Xnal $750. Bam H

Total Page:16

File Type:pdf, Size:1020Kb

Xnal $750. Bam H US 2011 0099668A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0099668A1 Singh et al. (43) Pub. Date: Apr. 28, 2011 (54) EXPRESSING GLKN PLANTS Publication Classification (51) Int. Cl. Inventors: Jasbir Singh, Ottawa (CA); AOIH 5/00 (2006.01) (76) CI2N 5/82 (2006.01) Ghislaine C. Allard, Val des Monts CI2N 15/63 (2006.01) (CA); Leonid V. Savitch, Kanata AOIH I/00 (2006.01) (CA); Rajagopal Subramaniam, CI2N 5/04 (2006.01) Ottawa (CA) C7H 2L/04 (2006.01) (52) U.S. C. ... 800/279; 536/23.1; 800/301; 435/320.1; (21) Appl. No.: 12/151,046 435/419:435/412: 435/.414; 435/417; 435/416; 800/278; 800/298 (22) Filed: May 1, 2008 (57) ABSTRACT The present invention provides, in part, GLK1 nucleic acid Related U.S. Application Data molecules and polypeptides that can be used to confer resis tance to a pathogen in a plant. The present invention also (60) Provisional application No. 60/915,294, filed on May provides methods of detecting disease resistance genes and 1, 2007. plants. Pyu I (8945) EcoRI(876), SacI(8764) Snalt 8752) : xnal $750. Bam H. (8745) 1. Ahal (8739), W Scal (4) SalI (8733). 1 Scal (14) Psi (8731), \ | Scal (24) HindIII (8715), . Scal(34) Psil (8707) 2x P35s NotI(882) EcoRV (8045) XhoI (7948) s \,w \ EW onhancern bar oRF --- Sali (7534). Pyuli (7307) - Koni (7289) pTF101.1 Tvsp - Notl (2415) PyuII (6596) 25 (64.27). LB ClaI(3037) Bell (6190) Bel(5703) ApaL (5626) / Noti (3705) aad A ApaL (4532) ApaL (4034) pBR322 Patent Application Publication Apr. 28, 2011 Sheet 3 of 20 D E E E De Vis Avt t e oss A Figure 1D Patent Application Publication Apr. 28, 2011 Sheet 4 of 20 US 2011/0099668A1 NL Athaliana GKAAK2020 Wheat GK1 AO089 A Rice GLKAAK50393 A liaize. GKAAKO 39) th N G R K. N. G Wheat GK1 ABL 0089 Rice GLKAAK5393 Maize GKAAKS392 Athaiiana GK2AAK2012 Maize GK2 Rice GK2 AAKS-394 40 420 43 Figure 1D Patent Application Publication Apr. 28, 2011 Sheet 9 of 20 US 2011/0099668A1 2-6 5-7 Figure 2A WT WT 2-6 5-7 Figure 2B Patent Application Publication Apr. 28, 2011 Sheet 10 of 20 US 2011/0099668A1 Figure 2C Patent Application Publication Apr. 28, 2011 Sheet 11 of 20 US 2011/0099668A1 Patent Application Publication Apr. 28, 2011 Sheet 12 of 20 US 2011/0099668A1 At2g20570 GLKl At 1g09350 Galactino synthase At 1g09500 Cinnamyl alcohol dehydrogenase Atlg3530 PR10 Atlg73260 Trypsin protease inhibitor At lg77960 Phox/Bem p domain protein Atg8060 Lactoylglutathione lyase At2g4 1050 PQ-loop repeat protein At3g28740 Cytochrome P450 At4g37990 ELI3-2 Atlg18870 Isochorismate synthase At4g21910 MATE efflux protein At2g 14610 PR-1 At lg.02450 NPR1 Actin Figure 4 Patent Application Publication Apr. 28, 2011 Sheet 14 of 20 US 2011/0099668A1 Hindl EcoRV -Daz Bluescript Actin promoter ex intron aGLK1 noster Figure 6 TaGLK1 Oe WT AtGLK1 Oe Figure 7 Patent Application Publication Apr. 28, 2011 Sheet 15 of 20 US 2011/0099668A1 i Patent Application Publication Apr. 28, 2011 Sheet 16 of 20 US 2011/0099668A1 LK1 is Null set days postfinoculation Figure 9 Patent Application Publication Apr. 28, 2011 Sheet 17 of 20 US 2011/0099668A1 Figure 10 Patent Application Publication Apr. 28, 2011 Sheet 18 of 20 US 2011/0099668A1 WT 1 2 3 TaGLK1 Oe AtGLK1 Oe Figure 11 Figure 12 Patent Application Publication Apr. 28, 2011 Sheet 19 of 20 US 2011/0099668A1 PvulI(8945) EcoRI (8766) SacI (8764) Koni (8758) SmaI(8752). \ Anal E. RB1R25 (90.51) Ban H Xbal (8739) l Scal (4) SalI(8733) \ Scal (14) Psil (8731), A Scal (24) Hindu (8715) Scal(34) Psil (8707) \ 2x P35s - NotI (882) EcoRV (8045) XhoI (7948) \ w N \ \ Y a re EV enhancern 1 bar o RF Sali (7534). Y. p VS 1 Pvull (7307) ...-Se \ \- Koni (7289) pTF101.1 Twsp y itsy Up --mirNotI (2415) PyuII (6596) T L25 (6427) - B Clal (3087) Bcl(6.190) Bel(5703) - / ApaLI (5626) / | | \, Noti (3705) A. \ aad A | V ApaL (4532) s ApaL (4034) p BR322 FIG. 13A Patent Application Publication Apr. 28, 2011 Sheet 20 of 20 US 2011/0099668A1 LB HindIII Xbal Kpni Bam Hl RB Bar ORF 2X p35S pTF101.1 2X p35S AtGLK Oster pTF101.1 -70S-AtGLK1-noster 1549 kb Figure 13B US 2011/0099668A1 Apr. 28, 2011 EXPRESSING GLKIN PLANTS that it may play a role in temperature stress response and photosynthetic adaptation (Savitch, L. V., et al., 2005, Plant FIELD OF INVENTION Cell Physiol. 46:1525-1539). SUMMARY OF THE INVENTION 0001. The present invention relates to expressing GLK in plants. More specifically, the invention provides GLK1 mol 0006. The present invention relates to expressing GLK in ecules for conferring disease resistance to plants, increasing plants. More specifically, the invention provides GLK1 mol nitrogen status in plants, or both. ecules for conferring disease resistance to plants, increasing nitrogen status in plants, or both. 0007. The present invention provides a method of confer BACKGROUND OF THE INVENTION ring resistance to a pathogen in a plant, the method compris ing: 0002 The economic impact of plant pathogens in relation 0008 i) introducing a nucleic acid molecule encoding a to agriculture and horticulture is considerable. For example, GLK1 polypeptide or fragment or variant thereof into a plant Fusarium Head Blight (FHB) is a major disease of concern cell to produce a transgenic plant cell. Such that the nucleic for Canadian cereals. acid molecule is positioned for expression in the transgenic 0003 Global gene expression analyses suggest that plant cell; and induced disease resistance can result from pathogen or patho 0009 ii) growing a transgenic plant from the transgenic gen derived molecule-induced reprogramming of gene net plant cell, works (Liet al., 2006; Bae et al., 2006). The role of transcrip wherein the GLK1 polypeptide or fragment or variant thereof tion factors in the modulation of these networks has been is over-expressed relative to wild type GLK1 at least 2 fold, whereby the 2 fold over-expression is sufficient to confer Suggested for WRKY domain containing trans-factors (Liet resistance to the pathogen in the plant. al, 2006) and in the slh1 mutation (Naoutoshi et al., 2005). 0010. The GLK1 may comprises the nucleic acid 0004 Non-host resistance is the term used to describe the sequence set forth in SEQ ID NO: 1, a nucleic acid that phenomenon where all members of a plant species exhibit exhibits an identity of from about 70 to about 100% with SEQ resistance to all members of a given pathogen species. Non ID NO:1, or a nucleic acid molecule that hybridizes under host resistance is thought to be multigenic; therefore the conditions of high Stringency to the nucleic acid sequence set inactivation of a single gene may not be sufficient to render a forth in SEQID NO: 1. Furthermore, the GLK1 polypeptide plant Susceptible to a pathogen. Non-host resistance has been may comprise an amino acid sequence Substantially identical studied in Salicylate hydroxylase (NahG) over-expressing to the amino acid sequence set forth in SEQ ID NO: 2. plants, which convert Salicylic acid to catechol and are defec Furthermore, the plant may be selected from the group con tive in non-host response to pathogen. NahG plants expresses sisting of canola, Brassica spp., maize, tobacco, alfalfa, the salicylic acid degrading enzyme salicylate hydroxylase, potato, ginseng, pea, oat, rice, soybean, wheat, barley, Sun resulting in indirect and side effects in plant defense (Hecket flower, and cotton. The pathogen may be selected from the al, 2003; van Wees and Glazebrook 2003). Furthermore, it is group consisting of Fusarium graminearum, Sclerotinia scle known that part of non-host resistance is derived from “prim rotium, Puccinia graminis, Puccinia triticinia, Puccinia ing of the plant to produce a readiness to infection. recondite, and Phytopthora infestans. 0011. The present invention also provides a pathogen 0005. The maize Golden2-like or GLK genes encode pro resistant plant comprising a GLK1 nucleic acid molecule that teins belonging to a class of GARP domain of transcriptional encodes a GLK1 polypeptide, wherein expression of the activators (Hall, L. N. et al., 1998, Plant Cell 10:925-936; GLK1 produces at least 2 fold greater GLK1 polypeptide Fitter, W., et al., 2002, The Plant Journal 31: 713-727: relative to a wild-type plant. Rossini, D. L., et al., 2001, Plant Cell 13: 1231-1244: US 0012. The present invention also provides a genetic con 2007/0022495)There are 56 predicted members of the GARP struct comprising a regulatory region operably linked to a domain containing transcriptional activators in Arabidopsis nucleic acid molecule encoding a GLK1 polypeptide or frag (Riechmann, J. L., et al., 2000, Science 290: 2105-2110: ment or variant thereof. The nucleic acid molecule may com which is incorporated herein by reference) and are involved in prise a nucleic acid sequence as set forth in SEQID NO: 1, a plant specific processes. These include the G2 or GLK pro nucleotide sequence that exhibits from about 70% to about teins that are involved in chloroplast development (Cribb, L. 100% sequence identity with the sequence of SEQID NO:1, et al., 2001, Genetics 159:787-797:Yasumura, Y., et al., 2005, or a nucleotide sequence that hybridizes to the nucleic acid Plant Cell 17: 1894-1907), the Arabidopsis type-B phospho sequence set forth in SEQID NO: 1 under conditions of high relay response regulators (ARR family) that mediate cytoki stringency. Furthermore, the GLK1 polypeptide may com nin signaling (Sakai, H., et al.
Recommended publications
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Genomic Analyses of Unique Carbohydrate and Phytohormone Metabolism in the Macroalga Gracilariopsis Lemaneiformis (Rhodophyta)
    Sun et al. BMC Plant Biology (2018) 18:94 https://doi.org/10.1186/s12870-018-1309-2 RESEARCH ARTICLE Open Access Genomic analyses of unique carbohydrate and phytohormone metabolism in the macroalga Gracilariopsis lemaneiformis (Rhodophyta) Xue Sun1, Jun Wu2, Guangce Wang3, Yani Kang1,2, Hong Sain Ooi4, Tingting Shen2, Fangjun Wang1, Rui Yang1, Nianjun Xu1* and Xiaodong Zhao2* Abstract Background: Red algae are economically valuable for food and in industry. However, their genomic information is limited, and the genomic data of only a few species of red algae have been sequenced and deposited recently. In this study, we annotated a draft genome of the macroalga Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). Results: The entire 88.98 Mb genome of Gp. lemaneiformis 981 was generated from 13,825 scaffolds (≥500 bp) with an N50 length of 30,590 bp, accounting for approximately 91% of this algal genome. A total of 38.73 Mb of scaffold sequences were repetitive, and 9281 protein-coding genes were predicted. A phylogenomic analysis of 20 genomes revealed the relationship among the Chromalveolata, Rhodophyta, Chlorophyta and higher plants. Homology analysis indicated phylogenetic proximity between Gp. lemaneiformis and Chondrus crispus. The number of enzymes related to the metabolism of carbohydrates, including agar, glycoside hydrolases, glycosyltransferases, was abundant. In addition, signaling pathways associated with phytohormones such as auxin, salicylic acid and jasmonates are reported for the first time for this alga. Conclusion: We sequenced and analyzed a draft genome of the red alga Gp. lemaneiformis, and revealed its carbohydrate metabolism and phytohormone signaling characteristics. This work will be helpful in research on the functional and comparative genomics of the order Gracilariales and will enrich the genomic information on marine algae.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Exploring the Chemistry and Evolution of the Isomerases
    Exploring the chemistry and evolution of the isomerases Sergio Martínez Cuestaa, Syed Asad Rahmana, and Janet M. Thorntona,1 aEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved January 12, 2016 (received for review May 14, 2015) Isomerization reactions are fundamental in biology, and isomers identifier serves as a bridge between biochemical data and ge- usually differ in their biological role and pharmacological effects. nomic sequences allowing the assignment of enzymatic activity to In this study, we have cataloged the isomerization reactions known genes and proteins in the functional annotation of genomes. to occur in biology using a combination of manual and computa- Isomerases represent one of the six EC classes and are subdivided tional approaches. This method provides a robust basis for compar- into six subclasses, 17 sub-subclasses, and 245 EC numbers cor- A ison and clustering of the reactions into classes. Comparing our responding to around 300 biochemical reactions (Fig. 1 ). results with the Enzyme Commission (EC) classification, the standard Although the catalytic mechanisms of isomerases have already approach to represent enzyme function on the basis of the overall been partially investigated (3, 12, 13), with the flood of new data, an integrated overview of the chemistry of isomerization in bi- chemistry of the catalyzed reaction, expands our understanding of ology is timely. This study combines manual examination of the the biochemistry of isomerization. The grouping of reactions in- chemistry and structures of isomerases with recent developments volving stereoisomerism is straightforward with two distinct types cis-trans in the automatic search and comparison of reactions.
    [Show full text]
  • Physcomitrium Patens Infection by Colletotrichum Gloeosporioides: Understanding the Fungal–Bryophyte Interaction by Microscopy, Phenomics and RNA Sequencing
    Journal of Fungi Article Physcomitrium patens Infection by Colletotrichum gloeosporioides: Understanding the Fungal–Bryophyte Interaction by Microscopy, Phenomics and RNA Sequencing Adriana Otero-Blanca 1 , Yordanis Pérez-Llano 1 , Guillermo Reboledo-Blanco 2, Verónica Lira-Ruan 1 , Daniel Padilla-Chacon 3, Jorge Luis Folch-Mallol 4 , María del Rayo Sánchez-Carbente 4 , Inés Ponce De León 2 and Ramón Alberto Batista-García 1,* 1 Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; [email protected] (A.O.-B.); [email protected] (Y.P.-L.); [email protected] (V.L.-R.) 2 Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; [email protected] (G.R.-B.); [email protected] (I.P.D.L.) 3 Consejo Nacional de Ciencia y Tecnología (CONACyT), Colegio de Postgraduados de México, Campus Montecillo, Texcoco 56230, Mexico; [email protected] 4 Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; [email protected] (J.L.F.-M.); [email protected] (M.d.R.S.-C.) Citation: Otero-Blanca, A.; * Correspondence: [email protected] or [email protected]; Tel.: +52-777-3297020 Pérez-Llano, Y.; Reboledo-Blanco, G.; Lira-Ruan, V.; Padilla-Chacon, D.; Abstract: Anthracnose caused by the hemibiotroph fungus Colletotrichum gloeosporioides is a dev- Folch-Mallol, J.L.; Sánchez-Carbente, astating plant disease with an extensive impact on plant productivity. The process of colonization M.d.R.; Ponce De León, I.; and disease progression of C.
    [Show full text]
  • Plant-Specific Glutaredoxin ROXY9 Regulates Hyponastic Growth by Inhibiting
    Plant-specific glutaredoxin ROXY9 regulates hyponastic growth by inhibiting TGA1 function Dissertation for the award of the degree “Doctor of Philosophy” (Ph.D.) Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program Biology of the Georg-August University School of Science (GAUSS) Submitted by Ning Li from Shandong, China Göttingen 2017 Thesis Committee Prof. Dr. Christiane Gatz (Department of Plant Molecular Biology and Physiology) Prof. Dr. Volker Lipka (Department of Plant Cell Biology) Dr. Corinna Thurow (Department of Plant Molecular Biology and Physiology) Members of the Examination Board Reviewer: Prof. Dr. Christiane Gatz (Department of Plant Molecular Biology and Physiology) Second reviewer: Prof. Dr. Volker Lipka (Department of Plant Cell Biology) Further members of the Examination Board: Prof. Dr. Ivo Feussner (Department of Plant Biochemistry) PD Dr. Thomas Teichmann (Department of Plant Cell Biology) Dr. Marcel Wiermer (Department of Plant Cell Biology) PD. Dr. Martin Fulda (Department of Plant Biochemistry) Date of the oral examination: 30.03.2017 1 Introduction ................................................................................................................ 1 1.1 Hyponastic growth ............................................................................................ 1 1.1.1 Ethylene and hyponastic growth in Arabidopsis thaliana ...................... 2 1.1.2 Photoreceptors and hyponastic growth ................................................
    [Show full text]
  • Metabolic Engineering Yeast Cells for Medium‑Chained Biofuel Synthesis
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Metabolic engineering yeast cells for medium‑chained biofuel synthesis Li, Xiang 2015 Li, X. (2015). Metabolic engineering yeast cells for medium‑chained biofuel synthesis. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/62904 https://doi.org/10.32657/10356/62904 Downloaded on 02 Oct 2021 17:55:26 SGT METABOLIC ENGINEERING YEAST CELLS FOR MEDIUM METABOLIC ENGINEERING YEAST CELLS FOR MEDIUM-CHAINED BIOFUEL SYNTHESIS - CHAINED BIOFUEL SYNTHESIS LI XIANGLI 201 LI XIANG 5 SCHOOL OF CHEMICAL AND BIOMEDICAL ENGINEERING 2015 METABOLIC ENGINEERING YEAST CELLS FOR MEDIUM-CHAINED BIOFUEL SYNTHESIS LI XIANG LI XIANGLI School of Chemical and Biomedical Engineering A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2015 Acknowledgements ACKNOWLEDGEMENTS Four years at Nanyang Technological University were unforgettable. NTU provided me a platform to pursue my degree and opportunity to get to know the most frontier areas and so many outstanding researchers who generously offered me sincere help. Herein, I would like to extend my deep appreciations to them. First and foremost, I would like to thank my supervisor, Prof. Chen Wei Ning William. He kindly provided me the opportunity to pursue my PhD, which has been a great honor. He has always been so kind and supportive and the family-like atmosphere in our research group really has made the four years enjoyable. His professional guidance, enlightening instructions and patient supervisions supported me in every stage in the process of generating this essay.
    [Show full text]
  • Friedelin Synthase from Maytenus Ilicifolia
    www.nature.com/scientificreports OPEN Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of Received: 09 May 2016 Accepted: 20 October 2016 the Most Rearranged Pentacyclic Published: 22 November 2016 Triterpene Tatiana M. Souza-Moreira1, Thaís B. Alves1, Karina A. Pinheiro1, Lidiane G. Felippe1, Gustavo M. A. De Lima2, Tatiana F. Watanabe1, Cristina C. Barbosa3, Vânia A. F. F. M. Santos1, Norberto P. Lopes4, Sandro R. Valentini3, Rafael V. C. Guido2, Maysa Furlan1 & Cleslei F. Zanelli3 Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65–74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes.
    [Show full text]
  • Biocatalysis in the Chemistry of Lupane Triterpenoids
    molecules Review Biocatalysis in the Chemistry of Lupane Triterpenoids Jan Bachoˇrík 1 and Milan Urban 2,* 1 Department of Organic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic; [email protected] 2 Medicinal Chemistry, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Hnˇevotínská 5, 779 00 Olomouc, Czech Republic * Correspondence: [email protected] Abstract: Pentacyclic triterpenes are important representatives of natural products that exhibit a wide variety of biological activities. These activities suggest that these compounds may represent potential medicines for the treatment of cancer and viral, bacterial, or protozoal infections. Naturally occurring triterpenes usually have several drawbacks, such as limited activity and insufficient solubility and bioavailability; therefore, they need to be modified to obtain compounds suitable for drug development. Modifications can be achieved either by methods of standard organic synthesis or with the use of biocatalysts, such as enzymes or enzyme systems within living organisms. In most cases, these modifications result in the preparation of esters, amides, saponins, or sugar conjugates. Notably, while standard organic synthesis has been heavily used and developed, the use of the latter methodology has been rather limited, but it appears that biocatalysis has recently sparked considerably wider interest within the scientific community. Among triterpenes, derivatives of lupane play important roles. This review therefore summarizes the natural occurrence and sources of lupane triterpenoids, their biosynthesis, and semisynthetic methods that may be used for the production of betulinic acid from abundant and inexpensive betulin. Most importantly, this article compares chemical transformations of lupane triterpenoids with analogous reactions performed by Citation: Bachoˇrík,J.; Urban, M.
    [Show full text]
  • Structure of Isochorismate Synthase in Complex with Magnesium
    short communications Acta Crystallographica Section D Biological Structure of isochorismate synthase in complex Crystallography with magnesium ISSN 0907-4449 James F. Parsons,a* Katherine M. The electron carrier menaquinone is one of many important bacterial Shia and Jane E. Ladnera,b metabolites that are derived from the key intermediate chorismic acid. MenF, the first enzyme in the menaquinone pathway, catalyzes the isomerization of chorismate to isochorismate. Here, an improved structure of MenF in a new a Center for Advanced Research in crystal form is presented. The structure, solved at 2.0 A˚ resolution in complex Biotechnology, University of Maryland Biotechnology Institute, USA, and bNational with magnesium, reveals a well defined closed active site. Existing evidence Institute of Standards and Technology, USA suggests that the mechanism of the reaction catalyzed by MenF involves nucleophilic attack of a water molecule on the chorismate ring. The structure reveals a well defined water molecule located in an appropriate position for Correspondence e-mail: activation by Lys190 and attack on the substrate. [email protected] Received 23 January 2008 Accepted 26 February 2008 1. Introduction The menaquinone-specific isochorismate synthase (MenF) from Escherichia coli is a chorismate-utilizing enzyme that catalyzes the formation of isochorismate for use in menaquinone biosynthesis PDB References: apo-MenF, 3bzm, r3bzmsf; MenF–Mg2+ complex, 3bzn, r3bznsf. (Fig. 1; Daruwala et al., 1997). Menaquinone is an electron carrier that is essential for anaerobic electron transport in bacteria. Isochorismate is also an intermediate in the biosynthesis of sidero- phores such as the iron chelator enterobactin. The E. coli genome encodes a second isochorismate synthase, EntC, which is involved in this pathway (Buss et al., 2001).
    [Show full text]
  • 6.2 Oleate Hydratase
    Study Towards Carotenoid 1,2-Hydratase and Oleate Hydratase as Novel Biocatalysts Aida HISENI Study Towards Carotenoid 1,2-Hydratase and Oleate Hydratase as Novel Biocatalysts PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M Luyben, voorzitter van het College voor promoties, in het openbaar te verdedigen op dinsdag 22 april 2014 om 10:00 uur door Aida HISENI Diplom-Biologin, Heinrich-Heine-Universität Düsseldorf geboren te Doboj, Bosnië en Hercegovina. Dit proefschrift is goedgekeurd door de promotor: Prof. dr. I.W.C.E Arends Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. I.W.C.E. Arends Technische Universiteit Delft, promotor Prof. dr. U. Hanefeld Technische Universiteit Delft Prof. dr. J.H. de Winde Universiteit Leiden Prof. dr. G. Muijzer Universiteit van Amsterdam Prof. dr. R. Wever Universiteit van Amsterdam Dr. L.G. Otten Technische Universiteit Delft Dr. P. Dominguez De Maria Sustainable Momentum Prof. dr. S. de Vries Technische Universiteit Delft, reservelid This project is financially supported by The Netherlands Ministry of Economic Affairs and the B-Basic partner organizations (http://www.b-basic.nl) through B-Basic, a public- private NWO-ACTS programme [Advanced Chemical Technologies for Sustainability (ACTS)]. ISBN Copyright © 2014 by Aida HISENI All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without any prior permission of the copyright owner. To my father Ismet Nukičić Table of Contents 1 General introduction .................................................................................................
    [Show full text]
  • Fatty Acid Oxidation by Lipoxygenase and ß-Oxidation in Germinatíng Barley
    Fatty acid oxidation by lipoxygenase and ß-oxidation in germinatÍng barley Wessel L. Holtman ISBN: 90-802521-7-4 Cover: in collaboration with Marit Boot and peter Hock rH? l---..l Printed by Offsetdrukkerij Ridderprint 8.V., Ridderkerk Fatty acid oxidation by lipoxygenase and ß-oxidation in germinatÍng barley Proefschrift ter verkrijging van de graad van Doctor aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magnificus Dr. W.A. Wagenaar, hoogleraar in de faculteit der Sociale Wetenschappen, volgens het besluit van het College van Dekanen te verdedigen op donderdag26 juni 1997 te klokke 16.15 uur. door Wessel Luitje Holtman geboren te Ten Boer in 1962 Promotiecommissie Promotor Prof. dr, J.W. Kijne Co-promotor dr. A.C. Douma Referenten Prof. dr. G.A. Veldink (Universiteit Utrecht) Prof. dr. D. von Wettstein (V/ashington State University ) Overige leden Prof. dr. J.F. Bol Prof. dr. K.R. Libbenga Prof. dr. P.J. Lea (Lancaster University) Published by : Foundation for Single Cell Research, Leiden, The Netherlands Financial support for the publication of this thesis by the TNO Nutrition and Food Research lnstitute is greatfully acknowledged voor G.O. I. N. CONTENTS Chapter 1 Introduction Chapter 2 ß-Oxidation of fatty acids is linked to the glyoxylate cycle in the aleurone but not in ttre embryo of germinating barley Chapter 3 Monoclonal antibodies for differential recognition of catalase subunits in barley aleurone cells Chapter 4 The ratio of peroxidative to cat¿latic activity of catalase in leaves of barley seedlings is linked to the expression levels of two catalase subunits Chapter 5 Differential expression of lipoxygenase isoenzymes in embryos of germinating barley Chapter 6 Lipoxygenase-2 oxygenates storage lipids in embryos of germinating barley Chapter 7 General and summariztng discussion Samenvatting List of publications Curriculum vitae Chapter 1 Introduction INTRODUCTION Plant seeds store food reserves prior to a period of dormancy or of unfavourable envi¡onmental conditions.
    [Show full text]