Insect Pests of Stored Foods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insect Pests of Stored Grain Blog
Insect Pests of Stored Grain Insect Pest Population Potential • Insects are 1/16 to ½ inch depending on the species. • Large numbers insects in small amounts of debris. • 500 female insects • each female produces 200 offspring • 10 million insects in two generations. Adapted from the Penn State University Agronomy Guide Store Grain Insects Economic Damage • Lose up to 10% of the grain weight in a full storage bin • grain bin containing 30,000 bushels of corn valued at $3.00 per bushel would lose $9,000 • The loss does not include dockage or the cost of eliminating the insects from the grain. Adapted from the Penn State University Agronomy Guide Sampling for Bugs Looking for Bugs Docking screens can be used to separate beetles from the grain. Primary Stored Grain Feeders in NYS Weevils • Granary Weevil • Rice Weevil • Maize Weevil Beetles • Lesser Grain Borer Moths • Angoumois grain moth Weevils Have Snouts! Snout No Snout Gary Alpert, Harvard University, Bugwood.org Gary Alpert, Harvard University, Bugwood.org Maize Weevil Lesser Grain Borer Granary weevil Sitophilus granarius (L.) • polished, blackish or brown. • 3/16 of an inch long • no wings • Not in the field • longitudinal punctures- thorax • 80-300 eggs laid • One egg per grain kernel • corn, oats, barley, rye, and wheat Clemson University - USDA Cooperative Extension Slide Series , Bugwood.org Rice Weevil (Sitophilus oryzae) • 3/32 of an inch. • reddish brown to black • Small round pits-thorax • Has wings with yellow markings • Lays 80-500 eggs inside of grain • One egg per grain kernel • Start in the field • wheat, corn, oats, rye, Joseph Berger, Bugwood.org barley, sorghum, buckwheat, dried beans Maize Weevil Sitophilus zeamais • Very similar to rice weevil • slightly larger • 1/8 of an inch long • Small round pits on thorax with a mid line. -
Schools Integrated Pest Management (Ipm) for Wasps and Bees
SCHOOLS INTEGRATED PEST MANAGEMENT (IPM) FOR WASPS AND BEES *Important Note* According to the Virginia Pesticide Control Act (Section 3.1-249.53), in order to apply ANY pesticide (including Raid, Round-Up, and other over-the-counter pesticides) in public areas of ANY educational institution, the applicator must first be certified by the Virginia Department of Agriculture and Consumer Services. In other words, it is illegal for uncertified teachers, staff, administrators, or contractors to apply pesticides on school grounds. INTRODUCTION Bees and wasps experience “complete metamorphosis”. This means that they pass Wasps and bees are both beneficial and through four different life stages: egg, larva, problematic. Wasps, being predators, play pupa, and adult (see Figure 1). Individuals an important role in the control of other pest that are newly hatched are termed “larvae”. insects. Bees are essential pollinators of Larvae are blind and legless. After the plants and producers of products such as larval stage, they become pupae. The pupal honey and wax. Both vigorously defend stage is a non-feeding, immobile stage their nests and utilize stinging as their wherein the larvae transform into adults. primary defense mechanism. Although the Finally, the bees and wasps emerge from the sting of a bee or wasp is painful, it is usually pupae as fully developed adults. not life threatening. However, some individuals are extremely sensitive to the sting’s venom and may experience fatal allergic reactions. BIOLOGY AND IDENTIFICATION Bees and wasps are grouped together into the same order of insects, Hymenoptera. For the purposes of this publication the term “wasps” refers to hornets, yellowjackets, paper wasps, mud daubers, digger wasps, cicada killers, and any other wasp species that frequently are a problem around structures. -
Micro-Moth Grading Guidelines (Scotland) Abhnumber Code
Micro-moth Grading Guidelines (Scotland) Scottish Adult Mine Case ABHNumber Code Species Vernacular List Grade Grade Grade Comment 1.001 1 Micropterix tunbergella 1 1.002 2 Micropterix mansuetella Yes 1 1.003 3 Micropterix aureatella Yes 1 1.004 4 Micropterix aruncella Yes 2 1.005 5 Micropterix calthella Yes 2 2.001 6 Dyseriocrania subpurpurella Yes 2 A Confusion with fly mines 2.002 7 Paracrania chrysolepidella 3 A 2.003 8 Eriocrania unimaculella Yes 2 R Easier if larva present 2.004 9 Eriocrania sparrmannella Yes 2 A 2.005 10 Eriocrania salopiella Yes 2 R Easier if larva present 2.006 11 Eriocrania cicatricella Yes 4 R Easier if larva present 2.007 13 Eriocrania semipurpurella Yes 4 R Easier if larva present 2.008 12 Eriocrania sangii Yes 4 R Easier if larva present 4.001 118 Enteucha acetosae 0 A 4.002 116 Stigmella lapponica 0 L 4.003 117 Stigmella confusella 0 L 4.004 90 Stigmella tiliae 0 A 4.005 110 Stigmella betulicola 0 L 4.006 113 Stigmella sakhalinella 0 L 4.007 112 Stigmella luteella 0 L 4.008 114 Stigmella glutinosae 0 L Examination of larva essential 4.009 115 Stigmella alnetella 0 L Examination of larva essential 4.010 111 Stigmella microtheriella Yes 0 L 4.011 109 Stigmella prunetorum 0 L 4.012 102 Stigmella aceris 0 A 4.013 97 Stigmella malella Apple Pigmy 0 L 4.014 98 Stigmella catharticella 0 A 4.015 92 Stigmella anomalella Rose Leaf Miner 0 L 4.016 94 Stigmella spinosissimae 0 R 4.017 93 Stigmella centifoliella 0 R 4.018 80 Stigmella ulmivora 0 L Exit-hole must be shown or larval colour 4.019 95 Stigmella viscerella -
Life History of Immature Maize Weevils (Coleoptera: Curculionidae) on Corn Stored at Constant Temperatures and Relative Humiditi
Popur,erroN Ecor,ocv Life History of Immature Maize Weevils (Coleoptera: Curculionidae)on Corn Storedat Constant Temperaturesand Relative Humidities in the Laboratorv JAMESE. THRONE Sto re d- P ro a" " t I" "L::1, "8llTr%?torv'u s D A-A Rs' ffi fi:Tfr ff#l:t.t ABSTRACTLire historr";itiff*""ii?1",1,"#'*t"tilulitrl f"tit)r", zeamaisMotschursky, was studied at 10-40'C and 4T76Vo RH. The optimal quantity of corn for minimizing density effects and the optimal observation frequency for minimizing disturbance effects were determined at 30'C and 75Vo RH. The quantity of corn (32-256 g) provided to five females ovipositing for 24 h did not affect duration of development, but the number of progeny produced increased asymptotically as the quantity of corn provided increased. Frequency of observation (from l- to l4-d intervals) did not affect duration of development or number of progeny produced. Using moisture contents measured in the life history study, an equation was developed for predicting equilibrium moisture content of corn from temperature and relative humidity. Duration of immature development did not vary with sex, but did vary with test. This suggests that insect strain or chemical composition of the corn must be included as factors in a model predicting effects of environment on duration of immature development. Survival from egg to adult emergence was greatest at 25'C. Sex ratio of emerging adults did not differ from l:1. The number of multiply-infested kernels was low at all environmental conditions, and survival from egg to adult emergence in these kernels averaged L8Vo. -
Control Strategies and Breeding Efforts in Sorghum for Resistance to Storage Weevils
Vol. 11(33), pp. 3065-3073, 18 August, 2016 DOI: 10.5897/AJAR2016.11164 Article Number: B656E4B60029 African Journal of Agricultural ISSN 1991-637X Copyright ©2016 Research Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Review Control strategies and breeding efforts in sorghum for resistance to storage weevils Maletsema Alina, Mofokeng Agricultural Research Council-Grain Crops Institute, Private Bag X1251, Potchefstroom, 2520, South Africa. Received 29 April, 2016; Accepted 2 June, 2016 Sorghum (Sorghum bicolor L. Moench) is one of the main staple cereal crops grown worldwide. It is used for food, feed, fodder and bio-ethanol. Biotic and abiotic challenges are the major constraints of the crop. Among the biotic constraints, weevil attack is the most devastating causing yield reduction ranging between 15 and 77%. This paper highlights control strategies and progresses of breeding sorghum towards improved yield and weevil resistance. The use of resistant varieties is an economically feasible, technically easy and environmentally friendly alternative to minimize losses due to storage insect pests. Breeding for post-harvest insect pest resistance is the most important component to improve yield and reduce the impact of weevils. Also to combine resistance to post- harvest insect pests with other desirable plant characters such as high yield, and good quality to provide the basic foundation on which to build an integrated pest management system. Estimation of combining ability to resistance to weevils in sorghum helps in selection of good combiners, and the nature of gene action involved. Marker assisted breeding could have a complementary role in sorghum breeding for introgression of resistance genes and their fast enhancement in succeeding generations in the breeding programmes. -
Biological Pest Control
■ ,VVXHG LQ IXUWKHUDQFH RI WKH &RRSHUDWLYH ([WHQVLRQ :RUN$FWV RI 0D\ DQG -XQH LQ FRRSHUDWLRQ ZLWK WKH 8QLWHG 6WDWHV 'HSDUWPHQWRI$JULFXOWXUH 'LUHFWRU&RRSHUDWLYH([WHQVLRQ8QLYHUVLW\RI0LVVRXUL&ROXPELD02 ■DQHTXDORSSRUWXQLW\$'$LQVWLWXWLRQ■■H[WHQVLRQPLVVRXULHGX AGRICULTURE Biological Pest Control ntegrated pest management (IPM) involves the use of a combination of strategies to reduce pest populations Steps for conserving beneficial insects Isafely and economically. This guide describes various • Recognize beneficial insects. agents of biological pest control. These strategies include judicious use of pesticides and cultural practices, such as • Minimize insecticide applications. crop rotation, tillage, timing of planting or harvesting, • Use selective (microbial) insecticides, or treat selectively. planting trap crops, sanitation, and use of natural enemies. • Maintain ground covers and crop residues. • Provide pollen and nectar sources or artificial foods. Natural vs. biological control Natural pest control results from living and nonliving Predators and parasites factors and has no human involvement. For example, weather and wind are nonliving factors that can contribute Predator insects actively hunt and feed on other insects, to natural control of an insect pest. Living factors could often preying on numerous species. Parasitic insects lay include a fungus or pathogen that naturally controls a pest. their eggs on or in the body of certain other insects, and Biological pest control does involve human action and the young feed on and often destroy their hosts. Not all is often achieved through the use of beneficial insects that predacious or parasitic insects are beneficial; some kill the are natural enemies of the pest. Biological control is not the natural enemies of pests instead of the pests themselves, so natural control of pests by their natural enemies; host plant be sure to properly identify an insect as beneficial before resistance; or the judicious use of pesticides. -
MONITORING GUIDE Amyelois Transitella Materials and Methods
Navel Orangeworm Navel OrangewormAlmonds (NOW) & Pistachios MonitoringAmyelois Guidelines transitella For Monitoring Mating Disruption Performance MONITORING GUIDE Amyelois transitella Materials and Methods Traps Suterra® Large Plastic Delta Trap (shown at right) Lures Egg Traps with almond meal bait for females Trap Density At least 1 pheromone trap per 5 to 40 acres; minimum of 2 per block Refer to UC IPM guidelines or your PCA for recommendaƟons 2 - 4 egg traps per each pheromone trap Suterra® Large Plastic Good Place NOW pheromone lure in the Large Plastic Delta Delta Trap Practices Trap every 5-6 weeks Check traps weekly and replace dirty liners Check egg traps weekly and record egg presence; remove eggs with toothbrush; replace almond meal bait monthly Additional Use Egg Traps to determine local biofix; this can provide Techniques the starting point for accumulating Degree Days Use Degree Day models to track pest phenology and plan treatments ® Increase trap density in known “hot spots” Suterra Egg Trap Sources: UC IPM Guidelines UC IPM Degree Day Models: hƩp://ipm.ucanr.edu/WEATHER/index.html Snout-like projection Adult Pest Identification Adult Males Snout-like projection at front of head Length 10-15mm (1/4 - 3/4 in.) NOW appears in light or dark gray form Forewings have indistinct patterns of shades of gray, in light or dark form Hind wings are plain gray color Source: UC IPM Guidelines Common Misidentified Insects Forewings have indistinct Pyralis Farinalis Easy to distinguish: Distinctive brown patterns of gray (Meal Moth) patterns on wings Often found in traps, similar in size to NOW Source: UC IPM Guidelines For Technical Training on Monitoring: Contact your Suterra® Representative © 2020 Suterra LLC. -
Effects of Essential Oils from 24 Plant Species on Sitophilus Zeamais Motsch (Coleoptera, Curculionidae)
insects Article Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae) William R. Patiño-Bayona 1, Leidy J. Nagles Galeano 1 , Jenifer J. Bustos Cortes 1 , Wilman A. Delgado Ávila 1, Eddy Herrera Daza 2, Luis E. Cuca Suárez 1, Juliet A. Prieto-Rodríguez 3 and Oscar J. Patiño-Ladino 1,* 1 Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia-Sede Bogotá, Bogotá 111321, Colombia; [email protected] (W.R.P.-B.); [email protected] (L.J.N.G.); [email protected] (J.J.B.C.); [email protected] (W.A.D.Á.); [email protected] (L.E.C.S.) 2 Department of Mathematics, Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] 3 Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] * Correspondence: [email protected] Simple Summary: The maize weevil (Sitophilus zeamais Motsch) is a major pest in stored grain, responsible for significant economic losses and having a negative impact on food security. Due to the harmful effects of traditional chemical controls, it has become necessary to find new insecticides that are both effective and safe. In this sense, plant-derived products such as essential oils (EOs) appear to be appropriate alternatives. Therefore, laboratory assays were carried out to determine the Citation: Patiño-Bayona, W.R.; chemical compositions, as well as the bioactivities, of various EOs extracted from aromatic plants on Nagles Galeano, L.J.; Bustos Cortes, the maize weevil. The results showed that the tested EOs were toxic by contact and/or fumigance, J.J.; Delgado Ávila, W.A.; Herrera and many of them had a strong repellent effect. -
Preventing Pests and Pathogens in Honey Bee Colonies
BestBest ManagementManagement PracticesPractices toto PreventPrevent thethe SpreadSpread ofof PestsPests andand PathogensPathogens inin HoneybeeHoneybee ColoniesColonies Photos by Rob Snyder (used with permission) Many pest and disease problems in managed honeybee hives can be avoided by practic- ing good sanitation and cultural controls. Prevention is the first and best line of defense against organisms that can harm your colonies. Sanitation Tools should be sterilized with flame and scrubbed with isopropyl alcohol after working in or inspecting a hive. Avoid using other beekeeper’s tools that have not been properly cleaned. Clothing and gloves that are exposed to a hive where disease is suspected needs to be scrubbed and disinfected with 10% bleach solution or disposed. If not using gloves, rinse hands with rubbing alcohol then scrub with soap and water after working in a hive that appears to have been infected with disease. When disease is suspected, practice the previously mentioned steps between working hive to hive in the same beeyard. Cultural Controls When purchasing a bee colony, find out if the seller has been treating with antibiotics for patho- gens. Treated colonies could already be infected with disease, even in the absence of symptoms. Never switch frames from a box that is suspected to have pests and pathogens to a box without such problems. Do not purchase or accept used frames, boxes, or other beekeeping equipment that have not been inspected and certified by your county’s bee inspector. Boxes infected with American Foulbrood should be marked with the letters “AFB” followed by the year to prevent unintentional contamination. Equipment that has been infected with American Foulbrood must be treated or burned and buried. -
PESTS of STORED PRODUCTS a 'Pest of Stored Products' Can Refer To
PESTS OF STORED PRODUCTS A ‘pest of stored products’ can refer to any organism that infests and damages stored food, books and documents, fabrics, leather, carpets, and any other dried or preserved item that is not used shortly after it is delivered to a location, or moved regularly. Technically, these pests can include microorganisms such as fungi and bacteria, arthropods such as insects and mites, and vertebrates such as rodents and birds. Stored product pests are responsible for the loss of millions of dollars every year in contaminated products, as well as destruction of important documents and heritage artifacts in homes, offices and museums. Many of these pests are brought indoors in items that were infested when purchased. Others originate indoors when susceptible items are stored under poor storage conditions, or when stray individual pests gain access to them. Storage pests often go unnoticed because they infest items that are not regularly used and they may be very small in size. Infestations are noticed when the pests emerge from storage, to disperse or sometimes as a result of crowding or after having exhausted a particular food source, and search for new sources of food and harborage. Unexplained occurrences of minute moths and beetles flying in large numbers near stored items, or crawling over countertops, walls and ceilings, powdery residues below and surrounding stored items, and stale odors in pantries and closets can all indicate a possible storage pest infestation. Infestations in stored whole grains or beans can also be detected when these are soaked in water, and hollowed out seeds rise to the surface, along with the adult stages of the pests, and other debris. -
Inquiries of Entomophagy: Developing and Determining the Efficacy of Youth-Based Curriculum Dakota Vaccaro the University of Montana, [email protected]
University of Montana ScholarWorks at University of Montana Undergraduate Theses and Professional Papers 2019 Inquiries of Entomophagy: Developing and Determining the Efficacy of Youth-Based Curriculum Dakota Vaccaro The University of Montana, [email protected] Kaitlyn Anderson The University of Montana, [email protected] Lauren Clark The University of Montana Ellie Gluhosky The University of Montana, [email protected] Sarah Lutch The University of Montana, [email protected] See next page for additional authors Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/utpp Recommended Citation Vaccaro, Dakota; Anderson, Kaitlyn; Clark, Lauren; Gluhosky, Ellie; Lutch, Sarah; and Lachman, Spencer, "Inquiries of Entomophagy: Developing and Determining the Efficacy of Youth-Based Curriculum" (2019). Undergraduate Theses and Professional Papers. 226. https://scholarworks.umt.edu/utpp/226 This Thesis is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in Undergraduate Theses and Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Author Dakota Vaccaro, Kaitlyn Anderson, Lauren Clark, Ellie Gluhosky, Sarah Lutch, and Spencer Lachman This thesis is available at ScholarWorks at University of Montana: https://scholarworks.umt.edu/utpp/226 University of Montana ScholarWorks at University of Montana University of Montana Conference on Undergraduate Research (UMCUR) Inquiries of Entomophagy: Developing and Determining the Efficacy of Youth-Based Curriculum Dakota Vaccaro Kaitlyn Anderson Lauren Clark Ellie Gluhosky Sarah Lutch See next page for additional authors Let us know how access to this document benefits ouy . -
Screening of Promising Maize Genotypes Against Maize Weevil (Sitophilus Zeamais Motschulky) in Storage Condition
Journal of Maize Research and Development (2017) 3 (1):108-119 ISSN: 2467-9291 (Print), 2467-9305 (Online) DOI: http://dx.doi.org/10.3126/jmrd.v3i1.18927 Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky) in storage condition 1Ram B Paneru and 2Resham B Thapa 1Entomology Division, Khumaltar, Lalitpur 2Agriculture and Forestry University, Rampur, Chitwan, Nepal *Corresponding author email: [email protected] ORCID ID:https://orcid.org/0000-0003-0684-6739 Received: August 27, 2017; Revised: September 19, 2017; Accepted: December 25, 2017 © Copyright 2017 Paneru and Thapa This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. ABSTRACT The maize weevil (Sitophilus zeamais Motschulsky) is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD) with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C). The findings showed that the maize genotypes had different response to maize weevil damage ranging from susceptible to tolerance. The genotypes Manakamana-3, Lumle White POP Corn and Ganesh-2 showed their tolerance to S. zeamais as evidenced by lower number of weevil emerged/attracted, lower amount of grain debris release and lower proportion of bored grains, while the genotype ZM-627 was the most susceptible to weevil damage in both tests. The other remaining genotypes were intermediate types.