656 [Dorsal] 09-PROBE-08138 [Dorsal] BIOUG01894-A08 [Dorsal] BIOUG04496-G04 [Dorsal] Aphileta misera Baryphyma trifrons Centromerus sylvaticus [skewed] Ceraticelus atriceps Ceraticelus crassiceps Ceraticelus similis BIN URI: BOLD:AAP2630 BIN URI: BOLD:AAJ9916 BIN URI: BOLD:AAA4132 BIN URI: BOLD:AAI3701 BIN URI: BOLD:AAC1589 BIN URI: BOLD:AAF1318 BIOUG05648-B04 [Dorsal] BIOUG14292-E08 [Dorsal] BIOUG07168-D01 [Dorsal] BIOUG02782-G05 [Dorsal] BIOUG05567-D11 [Lateral] CCDB-05303-C03 [Dorsal] Collinsia plumosa Dismodicus decemoculatus Drapetisca alteranda Erigone aletris Erigone atra Erigone autumnalis BIN URI: BOLD:AAM9146 BIN URI: BOLD:AAA9584 BIN URI: BOLD:AAH7066 BIN URI: BOLD:AAD1746 BIN URI: BOLD:ACE8336 BIN URI: BOLD:AAH0001 09PROBE-1978-437 [Dorsal] BIOUG16047-D04 [Dorsal] BIOUG01027-D12 [Dorsal] BIOUG00515-G05 [Dorsal] 08BBARAC-0515 [Dorsal] 09PROBE-1978-245 [Dorsal] Grammonota gentilis Grammonota gentilis Grammonota pictilis Hypselistes florens Hypselistes jacksoni Lepthyphantes alpinus BIN URI: BOLD:AAA9476 BIN URI: BOLD:ACP8765 BIN URI: BOLD:AAD1498 BIN URI: BOLD:AAB4233 BIN URI: BOLD:ADC9883 BIN URI: BOLD:AAA4241 TDWG-1014 [Lateral] BIOUG08639-G07 [Dorsal] 08EARGUE-0009 [Dorsal] BIOUG06316-C01 [Dorsal] BIOUG02782-B10 [Dorsal] 08BBARAC-0345 [Dorsal] Lepthyphantes leprosus Mermessus jona Mermessus trilobatus Mermessus undulatus Pelecopsis mengei Pityohyphantes alticeps BIN URI: BOLD:AAC0430 BIN URI: BOLD:ACJ6896 BIN URI: BOLD:AAC8898 BIN URI: BOLD:ACG6437 BIN URI: BOLD:AAF5576 BIN URI: BOLD:ACO2740 TDWG-1037 [Dorsal] BIOUG05717-E05 [Dorsal] PF14-12-04 [Dorsal] 09EARGUE-0190 [Dorsal] BIOUG12607-D03 [Dorsal] RMNH.ARA.12603 [Dorsal] Pityohyphantes costatus Satilatlas marxi Sciastes truncatus Tapinocyba hortensis Tennesseellum formica Tenuiphantes tenuis BIN URI: BOLD:AAC6457 BIN URI: BOLD:AAD3883 BIN URI: BOLD:AAE9280 BIN URI: BOLD:AAH0002 BIN URI: BOLD:AAG5631 BIN URI: BOLD:AAG9172 BIOUG01027-F04 [Dorsal] CCDB-05303-B12 [Dorsal] HLC-26849 [Dorsal] 09-PROBE-08100 [Dorsal] HLC13432 [Dorsal] BIOUG00516-E10 [Dorsal] Walckenaeria directa Walckenaeria microspiralis Pardosa fuscula Pardosa hyperborea Pardosa furcifera Pardosa moesta BIN URI: BOLD:AAH8313 BIN URI: BOLD:AAH8314 BIN URI: BOLD:AAB3890 BIN URI: BOLD:AAA6658 BIN URI: BOLD:AAA5090 BIN URI: BOLD:AAB0863 09-PROBE-08155 [Dorsal] CCDB-04290-D11 [Dorsal] BIOUG00618-C07 [Dorsal] BIOUG01958-C04 CCDB-08513-A05 [Dorsal] BIOUG06001-A03 [Dorsal] Pardosa uintana Piratula cantralli Trochosa ruricola [Lateral] Oxyopes salticus Apollophanes margareta BIN URI: BOLD:AAP8359 BIN URI: BOLD:ABZ5613 BIN URI: BOLD:AAB0726 Mimetus notius [skewed] BIN URI: BOLD:AAG0083 BIN URI: BOLD:AAP3827 BIN URI: BOLD:AAE0114 BIOUG01760-F05 [Dorsal] BIOUG01969-C08 [Dorsal] BIOUG09848-H10 [Dorsal] BIOUG01027-F02 [Dorsal] BIOUG24400-A12 [Lateral] CCDB-28549-G10 [Dorsal] Philodromus cespitum Philodromus histrio Philodromus keyserlingi Philodromus minutus Philodromus minutus Philodromus pernix BIN URI: BOLD:AAB3836 BIN URI: BOLD:AAC5139 BIN URI: BOLD:AAI2836 BIN URI: BOLD:AAN9005 BIN URI: BOLD:ACX7149 BIN URI: BOLD:AAD2665 CCDB-05302-A02 [Dorsal] BIOUG31083-B07 [Dorsal] 08BBARAC-0191 [Dorsal] 08BBARAC-0331 [Dorsal] 10-SKBC-0658 [Dorsal] 09ONTGAB-016 [Dorsal] Philodromus rufus vibrans Philodromus vulgaris Tibellus maritimus Dolomedes triton Evarcha proszynskii Pelegrina insignis BIN URI: BOLD:AAB2768 BIN URI: BOLD:ADE3960 BIN URI: BOLD:AAA7188 BIN URI: BOLD:AAI2722 BIN URI: BOLD:ACE2895 BIN URI: BOLD:AAB2928 BIOUG01027-E12 [Dorsal] BIOUG01627-F05 [Dorsal] BIOUG01970-F10 [Dorsal] GBOL14689 BIOUG03420-G05 [Dorsal] CCDB-05269-F09 [Lateral] Pelegrina proterva Phidippus audax Phidippus johnsoni [dorsolateral view] Segestria pacifica Tetragnatha extensa BIN URI: BOLD:AAB2927 BIN URI: BOLD:AAC6891 BIN URI: BOLD:ABA9000 Salticus scenicus [skewed] BIN URI: BOLD:AAJ8219 BIN URI: BOLD:AAA4941 BIN URI: BOLD:AAC9044 09ONTGAB-070 [Lateral] 08SOAR-0009 [Lateral] BIOUG22045-A12 [Dorsal] BIOUG01027-H04 [Dorsal] 08SOAR-0053 [Lateral] 08BBARAC-0154 [Dorsal] Tetragnatha laboriosa Tetragnatha laboriosa Tetragnatha shoshone Tetragnatha shoshone Tetragnatha straminea Tetragnatha versicolor BIN URI: BOLD:AAA6381 BIN URI: BOLD:ACR6860 BIN URI: BOLD:AAB7995 BIN URI: BOLD:AAN6690 BIN URI: BOLD:ADC6436 BIN URI: BOLD:AAB8024 BIOUG01892-F05 [Dorsal] TDWG-1019 [Lateral] BIOUG00626-G04 [Dorsal] 09ONTGAB-053 [Dorsal] TDWG-1028 [Dorsal] BIOUG03561-E04 [Dorsal] Ohlertidion ohlerti Parasteatoda tepidariorum Theridion glaucescens Theridion murarium Thymoites unimaculatus Bassaniana utahensis BIN URI: BOLD:AAF1548 BIN URI: BOLD:AAC0175 BIN URI: BOLD:AAG1794 BIN URI: BOLD:AAC6350 BIN URI: BOLD:AAE7853 BIN URI: BOLD:AAF0365 TDWG-0990 [Dorsal] GBOL14445 BIOUG12606-B08 [Dorsal] BIOUG00889-H08 [Dorsal] BIOUG12605-A11 [Dorsal] BIOUG07169-F11 [Dorsal] Mecaphesa asperata [dorsolateral view] Misumessus oblongus Ozyptila praticola Xysticus elegans Xysticus ferox BIN URI: BOLD:ACE7683 Misumena vatia [skewed] BIN URI: BOLD:AAA8847 BIN URI: BOLD:AAC7413 BIN URI: BOLD:AAC1568 BIN URI: BOLD:AAD1987 BIN URI: BOLD:AAA6275 BIOUG00039-D01 [Dorsal] BIOUG31030-G05 [Dorsal] BIOUG22090-H01 [Dorsal] BIOUG05662-H01 [Dorsal] BIOUG30422-B05 [Dorsal] BIOUG01649-E04 [Lateral] Xysticus luctans Xysticus pellax Xysticus winnipegensis Xysticus emertoni Asca Ascidae BIN URI: BOLD:AAF8190 BIN URI: BOLD:ADE0369 BIN URI: BOLD:AAM6956 BIN URI: BOLD:AAB4300 BIN URI: BOLD:ADD1281 BIN URI: BOLD:ABW2698 BIOUG07637-B06 [Dorsal] BIOUG09365-C02 [Dorsal] 08DPMIT-0067 [Dorsal] BIOUG05609-E12 [Dorsal] BIOUG01238-E04 [Dorsal] BIOUG04534-C07 [Dorsal] Ascidae Ascidae Cheiroseius Cheiroseius Cheiroseius Cheiroseius BIN URI: BOLD:ACI8838 BIN URI: BOLD:ACL0228 BIN URI: BOLD:AAF9101 BIN URI: BOLD:AAN6642 BIN URI: BOLD:AAV0589 BIN URI: BOLD:ACE1640 BIOUG03832-H03 [Dorsal] BIOUG05595-E10 [Lateral] BIOUG01769-E11 [Dorsal] BIOUG03211-F12 [Dorsal] BIOUG16843-G10 [Dorsal] BIOUG04156-D04 [Dorsal] Blattisociidae Macrocheles Macrochelidae Parasitidae Parasitidae Parasitidae BIN URI: BOLD:ACC0536 BIN URI: BOLD:ABY2066 BIN URI: BOLD:ABW2692 BIN URI: BOLD:AAF9285 BIN URI: BOLD:AAH7239 BIN URI: BOLD:ACC7277 BIOUG04983-H11 [Dorsal] BIOUG25609-G08 [Dorsal] BIOUG03992-F08 [Dorsal] BIOUG05634-E05 [Ventral] BIOUG06870-G01 [Dorsal] BIOUG16112-A11 [Dorsal] Parasitidae Amblyseius Phytoseiidae Phytoseiidae Phytoseiidae Phytoseiidae BIN URI: BOLD:ACE1341 BIN URI: BOLD:ABV8662 BIN URI: BOLD:ACB9781 BIN URI: BOLD:ACF8669 BIN URI: BOLD:ACH4020 BIN URI: BOLD:ACP9397 BIOUG16048-H10 [Dorsal] BIOUG25629-A01 [Dorsal] BIOUG31042-B01 [Dorsal] BIOUG31118-B08 [Dorsal] BIOUG31058-E11 [Dorsal] BIOUG31123-E02 [Dorsal] Phytoseiidae Phytoseiidae Phytoseiidae Phytoseiidae Mesostigmata Mesostigmata BIN URI: BOLD:ACP9436 BIN URI: BOLD:ACY2204 BIN URI: BOLD:ADE0403 BIN URI: BOLD:ADE3200 BIN URI: BOLD:ADE0452 BIN URI: BOLD:ADE0565 BIOUG31104-C04 [Dorsal] BIOUG00179-F02 [Lateral] ARACHNO-0027 [Dorsal] TDWG-0953 [Dorsal] BIOUG11770-E05 [Dorsal] BIOUG31110-G07 [Dorsal] Mesostigmata Mitopus morio Opiliones Phalangium opilio Trichoribates Trichoribates BIN URI: BOLD:ADE0987 BIN URI: BOLD:AAU0453 BIN URI: BOLD:AAH7063 BIN URI: BOLD:AAI4346 BIN URI: BOLD:ACL2370 BIN URI: BOLD:ADE0783 BIOUG22049-B03 [Dorsal] BIOUG05872-B03 [Dorsal] BIOUG01954-D03 [Lateral] BIOUG21975-A01 [Dorsal] BIOUG04183-E11 [Lateral] BIOUG05516-D12 [Dorsal] Ceratozetidae Cymbaeremaeidae Podoribates pratensis
Recommended publications
  • Micro-Moth Grading Guidelines (Scotland) Abhnumber Code
    Micro-moth Grading Guidelines (Scotland) Scottish Adult Mine Case ABHNumber Code Species Vernacular List Grade Grade Grade Comment 1.001 1 Micropterix tunbergella 1 1.002 2 Micropterix mansuetella Yes 1 1.003 3 Micropterix aureatella Yes 1 1.004 4 Micropterix aruncella Yes 2 1.005 5 Micropterix calthella Yes 2 2.001 6 Dyseriocrania subpurpurella Yes 2 A Confusion with fly mines 2.002 7 Paracrania chrysolepidella 3 A 2.003 8 Eriocrania unimaculella Yes 2 R Easier if larva present 2.004 9 Eriocrania sparrmannella Yes 2 A 2.005 10 Eriocrania salopiella Yes 2 R Easier if larva present 2.006 11 Eriocrania cicatricella Yes 4 R Easier if larva present 2.007 13 Eriocrania semipurpurella Yes 4 R Easier if larva present 2.008 12 Eriocrania sangii Yes 4 R Easier if larva present 4.001 118 Enteucha acetosae 0 A 4.002 116 Stigmella lapponica 0 L 4.003 117 Stigmella confusella 0 L 4.004 90 Stigmella tiliae 0 A 4.005 110 Stigmella betulicola 0 L 4.006 113 Stigmella sakhalinella 0 L 4.007 112 Stigmella luteella 0 L 4.008 114 Stigmella glutinosae 0 L Examination of larva essential 4.009 115 Stigmella alnetella 0 L Examination of larva essential 4.010 111 Stigmella microtheriella Yes 0 L 4.011 109 Stigmella prunetorum 0 L 4.012 102 Stigmella aceris 0 A 4.013 97 Stigmella malella Apple Pigmy 0 L 4.014 98 Stigmella catharticella 0 A 4.015 92 Stigmella anomalella Rose Leaf Miner 0 L 4.016 94 Stigmella spinosissimae 0 R 4.017 93 Stigmella centifoliella 0 R 4.018 80 Stigmella ulmivora 0 L Exit-hole must be shown or larval colour 4.019 95 Stigmella viscerella
    [Show full text]
  • MONITORING GUIDE Amyelois Transitella Materials and Methods
    Navel Orangeworm Navel OrangewormAlmonds (NOW) & Pistachios MonitoringAmyelois Guidelines transitella For Monitoring Mating Disruption Performance MONITORING GUIDE Amyelois transitella Materials and Methods Traps Suterra® Large Plastic Delta Trap (shown at right) Lures Egg Traps with almond meal bait for females Trap Density At least 1 pheromone trap per 5 to 40 acres; minimum of 2 per block Refer to UC IPM guidelines or your PCA for recommendaƟons 2 - 4 egg traps per each pheromone trap Suterra® Large Plastic Good Place NOW pheromone lure in the Large Plastic Delta Delta Trap Practices Trap every 5-6 weeks Check traps weekly and replace dirty liners Check egg traps weekly and record egg presence; remove eggs with toothbrush; replace almond meal bait monthly Additional Use Egg Traps to determine local biofix; this can provide Techniques the starting point for accumulating Degree Days Use Degree Day models to track pest phenology and plan treatments ® Increase trap density in known “hot spots” Suterra Egg Trap Sources: UC IPM Guidelines UC IPM Degree Day Models: hƩp://ipm.ucanr.edu/WEATHER/index.html Snout-like projection Adult Pest Identification Adult Males Snout-like projection at front of head Length 10-15mm (1/4 - 3/4 in.) NOW appears in light or dark gray form Forewings have indistinct patterns of shades of gray, in light or dark form Hind wings are plain gray color Source: UC IPM Guidelines Common Misidentified Insects Forewings have indistinct Pyralis Farinalis Easy to distinguish: Distinctive brown patterns of gray (Meal Moth) patterns on wings Often found in traps, similar in size to NOW Source: UC IPM Guidelines For Technical Training on Monitoring: Contact your Suterra® Representative © 2020 Suterra LLC.
    [Show full text]
  • Interrelation of Mating, Flight, and Fecundity in Navel Orangeworm Females Angela M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Entomology Publications Entomology 4-2018 Interrelation of mating, flight, and fecundity in navel orangeworm females Angela M. Rovnyak Iowa State University Charles S. Burks U.S. Department of Agriculture Aaron J. Gassmann Iowa State University, [email protected] Thomas W. Sappington Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/ent_pubs Part of the Agricultural Economics Commons, Entomology Commons, and the Population Biology Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/484. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Interrelation of mating, flight, and fecundity in navel orangeworm females Abstract The an vel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae, Phycitini), is an economically important pest of nut crops in California, USA. Improved management will require better understanding of insect dispersal, particularly relative to when mating occurs. A previous study demonstrated a more robust laboratory flight capacity compared to other orchard moth pests, but it was unclear how mating affects dispersal, and how dispersal affects fecundity. In this study, 1‐ and 2‐day‐old females were allowed to fly overnight on a flight mill either before or after mating, respectively, and were then allowed to oviposit.
    [Show full text]
  • 5 Biology, Behavior, and Ecology of Pests in Other Durable Commodities
    5 Biology, Behavior, and Ecology of Pests in Other Durable Commodities Peter A. Edde Marc Eaton Stephen A. Kells Thomas W. Phillips Introduction biology, behavior, and ecology of the common insect pests of stored durable commodities. Physical ele- Other durable commodities of economic importance ments defined by the type of storage structure, insect besides dry grains include tobacco, spices, mush- fauna, and interrelationships in the storage environ- rooms, seeds, dried plants, horticultural and agro- ment are also discussed. nomic seeds, decorative dried plants, birdseed, dry pet foods, and animal products such as dried meat and fish, fishmeal, horns, and hooves. Similar to dry Life Histories grains, these commodities are typically maintained and Behavior at such low moisture levels that preserving quality by minimizing insect damage can be a significant chal- lenge. Stored commodities may become infested at the processing plant or warehouse, in transit, at the store, or at home. Many arthropod pests of stored commodities are relatively abundant outdoors, but natural host plants before preadaptation to stored products remain unknown. Capable of long flight, they migrate into unprotected warehouses. Adults (larvae) crawl through seams and folds or chew into sealed packages and multiply, diminishing product quality and quantity. Infestations may spread within a manufacturing facility through electrical conduit Figure 1. Adult of the cigarette beetle, Lasioderma serricorne and control panels. (F.), 2 to 4 mm long (from Bousquet 1990). The type of pest observed on a stored product Cigarette Beetle Lasioderma depends on the commodity, but some insects vary widely in their food preferences and may infest a Serricorne (F.) wide range of commodities.
    [Show full text]
  • Moth Species Captured with the Sex Pheromone of Stenoma Catenifer (Lepidoptera: Elachistidae) in Avocado Plantations of Southern Mexico
    Castillo et al.: Moth Species Captured with Stenoma catenifer Sex Pheromone 1111 MOTH SPECIES CAPTURED WITH THE SEX PHEROMONE OF STENOMA CATENIFER (LEPIDOPTERA: ELACHISTIDAE) IN AVOCADO PLANTATIONS OF SOUTHERN MEXICO ALFREDO CASTILLO*, LEOPOLDO CRUZ-LOPEZ AND JAIME GÓMEZ El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5. Tapachula, 30700 Chiapas, Mexico *Corresponding author; E-mail: [email protected] ABSTRACT Moth species trapped using the sex pheromone of Stenoma catenifer (LaSalle) as a lure, were registered at 2 commercial avocado orchards (one consisting of “Hass” and other of “Criollo”) and in wild “Criollo” avocado trees in southern Mexico. Traps were maintained for 1 mo in two seasons (dry and wet) on avocado trees under these 3 production conditions, changing the baits each season. Weekly observations registered no moths in the traps placed in the commercial “Hass” avocado orchard, in contrast to the other 2 sites, where Stenoma cateni- fer and Antaeotricha nictitans males were captured. Stenoma catenifer adults were always observed at the commercial “Criollo” orchard and wild “Criollo” avocado trees during the dry season (fructification period), but never in the wet season (non fruiting period). Under wild conditions A. nictitans was captured during both dry and wet seasons; however, it was never captured during the dry season at the commercial “Criollo” orchard. Populations of both moth species were similar -S. catenifer: 0.3 (wild trees) to 0.7 (orchard); and A. nicti- tans: 0.6 (wild trees) moth/trap/wk- during the dry season, and no differences were observed per species at each locality. The total number of captures per site during the fruiting season decreased significantly -0.9 (1st wk) to 0.2(4th wk) moth/trap/wk- during the observation period.
    [Show full text]
  • Insect Pests of Stored Foods
    Insect pests of stored foods Jeffrey Hahn, Professor and Assistant Extension Entomologist, University of Minnesota Laura Jesse, Extension Entomologist, Iowa State University Phil Pellitteri, Distinguished Faculty Associate, Department of Entomology, University of Wisconsin Insects infesting stored foods are one of the most common household insect problems. The many different kinds of insects that infest stored dried foods are often referred to as "pantry pests." Significance Pantry pests contaminate more food than they consume, and most people find the contaminated products unfit for consumption. Pantry pests are often discovered when they leave infested foods to crawl or fly about the house. They often accumulate in pots, pans or dishes or on window sills. Fortunately, they do not bite or sting people or pets nor do they feed on or damage the house structure or contents. What do they eat? Nearly all dried food products are susceptible to insect infestation, including cereal products (flour, cake mix, cornmeal, rice, spaghetti, crackers, and cookies); seeds such as dried beans and popcorn; nuts; chocolate; raisins and other dried fruits; spices; powdered milk; tea; and cured meats. Non-food items that may be infested include birdseed, dry pet food, ornamental seed and dried plant displays, ornamental corn, dried flowers, garden seeds, potpourri, and rodent baits. Stored food insects are most likely to infest products that have been opened but are also capable of penetrating unopened paper, thin cardboard, and plastic, foil, or cellophane-wrapped packages. They may chew their way into packages or crawl in through folds and seams. Insects within an infested package begin multiplying and can spread to other stored foods not only in the same area but in other rooms in a home.
    [Show full text]
  • Moths of the Kingston Study Area
    Moths of the Kingston Study Area Last updated 30 July 2015 by Mike Burrell This checklist contains the 783 species known to have occurred within the Kingston Study. Major data sources include KFN bioblitzes, an earlier version created by Gary Ure (2013) and the Queen’s University Biological Station list by Kit Muma (2008). For information about contributing your sightings or to download the latest version of this checklist, please visit: http://kingstonfieldnaturalists.org/moths/moths.html Contents Superfamily: Tineoidea .................................................................................................................................................... 5 Family: Tineidae ........................................................................................................................................................... 5 Subfamily: Tineinae .................................................................................................................................................. 5 Family: Psychidae ......................................................................................................................................................... 5 Subfamily: Psychinae ................................................................................................................................................ 5 Superfamily: Gracillarioidea ............................................................................................................................................. 5 Family: Gracillariidae ...................................................................................................................................................
    [Show full text]
  • Species on the Menu of a Generalist
    Molecular Ecology (2009) 18, 2532–2542 doi: 10.1111/j.1365-294X.2009.04184.x SpeciesBlackwell Publishing Ltd on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey ELIZABETH L. CLARE,* ERIN E. FRASER,† HEATHER E. BRAID*, M. BROCK FENTON† and PAUL D. N. HEBERT* *Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G2W1, †Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7 Abstract One of the most difficult interactions to observe in nature is the relationship between a predator and its prey. When direct observations are impossible, we rely on morphological classification of prey remains, although this is particularly challenging among generalist predators whose faeces contain mixed and degraded prey fragments. In this investigation, we used a poly- merase chain reaction and sequence-based technique to identify prey fragments in the guano of the generalist insectivore, the eastern red bat (Lasiurus borealis), and evaluate several hypotheses about prey selection and prey defences. The interaction between bats and insects is of significant evolutionary interest because of the adaptive nature of insect hearing against echolocation. However, measuring the successes of predator tactics or particular prey defences is limited because we cannot normally identify these digested prey fragments beyond order or family. Using a molecular approach, we recovered sequences from 89% of the fragments tested, and through comparison to a reference database of sequences, we were able to identify 127 different species of prey. Our results indicate that despite the robust jaws of L. borealis, most prey taxa were softer-bodied Lepidoptera.
    [Show full text]
  • 2018 BIODIVERSITY REPORT City of Los Angeles
    2018 BIODIVERSITY REPORT City of Los Angeles Appendix B: Singapore Index Methods for Los Angeles Prepared by: Isaac Brown Ecology Studio and LA Sanitation & Environment Appendix B Singapore Index Detailed Methods Appendix B Table of Contents Appendix B Table of Contents ...................................................................................................... i Appendix B1: Singapore Index Indicator 1 ................................................................................. 1 Appendix B2: Singapore Index Indicator 2 ................................................................................. 6 Appendix B3: Singapore Index Indicator 3 ................................................................................10 Appendix B4: Singapore Index Indicator 4 ................................................................................16 Appendix B5: Singapore Index Indicator 5 ................................................................................39 Appendix B6: Singapore Index Indicator 6 ................................................................................44 Appendix B7: Singapore Index Indicator 7 ................................................................................52 Appendix B8: Singapore Index Indicator 8 ................................................................................55 Appendix B9: Singapore Index Indicator 9 ................................................................................58 Appendix B10: Singapore Index Indicator 10 ............................................................................61
    [Show full text]
  • Light-Trap Catch of Harmful Microlepidoptera Species in Connection with Polarized Moonlight and Collecting Distance
    Journal of Advanced Laboratory Research in Biology E-ISSN: 0976-7614 Volume 4, Issue 4, October 2013 PP 118-127 https://e-journal.sospublication.co.in Review Article Light-trap Catch of Harmful Microlepidoptera Species in Connection with Polarized Moonlight and Collecting Distance Nowinszky L.*, and Puskás J. *University of West Hungary, H-9701-Szombathely, Károlyi Gáspár Square 4, Hungary, Europe. Abstract: The paper deals with light-trap catch of 25 Microlepidoptera species depending on the polarized moonlight and collecting distance. The catching data were chosen from the 27 stations of the Hungarian National Light-trap Network and from the years between 1959 and 1961. Relative catch values were calculated from the catching data per stations and swarming. They are ranged and averaged in the phase angle divisions. The catching peak of ten species is in First Quarter, another ten species have the peak in the First Quarter and Last one, and only in two cases, the peak is in Last Quarter. Then there is the maximum ratio of polarized moonlight. Catching peak of only three species is in connection with the collecting distance when is the greatest of collection distance. Keywords: Microlepidoptera, Light-Trap, Moon Phases, Polarized Moonlight, Catching Distance. 1. Introduction No scientist could give a provable answer to this question in recent decades. Some authors find an The Hungarian light trap network (Jermy, 1961), explanation by accepting the theory of the impact of a has been operating since the 1950s, in recent decades collecting distance, others refer to decreased activity. value of materials provided invaluable scientific entomological research base, prognostics of plant 1.1 Moonlight inhibits flight's activity protection and environmental research (Nowinszky, According to Edwards (1961), an estimate of the 2003).
    [Show full text]
  • Evaluation of Pathways for Exotic Plant Pest Movement Into and Within the Greater Caribbean Region
    Evaluation of Pathways for Exotic Plant Pest Movement into and within the Greater Caribbean Region Caribbean Invasive Species Working Group (CISWG) and United States Department of Agriculture (USDA) Center for Plant Health Science and Technology (CPHST) Plant Epidemiology and Risk Analysis Laboratory (PERAL) EVALUATION OF PATHWAYS FOR EXOTIC PLANT PEST MOVEMENT INTO AND WITHIN THE GREATER CARIBBEAN REGION January 9, 2009 Revised August 27, 2009 Caribbean Invasive Species Working Group (CISWG) and Plant Epidemiology and Risk Analysis Laboratory (PERAL) Center for Plant Health Science and Technology (CPHST) United States Department of Agriculture (USDA) ______________________________________________________________________________ Authors: Dr. Heike Meissner (project lead) Andrea Lemay Christie Bertone Kimberly Schwartzburg Dr. Lisa Ferguson Leslie Newton ______________________________________________________________________________ Contact address for all correspondence: Dr. Heike Meissner United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine Center for Plant Health Science and Technology Plant Epidemiology and Risk Analysis Laboratory 1730 Varsity Drive, Suite 300 Raleigh, NC 27607, USA Phone: (919) 855-7538 E-mail: [email protected] ii Table of Contents Index of Figures and Tables ........................................................................................................... iv Abbreviations and Definitions .....................................................................................................
    [Show full text]
  • Stored Grain Insect Reference March 2015
    Abstract Five primary pests cause most of the insect damage to grain in storage and shipment. These are the granary weevil, the rice weevil, the maize weevil, the lessor grain borer or Australian wheat weevil, and the Angoumois grain moth. Other insect species or groups of species described in this handbook can cause great damage to grain if storage conditions are unusually favorable for their increase. Yet, if grain in the unbroken kernel remains unaffected by the five primary pests, it is not likely that any other insect will damage it appreciably in commercial storage or shipment, except possibly the khapra beetle. The secondary pests are mostly surface feeders in both the adult and larval stages. Some of them may eat into kernels of grain and lie hidden there, but most of them feed on grain dust or broken surfaces of kernels exposed by either mechanical injury to the grain in handling or by feeding of the five primary grain pests with which they are usually associated.Therefore the secondary pests can be largely removed by grain-cleaning operations. Except for the lessor grain borer, the larvae or grubs of the primary insect pests are not ordinarily capable of a free existence outside the kernel. they live entirely within the kernel, where they feed unseen and usually unsuspected. They cannot be removed by ordinary cleaning machinery and must be controlled by other means. Prepared by the Federal Grain Inspection Service United States Department of Agriculture This reference slightly revises Agricultural Handbook 500, “Stored-Grain
    [Show full text]