United States Patent (19) 11 Patent Number: 5,695,973 Subbiah 45 Date of Patent: Dec

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 5,695,973 Subbiah 45 Date of Patent: Dec USOO5695973A United States Patent (19) 11 Patent Number: 5,695,973 Subbiah 45 Date of Patent: Dec. 9, 1997 54 ISOLATED ALCOHOLDEHYDROGENASE T.W. Pfeiffer et al., "Inheritance of a Lipoxygenase-1 Alloz PRODUCING MIOLD yme in Soybean.” Crop.Sci. 33,691-693 (1993). A. Hatanaka et al., “Distribution of and Enzyme System 75 Inventor: Wen Subbiah, Edenton, N.C. Producing cis-3-Hexenal and n-Hexenal From Linoleic and 73 Assignee: R.J. Reynolds Tobacco Company, Linoleic Acids in Some Plants.” Phytochemistry 17, Winston-Salem, N.C. 869-872 (1978). A. Hatanaka et al., "Fatty Acid Hydroperoxide Lyase in 21 Appl. No.: 674,920 Plant Tissues,” in American Chemical Society, Biogenera tion of Aromas, 167-75 (1986). 22 Filed: Jul. 3, 1996 A. Hatanaka, "Biosynthesis of Leaf Alcohol.” Bull. Inst. 1511 Int. Cl. .............. C12P 7/02; C12N 1/00 Chem. Res., 61(2) 180-192 (1983). 52 U.S. Cl. .......................... 435/155; 435/134; 435/911; J. Sekiya et al., “Distribution of Lipoxygenase and Hydro 435/254.1; 426/52 peroxide Lyase in the Leaves of Various Plant Species.” 58) Field of Search ................................. 435/155, 134, Phytochemistry 22(9), 1867-1869 (1983). 435/911, 254.1; 426/52 E. Gotz-Schmidt et al., "CVolatiles in Homogenates from Green Leaves: Localization of Hydroperoxide Lyase Activ 56 References Cited ity.” Lebensm-Wiss Technol. 19(2), 152-155 (1986). U.S. PATENT DOCUMENTS A.J. McLeod et al., "Formation of (E)-Hex-2-enal and 3,839,457 10/1974 Jouffret ................................... 260601 (Z)-Hex-3-en-1-ol by Fresh Leaves of Brassica olera 3.962,354 6/1976 Dahil, Jr. ........ ... 260/638 cea,” J. Agric. Food. Chem. 27(3), 469–75 (1979). 4,769.243 9/1988 Kanisawa et al. ........................ 426/33 R. Saijo et al., “Increase of Cis-3-Hexen-1-ol Content in 4,806,379 2/1989 Goers et al. ............ ... 42.67650 Tea Leaves Following Mechanical Injury.” Phytochemistry 5,017,386 5/1991 Hildebrand et al. ...................... 426/18 5,464,761 11/1995 Muller et al. ........................... 435/47 14, 181-182 (1975). E.J. Stone et al. "Formation of Aldehydes and Alcohols in FOREIGN PATENT DOCUMENTS Tomato Fruit From U-'C-Labeled Linolenic and Linoleic 89 1290 4f1991 France. Acids.” J. Food. Sci. 40, 1138-1141 (1978). 93(24644 12/1993 WIPO. A. Hatanaka et al., "Alcohol Dehydrogenase from Thea OTHER PUBLICATIONS sinensis Seeds.” Agr: Biol. Chem, 38(10), 1835-1844 (1974). Pelczar et al., Fungi: the Molds, In: Microbiology, 4th A. Hatanaka et al., “Formation of Cis-3-Hexenal, edition, McGraw-Hill Book Company, pp. 285-301, 1977. Trans-2-Hexenal and Cis-3-Hexenal In Macerated Thea Charton et al., Specifities of immobilized Geotrichum can sinensis Leaves,” Phytochemistry 12, 2341-2346 (1973). didum CMICC 335426 lipases A and B in hydrolysis and ester sysnthesis reactions in organic solvents, Enzyme A. Hatanaka et al., “Purification and Properties of Alcohol Microb. Technol., vol. 15, pp. 489-493, 1993. Dehydrogenase from Tea Seeds,” Agr. Biol. Chem, 36(11), H.W. Gardner, "Flavors and Bitter Tastes from Oxidation of 2033-2035 (1972). Lipids by Enzymes,” in Flavor Chemistry of Fats and Oils, A. Hatanaka et al., “Phytochemical somerization of Leaf 189–206 (eds. D.B. Min and T.H. Smouse, 1985). Aldehyde,” Agr: Biol. Chem, 36(7), 1263-1264 (1972). J. Sekiya et al., "Seasonal Changes in Activities of Enzymes Responsible for the Formation of Caldehydes and R.T. Major et al., “Formation of 2-Hexenal From Linolenic C-alcohols in Tea Leaves, and the Effects of Environmental Acid By Macerated Ginkgo Leaves," Phytochemistry 11, Temperatures on the Enzyme Activities." Plant Cell. 611-617 (1972). Physiol. 25(2)269-280 (1984). Sigma Catalog, p. 74 (1992). Primary Examiner-Leon B. Lankford, Jr. The New Royal Horticultural Society Dictionary of Garden Assistant Examiner-Christopher R. Tate ing vol. 1, 144-145 (ed. A. Huxley, 1992). Attorney, Agent, or Firm-Myers Bigel Sibley & Sajovec, J.M. Olias et al., “Aroma of Virgin Olive Oil: Biogenesis of LLP the Green Odor Notes,” J. Agric. Food Chem, 41, 57 ABSTRACT 2368-2373 (1993). D.R. Phillips et al., “Partial Purification and Properties of a The present invention relates to a microorganism capable of Cis-3:Trans-2-Enal somerase From Cucumber Fruit,” producing alcohol dehydrogenase (ADH). The microorgan Phytochemistry 18, 401–404 (1979). ism of the invention is a non-yeast mold obtained from the J. Sekiya et al., "Cis-3-Hexenal and n-Hexanal Formation kale plant. In a preferred embodiment of the invention, the From Linolenic And Linoleic Acids in Alfalfa Cells Cultured mold is Geotrichium candidian M 369326. The microor In Vitro,” Plant Science Letters 19, 165-169 (1977). ganism of the invention is particularly useful in the green B.O. de Lumen et al., “Formation of Volatile Flavor Com note processing industry as a substitute for yeast. For pounds In Green Beans From Linoleic Acid and Linolenic example, the microorganism is useful as a substitute for Acids,” J. Food Sci. 43(3), 698-702 (1978). yeast in a process of converting a leaf aldehyde to a leaf J. Sekiya et al., “Fatty Acid Hydroperoxide Lyase in alcohol. Tobacco Celis Cultured In Vitro,” Phytochemistry, 23(11), 2439-2443 (1984). 11 Claims, No Drawings 5,695,973 1. 2 SOLATED ALCOHOLDEHYDROGENASE alcohol dehydrogenase (ADH), instead of live yeast. PRODUCING MOLD Accordingly, the present invention provides a non-yeast mold microorganism that is capable of producing alcohol FIELD OF THE INVENTION dehydrogenase (ADH). In one preferred embodiment, the 5 moldis obtained from the kale plant, and in a more preferred The present invention relates to an isolated embodiment, is the strain Geotrichium candidum IMI microorganism, and more specifically to an isolated mold 369326. useful in producing green note compounds. The present invention also provides a process for the BACKGROUND OF THE INVENTION conversion of a leaf aldehyde to a leaf alcohol, comprising 10 contacting the leaf aldehyde with a microorganism capable Leaf alcohol (i.e., cis-3-hexen-1-ol) and leaf aldehyde of producing alcohol dehydrogenase, whereby the microor (i.e., trans-2-hexenal) are present in a wide variety of fresh ganism is a non-yeast mold derived from the kale plant, and leaves, vegetables and fruits. These compounds are respon under conditions sufficient to support the conversion reac sible for a so-called "green aroma," "green odor," "fresh tion. In one preferred embodiment of the present invention, note,” or "green note.” Related compounds present in many 15 the microorganism is derived from the kale plant, and in a plants include trans-2-hexenol, cis-2-hexenol, trans-3- more preferred embodiment, is the strain Geotrichium can hexenol, 1-hexenol, 1-hexenal, and cis-3-hexenal. Green did in IMI 369326. note compounds and uses thereof are set forth by Morris, The present invention also relates to a method for pro Perfumer & Flavorist, Vol. 6, No. 1 (1981) and Clark, viding green note compounds. The process, in one aspect, Perfumer and Flavorist, Vol. 15 (1990). Green note com 20 involves the steps of providing at least one unsaturated fatty pounds exhibit organoleptic characteristics which can be acid, plant biomass having active levels of lipoxygenase and characterized as fresh or grassy in nature. Such compounds hydroperoxide lyase enzymes, and active alcohol dehydro can be used to sharpen and enhance flavored products, such genase in the form of a non-yeast mold capable of producing as those products having fruit flavors. alcoholdehydrogenase. These components are provided as a Green note compounds have been isolated from plants or 25 mixture by simultaneously contacting the fatty acid, plant chemically synthesized, as reported by Bedoukian, Amer: biomass and alcohol dehydrogenase in the presence of an Perf. 78, 31 (1963) and U.S. Pat. No. 3,839,457 to Jouffret. aqueous liquid under conditions sufficient to release lipoxy Green note compounds are present in plant essential oils genase and hydroperoxide lyase from the plantbiomass, and (e.g., sage, citrus, and mint) and have been obtained by allow reaction of the fatty acid with the lipoxygenase, steam distillation of plant material followed by fractional 30 hydroperoxide lyase and alcohol dehydrogenase to provide distillation or "topping” techniques. Green note compounds green note compounds. After the mixture is reacted, the have also been biosynthetically produced, as reported by aqueous phase containing green note compound is collected Muller et al., Ady, Flay. Res. Tech. Symposium (1993); and the green note compound separated from the aqueous Hatanaka et al., Phytochem. 17,869 (1978); Lumen et al., J. phase. Food Sci., 43, 698 (1978); and U.S. Pat. Nos. 4.769.243 to 35 The plant biomass (i.e. plant material), unsaturated fatty Kaniswa et al. and 4,806,379 to Goers et al. acid and alcohol, dehydrogenase are combined in the pres One green note-producing biosynthetic reaction involves ence of an aqueous liquid. The ingredients are most prefer the unsaturated C-6 hydroperoxydismutation of linolenic ably contacted with one another in an essentially simulta acid and is carried out using a series of enzymatic steps. In neous fashion; or the plant material is combined with a particular, lipoxygenase forms a hydroperoxide moiety at a mixture of unsaturated fatty acid, a non-yeast mold that double bond of a fatty acid (e.g. linolenic acid). The enzyme produces ADH, and water. Thus, the unsaturated fatty acid hydroperoxide lyase cleaves the hydroperoxide to produce a is converted to a green note compound. That is, the lipoxy C-6 unsaturated aldehyde, in particular, cis-3-hexen-1-al. genase and fatty acid interact to form a fatty acid Aldehyde isomerase, when present in the plant material and hydroperoxide, which is cleaved by the action of the hydro under certain conditions, catalyzes the formation of trans 45 peroxide lyasetoforman aldehyde, which is converted to an 2-hexenal from the cis-3-hexen-1-al.
Recommended publications
  • Metabolic Engineering Yeast Cells for Medium‑Chained Biofuel Synthesis
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Metabolic engineering yeast cells for medium‑chained biofuel synthesis Li, Xiang 2015 Li, X. (2015). Metabolic engineering yeast cells for medium‑chained biofuel synthesis. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/62904 https://doi.org/10.32657/10356/62904 Downloaded on 02 Oct 2021 17:55:26 SGT METABOLIC ENGINEERING YEAST CELLS FOR MEDIUM METABOLIC ENGINEERING YEAST CELLS FOR MEDIUM-CHAINED BIOFUEL SYNTHESIS - CHAINED BIOFUEL SYNTHESIS LI XIANGLI 201 LI XIANG 5 SCHOOL OF CHEMICAL AND BIOMEDICAL ENGINEERING 2015 METABOLIC ENGINEERING YEAST CELLS FOR MEDIUM-CHAINED BIOFUEL SYNTHESIS LI XIANG LI XIANGLI School of Chemical and Biomedical Engineering A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2015 Acknowledgements ACKNOWLEDGEMENTS Four years at Nanyang Technological University were unforgettable. NTU provided me a platform to pursue my degree and opportunity to get to know the most frontier areas and so many outstanding researchers who generously offered me sincere help. Herein, I would like to extend my deep appreciations to them. First and foremost, I would like to thank my supervisor, Prof. Chen Wei Ning William. He kindly provided me the opportunity to pursue my PhD, which has been a great honor. He has always been so kind and supportive and the family-like atmosphere in our research group really has made the four years enjoyable. His professional guidance, enlightening instructions and patient supervisions supported me in every stage in the process of generating this essay.
    [Show full text]
  • 6.2 Oleate Hydratase
    Study Towards Carotenoid 1,2-Hydratase and Oleate Hydratase as Novel Biocatalysts Aida HISENI Study Towards Carotenoid 1,2-Hydratase and Oleate Hydratase as Novel Biocatalysts PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M Luyben, voorzitter van het College voor promoties, in het openbaar te verdedigen op dinsdag 22 april 2014 om 10:00 uur door Aida HISENI Diplom-Biologin, Heinrich-Heine-Universität Düsseldorf geboren te Doboj, Bosnië en Hercegovina. Dit proefschrift is goedgekeurd door de promotor: Prof. dr. I.W.C.E Arends Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. I.W.C.E. Arends Technische Universiteit Delft, promotor Prof. dr. U. Hanefeld Technische Universiteit Delft Prof. dr. J.H. de Winde Universiteit Leiden Prof. dr. G. Muijzer Universiteit van Amsterdam Prof. dr. R. Wever Universiteit van Amsterdam Dr. L.G. Otten Technische Universiteit Delft Dr. P. Dominguez De Maria Sustainable Momentum Prof. dr. S. de Vries Technische Universiteit Delft, reservelid This project is financially supported by The Netherlands Ministry of Economic Affairs and the B-Basic partner organizations (http://www.b-basic.nl) through B-Basic, a public- private NWO-ACTS programme [Advanced Chemical Technologies for Sustainability (ACTS)]. ISBN Copyright © 2014 by Aida HISENI All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without any prior permission of the copyright owner. To my father Ismet Nukičić Table of Contents 1 General introduction .................................................................................................
    [Show full text]
  • Fatty Acid Oxidation by Lipoxygenase and ß-Oxidation in Germinatíng Barley
    Fatty acid oxidation by lipoxygenase and ß-oxidation in germinatÍng barley Wessel L. Holtman ISBN: 90-802521-7-4 Cover: in collaboration with Marit Boot and peter Hock rH? l---..l Printed by Offsetdrukkerij Ridderprint 8.V., Ridderkerk Fatty acid oxidation by lipoxygenase and ß-oxidation in germinatÍng barley Proefschrift ter verkrijging van de graad van Doctor aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magnificus Dr. W.A. Wagenaar, hoogleraar in de faculteit der Sociale Wetenschappen, volgens het besluit van het College van Dekanen te verdedigen op donderdag26 juni 1997 te klokke 16.15 uur. door Wessel Luitje Holtman geboren te Ten Boer in 1962 Promotiecommissie Promotor Prof. dr, J.W. Kijne Co-promotor dr. A.C. Douma Referenten Prof. dr. G.A. Veldink (Universiteit Utrecht) Prof. dr. D. von Wettstein (V/ashington State University ) Overige leden Prof. dr. J.F. Bol Prof. dr. K.R. Libbenga Prof. dr. P.J. Lea (Lancaster University) Published by : Foundation for Single Cell Research, Leiden, The Netherlands Financial support for the publication of this thesis by the TNO Nutrition and Food Research lnstitute is greatfully acknowledged voor G.O. I. N. CONTENTS Chapter 1 Introduction Chapter 2 ß-Oxidation of fatty acids is linked to the glyoxylate cycle in the aleurone but not in ttre embryo of germinating barley Chapter 3 Monoclonal antibodies for differential recognition of catalase subunits in barley aleurone cells Chapter 4 The ratio of peroxidative to cat¿latic activity of catalase in leaves of barley seedlings is linked to the expression levels of two catalase subunits Chapter 5 Differential expression of lipoxygenase isoenzymes in embryos of germinating barley Chapter 6 Lipoxygenase-2 oxygenates storage lipids in embryos of germinating barley Chapter 7 General and summariztng discussion Samenvatting List of publications Curriculum vitae Chapter 1 Introduction INTRODUCTION Plant seeds store food reserves prior to a period of dormancy or of unfavourable envi¡onmental conditions.
    [Show full text]
  • “Valencia” Orange Juice Over the Harvest Seasons
    Article Changes in Volatile and Non-Volatile Flavor Chemicals of “Valencia” Orange Juice over the Harvest Seasons Jinhe Bai *, Elizabeth A. Baldwin, Greg McCollum, Anne Plotto, John A. Manthey, Wilbur W. Widmer, Gary Luzio and Randall Cameron Received: 25 November 2015; Accepted: 23 December 2015; Published: 4 January 2016 Academic Editor: Christopher J. Smith USDA, ARS, U.S. Horticultural Research Laboratory, 2001 S. Rock Rd, Fort Pierce, FL 34945, USA; [email protected] (E.A.B.); [email protected] (G.M.); [email protected] (A.P.); [email protected] (J.A.M.); [email protected] (W.W.W.); [email protected] (G.L.); [email protected] (R.C.) * Correspondence: [email protected]; Tel: +1-772-462-5880; Fax: +1-772-462-5986 Abstract: Florida “Valencia” oranges have a wide harvest window, covering four months after first reaching the commercial maturity. However, the influence of harvest time on juice flavor chemicals is not well documented, with the exception of sugars and acids. Therefore, we investigated the major flavor chemicals, volatile (aroma), non-volatile (taste) and mouth feel attributes, in the two harvest seasons (March to June in 2007 and February to May in 2012). Bitter limonoid compounds, limonin and nomilin, decreased gradually. Out of a total of 94 volatiles, 32 increased, 47 peaked mid to late season, and 15 decreased. Juice insoluble solids and pectin content increased over the season; however, pectin methylesterase activity remained unchanged. Fruit harvested in the earlier months had lower flavor quality. Juice from later harvests had a higher sugar/acid ratio with less bitterness, while, many important aroma compounds occurred at the highest concentrations in the middle to late season, but occurred at lower concentrations at the end of the season.
    [Show full text]
  • Terpene and Isoprenoid Biosynthesis in Cannabis Sativa
    TERPENE AND ISOPRENOID BIOSYNTHESIS IN CANNABIS SATIVA by Judith Booth B.Sc., The University of King’s College, 2012 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Genome Science and Technology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2020 © Judith Booth, 2020 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Terpene and Isoprenoid Biosynthesis in Cannabis sativa submitted by Judith Booth in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genome Science and Technology Examining Committee: Dr. Joerg Bohlmann, Professor, Michael Smith Laboratories, UBC Supervisor Dr. Anne Lacey Samuels, Professor, Botany, UBC Supervisory Committee Member Dr. Murray Isman, Professor Emeritus, Land and Food Systems, UBC University Examiner Dr. Corey Nislow, Professor, Biochemistry and Molecular Biology, UBC University Examiner Additional Supervisory Committee Members: Dr. Jonathan Page, Adjunct Professor, Botany, UBC Supervisory Committee Member Dr. Reinhard Jetter, Professor, Professor, Botany, UBC Supervisory Committee Member ii Abstract Cannabis sativa (cannabis, marijuana, hemp) is a plant species grown widely for its psychoactive and medicinal properties. Cannabis products were made illegal in most of the world in the early 1900s, but regulations have recently been relaxed or lifted in some jurisdictions, notably Canada and parts of the United States. Cannabis is usually grown for the resin produced in trichomes on the flowers of female plants. The major components of that resin are isoprenoids: cannabinoids, monoterpenes, and sesquiterpenes. Terpene profiles in cannabis flowers can vary widely between cultivars.
    [Show full text]
  • Expression of 9/13 Hydroperoxide Lyase in Cucumber Leaves
    Journal of Undergraduate Research at Minnesota State University, Mankato Volume 9 Article 14 2009 Expression of 9/13 Hydroperoxide Lyase in Cucumber Leaves Samee Ranginwala Minnesota State University, Mankato Follow this and additional works at: https://cornerstone.lib.mnsu.edu/jur Part of the Plant Breeding and Genetics Commons Recommended Citation Ranginwala, Samee (2009) "Expression of 9/13 Hydroperoxide Lyase in Cucumber Leaves," Journal of Undergraduate Research at Minnesota State University, Mankato: Vol. 9 , Article 14. Available at: https://cornerstone.lib.mnsu.edu/jur/vol9/iss1/14 This Article is brought to you for free and open access by the Undergraduate Research Center at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It has been accepted for inclusion in Journal of Undergraduate Research at Minnesota State University, Mankato by an authorized editor of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. Ranginwala: Expression of 9/13 Hydroperoxide Lyase in Cucumber Leaves Expression of 9/13 Hydroperoxide Lyase in Cucumber Leaves By Samee Ranginwala (Chemistry and Geology) Dr. James Rife, Faculty Mentor (Chemistry and Geology) Published by Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato, 2009 1 Journal of Undergraduate Research at Minnesota State University, Mankato, Vol. 9 [2009], Art. 14 Abstract Fatty Acid 9/13-Hydroperoxide Lyase (9/13-HPL) in the cucumber plant is an enzyme that cleaves either 9- or 13-hydroperoxides of polyunsaturated fatty acids to form volatile C9 or C6 aldehydes respectively. Since these aldehydes may play a role in the plant’s defenses against pathogens (K.
    [Show full text]
  • Xnal $750. Bam H
    US 2011 0099668A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0099668A1 Singh et al. (43) Pub. Date: Apr. 28, 2011 (54) EXPRESSING GLKN PLANTS Publication Classification (51) Int. Cl. Inventors: Jasbir Singh, Ottawa (CA); AOIH 5/00 (2006.01) (76) CI2N 5/82 (2006.01) Ghislaine C. Allard, Val des Monts CI2N 15/63 (2006.01) (CA); Leonid V. Savitch, Kanata AOIH I/00 (2006.01) (CA); Rajagopal Subramaniam, CI2N 5/04 (2006.01) Ottawa (CA) C7H 2L/04 (2006.01) (52) U.S. C. ... 800/279; 536/23.1; 800/301; 435/320.1; (21) Appl. No.: 12/151,046 435/419:435/412: 435/.414; 435/417; 435/416; 800/278; 800/298 (22) Filed: May 1, 2008 (57) ABSTRACT The present invention provides, in part, GLK1 nucleic acid Related U.S. Application Data molecules and polypeptides that can be used to confer resis tance to a pathogen in a plant. The present invention also (60) Provisional application No. 60/915,294, filed on May provides methods of detecting disease resistance genes and 1, 2007. plants. Pyu I (8945) EcoRI(876), SacI(8764) Snalt 8752) : xnal $750. Bam H. (8745) 1. Ahal (8739), W Scal (4) SalI (8733). 1 Scal (14) Psi (8731), \ | Scal (24) HindIII (8715), . Scal(34) Psil (8707) 2x P35s NotI(882) EcoRV (8045) XhoI (7948) s \,w \ EW onhancern bar oRF --- Sali (7534). Pyuli (7307) - Koni (7289) pTF101.1 Tvsp - Notl (2415) PyuII (6596) 25 (64.27). LB ClaI(3037) Bell (6190) Bel(5703) ApaL (5626) / Noti (3705) aad A ApaL (4532) ApaL (4034) pBR322 Patent Application Publication Apr.
    [Show full text]
  • The Effect of Metal Composition and Particle Size on Nanostructure-Toxicity in Plants
    BearWorks MSU Graduate Theses Summer 2019 The Effect of Metal Composition and Particle Size on Nanostructure-Toxicity in Plants Natalie Lynn Smith Missouri State University, [email protected] As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Biology Commons, and the Genetics and Genomics Commons Recommended Citation Smith, Natalie Lynn, "The Effect of Metal Composition and Particle Size on Nanostructure-Toxicity in Plants" (2019). MSU Graduate Theses. 3429. https://bearworks.missouristate.edu/theses/3429 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. THE EFFECT OF METAL COMPOSITION AND PARTICLE SIZE ON NANOSTRUCTURE-TOXICITY IN PLANTS A Master’s Thesis Presented to The Graduate College of Missouri State University TEMPLATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Biology By Natalie Lynn Smith August 2019 Copyright 2019 by Natalie Lynn Smith ii THE EFFECT OF METAL COMPOSITION AND PARTICLE SIZE ON NANOSTRUCTURE-TOXICITY IN PLANTS Biology Missouri State University, August 2019 Master of Science Natalie Lynn Smith ABSTRACT Silver nanoparticles (AgNPs) have consistently been shown to have a detrimental effect on bacteria, fungi, and plants.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Development of a New Platform Technology for Plant Cytochrome P450 Fusions
    Development of a new platform technology for plant Cytochrome P450 fusions Julia Schückel PhD Thesis University of York Department of Biology January 2012 ABSTRACT Abstract To date more than 15000 Cytochromes P450 have been identified and named so far, with one third belonging to the plant kingdom. This is a key biochemical resource, providing a wealth of biocatalysts covering a diverse range of chemistries. Characterisation, however, has been greatly hindered by the poor solubility of many P450s, a result of the membrane anchoring region common to all plant P450s. Fusions of plant P450 heme domains to an appropriate reductase without the hydrophobic membrane anchor could provide the basis for developing robust, soluble plant enzyme systems for substrate screens to discover novel activities that are also of benefit to industry. In this project, the two predominantly expressed Arabidopsis reductases ATR1 and ATR2 have been cloned, without the membrane anchor, and expressed in Escherichia coli. These two truncated enzymes have been purified and assessed for activity with ATR2 found to be more active than ATR1. ATR2 was chosen for engineering into a novel plant P450 reductase vector platform for high throughput applications, whereby the P450s can be easily and quickly swapped using ligation independent cloning techniques. Four different plant P450s (CYP93C1, CYP73A5, CYP82E4 and CYP81D8) were selected to validate this technology, and activity for the fusions of CYP93C1 (Isoflavone synthase I from Glycine max) and CYP73A5 (cinnamate-4-hydroxylase from Arabidopsis) with ATR2 have been shown. The presence of CYP73A5 fused to ATR2 was verified through purification and further studies showed that it has to be membrane associated for activity.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • Supplemental Tables 1–9
    [RESEARCH ARTICLE] pH Gradient Mitigation in the Leaf Cell Secretory Pathway Alters the Defense Response of Nicotiana benthamiana to Agroinfiltration Philippe V. Jutras, Frank Sainsbury, Marie-Claire Goulet, Pierre-Olivier Lavoie, Rachel Tardif, Louis-Philippe Hamel, Marc-André D’Aoust, and Dominique Michaud* * Corresponding author ([email protected]) SUPPLEMENTAL TABLES 1–9 PAGE 1 Supplemental Table S1 | Complete list of confidently identified proteins following iTRAQ analysis The complete list of proteins includes more than a thousand entries (see manuscript’s main text for more information on protein identification and selection in main dataset). Details for each entry are provided in Microsoft Excel document available online. PAGE 2 Supplemental Table S2 | The 60 most upregulated proteins in empty vector (EV)-infiltrated leaves relative to non-infiltrated leaves Accession Protein name Ratio P23432 Glucan endo-1,3-beta-glucosidase 21.52 J9XUY3 Kunitz-type protease inhibitor (Fragment) 15.24 K4B8W8 Phospholipase A1-IIgamma-like 9.57 Q50LG4 Suberization-associated anionic peroxidase-like 8.87 D4IHB9 Kunitz-type trypsin inhibitor alpha chain-like 8.15 Q84LQ7 29 kDa chitinase-like thermal hysteresis protein 7.37 A0A0B5GNH2 Endoplasmic reticulum chaperone binding protein 6.66 Q43584 Probable carboxylesterase 15 6.15 K4C2W4 Protein disulfide-isomerase 6.08 P08252 Endochitinase 4 6.02 P07052 Pathogenesis-related R major form 5.96 M1BBJ6 Probable mannitol dehydrogenase 5.60 Q9FR00 Calcium-binding CAST-like 5.47 Q9LW96 Inositol-3-phosphate
    [Show full text]