Designation Phylum 1 C. Accolens/Tuberculostearicum

Total Page:16

File Type:pdf, Size:1020Kb

Designation Phylum 1 C. Accolens/Tuberculostearicum Exploring the bacterial assemblages along the human nasal passage. Item Type Article Authors Wos-Oxley, Melissa L; Chaves-Moreno, Diego; Jáuregui, Ruy; Oxley, Andrew P A; Kaspar, Ursula; Plumeier, Iris; Kahl, Silke; Rudack, Claudia; Becker, Karsten; Pieper, Dietmar H Citation Exploring the bacterial assemblages along the human nasal passage. 2016, 18 (7):2259-71 Environ. Microbiol. DOI 10.1111/1462-2920.13378 Journal Environmental microbiology Download date 27/09/2021 00:45:47 Item License http://creativecommons.org/licenses/by-nc-sa/4.0/ Link to Item http://hdl.handle.net/10033/619127 47 phylotypes determined using Illumina-based amplicon deep-sequencing and their phylogenetic assignment Phylotype (PT) Designation Phylum number 1 C. accolens/tuberculostearicum Actinobacteria 2 P. acnes Actinobacteria 3 C. propinquum/pseudodiphtheriticum Actinobacteria 4 S. epidermidis/capitis/caprae Firmicutes 5 S. aureus Firmicutes 6 Dolosigranulum pigrum Firmicutes 7 Cupriavidus/Ralstonia Proteobacteria 8 S. intermedius Firmicutes 9 M. catarrhalis Proteobacteria 10 M. lacunata/nonliquefaciens Proteobacteria 11 Ralstonia pickettii Proteobacteria 12 S. dysgalactiae Firmicutes 13 Enterobacteriaceae Proteobacteria 14 Peptoniphilus sp. Firmicutes 15 S. haemolyticus/saprophyticus Firmicutes 16 Herbaspirillum Proteobacteria 17 Haemophilus influenzae Proteobacteria 18 Actinomycetales Actinobacteria 19 Finegoldia magna Firmicutes 20 Prevotella pleuritidis Bacteroidetes 21 P. granulosum Actinobacteria 22 Neisseria sp. Proteobacteria 23 Haemophilus parainfluenzae Proteobacteria 24 Pseudomonas sp. Proteobacteria 25 Dolosigranulum Firmicutes 26 S. vestibularis/salivarius Firmicutes 27 Veillonella parvula/dispar Firmicutes 28 Granulicatella sp. Firmicutes 29 Anaerococcus sp. Firmicutes 30 Burkholderia Proteobacteria 31 Gemella sanguinis Firmicutes 32 Porphyromonas catoniae Bacteroidetes 33 Anaerococcus octavius Firmicutes 34 Fusobacterium sp. Fusobacteria 35 Campylobacter (undescribed) Proteobacteria 36 Prevotella melaninogenica Bacteroidetes 38 Rhizobiales Proteobacteria 39 P. propionicum/avidum Actinobacteria 40 S. pneumoniae/mitis Firmicutes 41 Rhodococcus Actinobacteria 42 Anaerococcus (uncultured) Firmicutes 43 Clostridium XVIII Firmicutes 44 Rothia mucilaginosa Actinobacteria 45 Acidobacteria/GP2 (undescribed) Acidobacteria 46 S. parasanguinis/oralis Firmicutes 47 Parvimonas micra Firmicutes 48 Actinomyces odontolyticus/meyeri Actinobacteria 49 Campylobacter Proteobacteria 51 Mycoplasma Tenericutes 52 Betaproteobacteria Proteobacteria 53 Acidobacteria/GP2 Acidobacteria 54 Pelomonas sp. Proteobacteria 55 Capnocytophaga Bacteroidetes 56 Streptococcus sp. Firmicutes 57 Capnocytophaga Bacteroidetes 58 Pseudomonas aeruginosa Proteobacteria 59 Rhizobiales Proteobacteria 60 Neisseriaceae Proteobacteria 61 Prevotella sp. Bacteroidetes 62 Pseudomonas sp. Proteobacteria 63 Neisseriaceae Proteobacteria 64 Prevotella sp. Bacteroidetes 65 Campylobacter Proteobacteria 66 Neisseriaceae Proteobacteria 67 Leptotrichia wadei Fusobacteria 68 Campylobacter Proteobacteria 69 Enterobacteriaceae Proteobacteria 70 Actinomyces sp. Actinobacteria 72 Flavobacteriaceae Bacteroidetes 73 Cantonella sp. Firmicutes 74 Prevotella salivae Bacteroidetes 75 Prevotella pallens Bacteroidetes 76 Pasteurellaceae Proteobacteria 77 Paraprevotella sp. Bacteroidetes 78 Anaerococcus sp. Firmicutes 79 Burkholderia sp. Proteobacteria 80 Streptococcus sp. Firmicutes 81 Achromobacter sp. Proteobacteria 82 Acholeplasma Tenericutes 83 Dyella sp. Proteobacteria 84 Burkholderiales Proteobacteria 85 Bradyrhizobium Proteobacteria 86 Comamonadaceae Proteobacteria 87 Leptotrichia sp. Fusobacteria 88 Peptoniphilus sp. Firmicutes 89 Actinomyces sp. Actinobacteria 90 Actinomyces sp. Actinobacteria 91 Neisseriaceae Proteobacteria 92 Corynebacterium kroppenstedtii Actinobacteria 93 Parabacteroides goldsteinii Bacteroidetes 94 Anaerococcus sp. Firmicutes 96 SR1 SR1 97 Megasphaera micronuciformis Firmicutes 98 Escherichia/Shigella Proteobacteria 99 Burkholderiales Proteobacteria 100 Burkholderiales Proteobacteria 101 Prevotella sp. Bacteroidetes 102 Bacteria 103 Micrococcaceae Actinobacteria 104 Deltaproteobacteria Proteobacteria 105 Anaerococcus sp. Firmicutes 106 Lactococcus lactis Firmicutes 107 Actinomyces sp. Actinobacteria 108 Bacteria 109 Prevotella sp. Bacteroidetes 110 Solobacterium moorei Firmicutes 111 TM7 TM7 112 Escherichia/Shigella Proteobacteria 113 Staphylococcus auricularis/lugdunensis Firmicutes 114 Xanthomonadaceae Proteobacteria 115 Bacteria 116 Propionibacterium sp. Actinobacteria 117 Oxalobacteraceae Proteobacteria 118 Streptobacillus sp. Fusobacteria 119 Leptotrichia sp. Fusobacteria 120 Corynebacterium simulans/diphtheriae Actinobacteria 121 Porphyromonas endodontalis Bacteroidetes 122 Campylobacter gracilis Proteobacteria 123 Corynebacterium sp. Actinobacteria 124 Porphyromonas bennonis Bacteroidetes 125 Paraprevotella sp. Bacteroidetes 126 Psychromonas sp. Proteobacteria 127 Neisseriaceae Proteobacteria 128 Atopobium parvulum Actinobacteria 129 Prevotella buccalis Bacteroidetes 131 Peptoniphilus sp. Firmicutes 132 Finegoldia sp. Firmicutes 133 Leptotrichia sp. Fusobacteria 134 Morganella morganii Proteobacteria 135 Peptoniphilus sp. Firmicutes 136 Massilia sp. Proteobacteria 137 Streptococcus sp. Firmicutes 138 Moraxella catarrhalis Proteobacteria 139 Bacteroides fragilis Bacteroidetes 140 Fusobacterium sp. Fusobacteria 141 Prevotella tannerae Bacteroidetes 143 Ruminococcus bromii Firmicutes 144 Aquabacterium Proteobacteria 145 SR1 SR1 146 Flavobacteriaceae Bacteroidetes 147 Anaerococcus sp. Firmicutes 148 Peptoniphilus sp. Firmicutes 149 Porphyromonas gingivalis Bacteroidetes 150 Veillonella sp. Firmicutes 151 Proteus mirabilis Proteobacteria 153 Rhodobacteraceae Proteobacteria 154 Bradyrhizobiaceae Proteobacteria 155 Anaerococcus sp. Firmicutes 156 Enterobacteriaceae Proteobacteria 157 Fusobacterium sp. Fusobacteria 158 Actinomyces sp. Actinobacteria 159 Staphylococcus sp. Firmicutes 160 Escherichia/Shigella Proteobacteria 161 Streptococcus gordonii Firmicutes 162 Anaerococcus sp. Firmicutes 163 Micrococcaceae Actinobacteria 164 Bradyrhizobium Proteobacteria 165 Corynebacterium sp. Actinobacteria 166 Eubacterium Firmicutes 167 Leptptrichiaceae Fusobacteria 168 Dyella sp. Proteobacteria 170 Bacillales Firmicutes 171 Burkholderia sp. Proteobacteria 172 Acinetobacter baumannii Proteobacteria 173 Pseudomonas sp. Proteobacteria 174 Oribacterium sp. Firmicutes 175 Comamonadaceae Proteobacteria 176 Chloroplast Cyanobacteria/Chloroplast 178 Mycoplasma orale Tenericutes 179 Acinetobacter sp. Proteobacteria 180 Lactococcus lactis Firmicutes 182 Leptotrichia sp. Fusobacteria 183 Prevotella oulorum Bacteroidetes 184 Aggregatibacter segnis Proteobacteria 185 Enterococcus faecalis Firmicutes 186 Bacteria 187 Perlucidibaca Proteobacteria 188 Kocuria sp. Actinobacteria 189 Porphyromonas sp. Bacteroidetes 190 Finegoldia magna Firmicutes 191 Campylobacter showae Proteobacteria 192 Staphylococcus sp. Firmicutes 194 Selenomonas sp. Firmicutes 195 Prevotella sp. Bacteroidetes 196 Streptococcus cristatus Firmicutes 197 Actinomyces viscosus Actinobacteria 198 Collinsella aerofaciens Actinobacteria 200 Acinetobacter junii Proteobacteria 201 Sulfuritalea Proteobacteria 202 Pasteurellaceae Proteobacteria 203 Lactobacillus iners Firmicutes 204 Enhydrobacter aerosaccus/Moraxella osloensisProteobacteria 205 Corynebacterium sp. Actinobacteria 206 Rubrobacter sp. Actinobacteria 208 Moryella sp. Firmicutes 209 Brochothrix thermosphacta Firmicutes 210 Bacteroides massiliensis/vulgatus Bacteroidetes 211 Negativicoccus Firmicutes 213 Anoxybacillus sp. Firmicutes 214 Streptococcus sp. Firmicutes 215 Corynebacterium riegelii Actinobacteria 216 Dermabacter hominis Actinobacteria 217 Clostridium ramosum Firmicutes 218 Streptococcus sp. Firmicutes 219 Corynebacterium sp. Actinobacteria 221 Deltaproteobacteria Proteobacteria 222 Actinomycetales Actinobacteria 223 Staphylococcus sp. Firmicutes 225 Staphylococcus sp. Firmicutes 226 Bacteria 227 Bacillus sp. Firmicutes 228 Actinomycetales Actinobacteria 229 Corynebacterium bovis Actinobacteria 230 Enterobacteriaceae Proteobacteria 232 Actinomycetales Actinobacteria 234 Paracoccus sp. Proteobacteria 235 Streptobacillus sp. Fusobacteria 236 Bacillus thermoamylovorans Firmicutes 237 Bacteria 240 Myxococcales Proteobacteria 241 Bacteria 242 Dialister propionicifaciens Firmicutes 243 Propionibacteriaceae Actinobacteria 245 TM7 TM7 247 Dorea sp. Firmicutes 249 Rhodobacteraceae Proteobacteria 251 Alphaproteobacteria Proteobacteria 252 Corynebacterium sundsvallense/thomseniiActinobacteria 254 Prevotella intermedia Bacteroidetes 257 Corynebacterium sp. Actinobacteria 258 Novosphingobium sp. Proteobacteria 259 Moraxella lacunata/nonliquefaciens Proteobacteria 260 Dolosigranulum Firmicutes 264 Staphylococcus sp. Firmicutes 266 Tannerella forsythia Bacteroidetes 270 Serratia sp. Proteobacteria 272 Neisseriaceae Proteobacteria 273 Prevotella denticola Bacteroidetes 275 Comamonas sp. Proteobacteria 277 Prevotella sp. Bacteroidetes 280 Propionibacterium sp. Actinobacteria 281 Psychrobacter sp. Proteobacteria 282 Leptotrichia buccalis Fusobacteria 284 Oxalobacteraceae Proteobacteria 285 Dolosigranulum Firmicutes 286 Staphylococcus sp. Firmicutes 287 Veillonellaceae Firmicutes 288 Streptococcus sp. Firmicutes 289 Corynebacterium sp. Actinobacteria 291 Acidocella sp. Proteobacteria 292 Leptotrichia sp. Fusobacteria 294 Ruminococcus sp. Firmicutes 295 Treponema sp. Spirochaetes 298 Peptostreptococcus
Recommended publications
  • Microbial and Clinical Factors Are Related to Recurrence of Symptoms After Childhood Lower Respiratory Tract Infection
    ORIGINAL ARTICLE RESPIRATORY INFECTIONS Microbial and clinical factors are related to recurrence of symptoms after childhood lower respiratory tract infection Emma M. de Koff 1,2, Wing Ho Man1,3, Marlies A. van Houten1,4, Arine M. Vlieger5, Mei Ling J.N. Chu2, Elisabeth A.M. Sanders2,6 and Debby Bogaert2,7 Affiliations: 1Spaarne Academy, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands. 2Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands. 3Dept of Paediatrics, Willem-Alexander Children’s Hospital and Leiden University Medical Centre, Leiden, The Netherlands. 4Dept of Paediatrics, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands. 5Dept of Paediatrics, St Antonius Ziekenhuis, Nieuwegein, The Netherlands. 6Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands. 7Medical Research Council and University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK. Correspondence: Debby Bogaert, MRC Center for Inflammation Research, University of Ediburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK. E-mail: [email protected] ABSTRACT Childhood lower respiratory tract infections (LRTI) are associated with dysbiosis of the nasopharyngeal microbiota, and persistent dysbiosis following the LRTI may in turn be related to recurrent or chronic respiratory problems. Therefore, we aimed to investigate microbial and clinical predictors of early recurrence of respiratory symptoms as well as recovery of the microbial community following hospital admission for LRTI in children. To this end, we collected clinical data and characterised the nasopharyngeal microbiota of 154 children (4 weeks–5 years old) hospitalised for a LRTI (bronchiolitis, pneumonia, wheezing illness or mixed infection) at admission and 4–8 weeks later.
    [Show full text]
  • Free-Living, Psychrotrophic Bacteria of the Genus Psychrobacter Are Descendants of Pathobionts
    RESEARCH ARTICLE Free-Living, Psychrotrophic Bacteria of the Genus Psychrobacter Are Descendants of Pathobionts Daphne K. Welter,a Albane Ruaud,a Zachariah M. Henseler,a Hannah N. De Jong,a Peter van Coeverden de Groot,b Johan Michaux,c,d Linda Gormezano,e† Jillian L. Waters,a Nicholas D. Youngblut,a Ruth E. Leya aDepartment of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany bDepartment of Biology, Queen’s University, Kingston, Ontario, Canada cConservation Genetics Laboratory, University of Liège, Liège, Belgium dCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, Montpellier, France eDepartment of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA ABSTRACT Host-adapted microorganisms are generally assumed to have evolved from free-living, environmental microorganisms, as examples of the reverse process are rare. In the phylum Gammaproteobacteria, family Moraxellaceae, the genus Psychrobacter includes strains from a broad ecological distribution including animal bodies as well as sea ice and other nonhost environments. To elucidate the relation- ship between these ecological niches and Psychrobacter’s evolutionary history, we performed tandem genomic analyses with phenotyping of 85 Psychrobacter acces- sions. Phylogenomic analysis of the family Moraxellaceae reveals that basal members of the Psychrobacter clade are Moraxella spp., a group of often-pathogenic organisms. Psychrobacter exhibited two broad growth patterns in our phenotypic screen: one group that we called the “flexible ecotype” (FE) had the ability to grow between 4 and 37°C, andtheother,whichwecalledthe“restricted ecotype” (RE), could grow between 4 and 25°C. The FE group includes phylogenetically basal strains, and FE strains exhibit increased transposon copy numbers, smaller genomes, and a higher likelihood to be bile salt resistant.
    [Show full text]
  • Supplementary Figures and Tables Comparing the Anterior Nare
    Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Item Type Article Authors Camarinha-Silva, Amélia; Jáuregui, Ruy; Chaves-Moreno, Diego; Oxley, Andrew P A; Schaumburg, Frieder; Becker, Karsten; Wos- Oxley, Melissa L; Pieper, Dietmar H Citation Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. 2014, 16 (9):2939-52 Environ. Microbiol. DOI 10.1111/1462-2920.12362 Journal Environmental microbiology Download date 09/10/2021 21:30:35 Link to Item http://hdl.handle.net/10033/334759 Supplementary figures and tables Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing Amélia Camarinha-Silva1, Ruy Jáuregui1, Diego Chaves-Moreno1, Andrew P.A. Oxley1,2, Frieder Schaumburg3, Karsten Becker3, Melissa L. Wos-Oxley1, Dietmar H. Pieper1* 1Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany; 2Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany; 3Institute of Medical Microbiology, University Hospital Münster, Münster, Germany *For correspondence: E-mail [email protected]; Tel. (+49) 531 6181 4200; Fax (+49) 531 6181 4499 Summary The anterior nares are an important reservoir for opportunistic pathogens and commensal microorganisms. A barcoded Illumina paired-end sequencing method targeting the 16S rRNA V1-2 hypervariable region was developed to compare the bacterial diversity of the anterior nares across distinct human populations (volunteers from Germany vs a Babongo Pygmy tribe, Africa). Of the 251 phylotypes detected, 231 could be classified to the genus level and 109 to the species level, including the unambiguous identification of the ubiquitous Staphylococcus aureus and Moraxella catarrhalis.
    [Show full text]
  • Evaluation of FISH for Blood Cultures Under Diagnostic Real-Life Conditions
    Original Research Paper Evaluation of FISH for Blood Cultures under Diagnostic Real-Life Conditions Annalena Reitz1, Sven Poppert2,3, Melanie Rieker4 and Hagen Frickmann5,6* 1University Hospital of the Goethe University, Frankfurt/Main, Germany 2Swiss Tropical and Public Health Institute, Basel, Switzerland 3Faculty of Medicine, University Basel, Basel, Switzerland 4MVZ Humangenetik Ulm, Ulm, Germany 5Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany 6Institute for Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany Received: 04 September 2018; accepted: 18 September 2018 Background: The study assessed a spectrum of previously published in-house fluorescence in-situ hybridization (FISH) probes in a combined approach regarding their diagnostic performance with incubated blood culture materials. Methods: Within a two-year interval, positive blood culture materials were assessed with Gram and FISH staining. Previously described and new FISH probes were combined to panels for Gram-positive cocci in grape-like clusters and in chains, as well as for Gram-negative rod-shaped bacteria. Covered pathogens comprised Staphylococcus spp., such as S. aureus, Micrococcus spp., Enterococcus spp., including E. faecium, E. faecalis, and E. gallinarum, Streptococcus spp., like S. pyogenes, S. agalactiae, and S. pneumoniae, Enterobacteriaceae, such as Escherichia coli, Klebsiella pneumoniae and Salmonella spp., Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Bacteroides spp. Results: A total of 955 blood culture materials were assessed with FISH. In 21 (2.2%) instances, FISH reaction led to non-interpretable results. With few exemptions, the tested FISH probes showed acceptable test characteristics even in the routine setting, with a sensitivity ranging from 28.6% (Bacteroides spp.) to 100% (6 probes) and a spec- ificity of >95% in all instances.
    [Show full text]
  • Free-Living Psychrophilic Bacteria of the Genus Psychrobacter Are
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.352302; this version posted October 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title: Free-living psychrophilic bacteria of the genus Psychrobacter are 2 descendants of pathobionts 3 4 Running Title: psychrophilic bacteria descended from pathobionts 5 6 Daphne K. Welter1, Albane Ruaud1, Zachariah M. Henseler1, Hannah N. De Jong1, 7 Peter van Coeverden de Groot2, Johan Michaux3,4, Linda Gormezano5¥, Jillian L. Waters1, 8 Nicholas D. Youngblut1, Ruth E. Ley1* 9 10 1. Department of Microbiome Science, Max Planck Institute for Developmental 11 Biology, 12 Tübingen, Germany. 13 2. Department of Biology, Queen’s University, Kingston, Ontario, Canada. 14 3. Conservation Genetics Laboratory, University of Liège, Liège, Belgium. 15 4. Centre de Coopération Internationale en Recherche Agronomique pour le 16 Développement (CIRAD), UMR ASTRE, Montpellier, France. 17 5. Department of Vertebrate Zoology, American Museum of Natural History, New 18 York, NY, USA. 19 ¥deceased 20 *Correspondence: [email protected] 21 22 Abstract 23 Host-adapted microbiota are generally thought to have evolved from free-living 24 ancestors. This process is in principle reversible, but examples are few. The genus 25 Psychrobacter (family Moraxellaceae, phylum Gamma-Proteobacteria) includes species 26 inhabiting diverse and mostly polar environments, such as sea ice and marine animals. To 27 probe Psychrobacter’s evolutionary history, we analyzed 85 Psychrobacter strains by 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.352302; this version posted October 25, 2020.
    [Show full text]
  • Next Generation Sequencing of the Upper Respiratory Tract Microbiota
    The microbiome of otitis media and development of a probiotic to prevent otitis media in Indigenous Australian children Andrea Coleman Doctorate of Medicine; Bachelor of Speech Pathology (Hons I) https://orcid.org/0000-0001-8101-1585 A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2020 Faculty of Medicine 1 Abstract Background Indigenous Australian children have endemic rates of otitis media (OM), impacting negatively on development, schooling and employment. Current attempts to prevent and treat OM are largely ineffective. Beneficial microbes are used successfully in a range of diseases and show promise in OM in non-Indigenous children. We aim to explore the role of beneficial microbes in OM in Indigenous Australian children. Aims 1) Explore the knowledge gaps pertaining to upper respiratory tract (URT)/ middle ear microbiota (pathogens and commensals) in relation to OM in indigenous populations globally by systematic review of the literature. 2) To explore the URT microbiota in Indigenous Australian children in relation to ear/ URT health and infection. 3) To explore the ability of commensal bacteria found in the URT of Indigenous children to inhibit the growth of the main otopathogens. Methods The systematic review of the PubMed database was performed according to PRISMA guidelines, including screening of articles meeting inclusion criteria by two independent reviewers. To explore the URT microbiota, we cross-sectionally recruited Indigenous Australian children from two diverse communities. Demographic and clinical data were obtained from parent/carer interview and the child’s medical record. Swabs were obtained from the nasal cavity, buccal mucosa and palatine tonsils and the ears, nose and throat were examined.
    [Show full text]
  • Manual De Diagnóstico Microbiológico De Moraxella Catarrhalis
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA Manual de Diagnóstico Microbiológico de Moraxella catarrhalis TESIS Para obtener el título de Químico Farmacéutico Biólogo PRESENTA: Yaravid Rosales Morales Director: M. en C. Roberto Cruz González Meléndez No. Cuenta: 40804701-4 Área del proyecto: Microbiología Médica Lugar de desarrollo: Facultad de Estudios Superiores Zaragoza Opción de titulación: Actividad de apoyo a la docencia México, D.F. Febrero 2014 UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Manual de Diagnóstico Microbiológico Moraxella catarrhalis AGRADECIMIENTOS A mi familia, por brindarme las herramientas necesarias para lograr mis metas, por su apoyo, comprensión, cariño y palabras de aliento, por acompañarme día a día, por sus consejos y la gran felicidad que infunden en mí, simplemente gracias por existir. A Cris, mi ángel de la guarda, por sus cuidados, por sus enseñanzas, por creer en mí, por brindarme su compañía en los buenos y malos momentos, por las palabras correctas dichas en el momento preciso, pero principalmente por el amor que incondicionalmente me ofrece.
    [Show full text]
  • The Magnitude and Diversity of Infectious Diseases
    Chapter 1 The Magnitude and Diversity of Infectious Diseases “All interest in disease and death is only another expression of interest in life.” Thomas Mann THE IMPORTANCE OF INFECTIOUS DISEASES IN TERMS OF HUMAN MORTALITY According to the U.S. Census Bureau, on July 20, 2011, the USA population was 311 806 379, and the world population was 6 950 195 831 [2]. The U.S. Central Intelligence agency estimates that the USA crude death rate is 8.36 per 1000 and the world crude death rate is 8.12 per 1000 [3]. This translates to 2.6 million people dying in 2011 in the USA, and 56.4 million people dying worldwide. These numbers, calculated from authoritative sources, correlate surprisingly well with the widely used rule of thumb that 1% of the human population dies each year. How many of the world’s 56.4 million deaths can be attributed to infectious diseases? According to World Health Organization, in 1996, when the global death toll was 52 million, “Infectious diseases remain the world’s leading cause of death, accounting for at least 17 million (about 33%) of the 52 million people who die each year” [4]. Of course, only a small fraction of infections result in death, and it is impossible to determine the total incidence of infec- tious diseases that occur each year, for all organisms combined. Still, it is useful to consider some of the damage inflicted by just a few of the organisms that infect humans. Malaria infects 500 million people. About 2 million people die each year from malaria [4].
    [Show full text]
  • Characterization of Microbial Populations in the Subsurface
    Publications (YM) Yucca Mountain 12-2006 Characterization of microbial populations in the subsurface Mark P. Buttner University of Nevada, Las Vegas, [email protected] Patricia Cruz University of Nevada, Las Vegas, [email protected] Klaus J. Stetzenbach University of Nevada, Las Vegas, [email protected] Amy J. Smiecinski University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/yucca_mtn_pubs Part of the Microbiology Commons Repository Citation Buttner, M. P., Cruz, P., Stetzenbach, K. J., Smiecinski, A. J. (2006). Characterization of microbial populations in the subsurface. Available at: https://digitalscholarship.unlv.edu/yucca_mtn_pubs/59 This Technical Report is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Technical Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Technical Report has been accepted for inclusion in Publications (YM) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. TECHNICAL REPORT Title: Characterization of Microbial Populations in the Subsurface Document Identifier: Task No.: REVISION: 0 Author(s): Mark P. Buttner Patricia Cruz Approvals: Principal Investigator: Klaus J. Stetzenbach date QA Manager: Amy J. Srniecinski /a-4- D6 signature date Technical Report Title: Characterization of Microbial Populations in the Subsurface No.
    [Show full text]
  • Manual De Diagnóstico Microbiológico De Moraxella Catarrhalis
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA Manual de Diagnóstico Microbiológico de Moraxella catarrhalis TESIS Para obtener el título de Químico Farmacéutico Biólogo PRESENTA: Yaravid Rosales Morales Director: M. en C. Roberto Cruz González Meléndez No. Cuenta: 40804701-4 Área del proyecto: Microbiología Médica Lugar de desarrollo: Facultad de Estudios Superiores Zaragoza Opción de titulación: Actividad de apoyo a la docencia México, D.F. Noviembre 2013 Manual de Diagnóstico Microbiológico Moraxella catarrhalis AGRADECIMIENTOS A mi familia, por brindarme las herramientas para lograr mis metas, por su apoyo, comprensión, cariño y palabras de aliento, por acompañarme día a día, por sus consejos y la gran felicidad que infunden en mí, simplemente gracias por existir. A Cris, mi ángel de la guarda, por que llego en el momento que más lo necesitaba, por sus enseñanzas, por creer en mí, por brindarme su compañía en los buenos y malos momentos, por las palabras correctas dichas en el momento preciso, pero principalmente por el amor que incondicionalmente me ofrece. A mis amigos, profesores, compañeros de trabajo y pacientes que han dejado huella en mi vida, por compartir sus conocimientos y experiencias, por sus buenos deseos, por su amistad y por los grandes momentos compartidos. 1 Manual de Diagnóstico Microbiológico Moraxella catarrhalis ¡Sé tú misma! Sé suave. No permitas que el mundo te haga dura. No permitas que el dolor te haga odiar. No permitas que la amargura robe tu dulzura. Y siéntete orgullosa porque aun cuando el resto del mundo no esté de acuerdo… Tu SABES que éste es un lugar maravilloso.
    [Show full text]
  • Characterisation of Metal-Resistant and Chloroaromatics-Degrading Bacteria - - - -
    Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Academiejaar 2002 - 2003 CHARACTERISATION OF METAL-RESISTANT AND CHLOROAROMATICS-DEGRADING BACTERIA - - - - - KARAKTERISERING VAN METAAL-RESISTENTE EN CHLOORAROMAAT-DEGRADERENDE BACTERIËN JOHAN GORIS Proefschrift ingediend tot het verkrijgen van de graad van Doctor in de Wetenschappen, Biotechnologie Promotor: Prof. Dr. P. De Vos CHAPTER 1 Literature overview................................................................................. 1 1.1 Introduction....................................................................................................... 1 1.2 Bacterial systematics......................................................................................... 2 1.2.1 General definitions.................................................................................... 2 1.2.2 Current tools in bacterial systematics ....................................................... 3 1.2.2.1 “Classical” phenotypic characterisation ............................................... 4 1.2.2.2 Chemotaxonomic methods ................................................................... 5 1.2.2.3 Phenotypic typing methods................................................................... 5 1.2.2.4 Whole-genome DNA hybridisation and nucleotide composition......... 6 1.2.2.5 DNA-based typing methods.................................................................. 6 1.2.2.6 Sequencing of selected genes ..............................................................
    [Show full text]
  • Polyamine Profiles of Some Members of the Gamma Subclass of the Class Proteobacteria : Polyamine Analysis of Twelve Recently Described Genera
    Microbiol. Cult. Coll. June 2003. p. 3 ─ 11 Vol. 19, No. 1 Polyamine Profiles of Some Members of the Gamma Subclass of the Class Proteobacteria : Polyamine Analysis of Twelve Recently Described Genera Koei Hamana*,Azusa Sakamoto,Satomi Tachiyanagi and Eri Terauchi Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39 ─ 15 Showa ─ machi 3 ─ chome, Maebashi, Gunma 371 ─ 8514, Japan Cellular polyamines of 65 recently described species(12 genera)belonging to the gamma sub- class of the class Proteobacteria were analyzed by HPLC. Thiothrix species belonging to the gamma-1 subgroup and Xanthomonas species belonging to the gamma ─ 2 subgroup ubiquitous- ly contained spermidine alone. A gamma ─ 2 proteobacterium, Stenotrophomonas, contained cadaverine and spermidine. In the gamma ─ 3 subgroup, Photorhabdus and Xenorhabdus locat- ed in the family Enterobacteriaceae, ubiquitously contained putrescine and spermidine and spo- radically contained cadaverine. Putrescine and spermidine were the major polyamines in all 21 authentic species of Pseudomonas and cadaverine was found in a half of them. Psychrobacter and Moraxella species are located in the family Moraxellaceae and the former ubiquitously con- tained spermidine as the major polyamine, however, the polyamine patterns within the latter were heterogeneous, showing the occurrence of diaminopropane and / or norspermidine as the major polyamine in seven species among the 13 species tested. Putrescine alone, spermidine alone, 2- hydroxyputrescine / putrescine, putrescine / cadaverine, and putrescine / spermidine were found as the polyamine profiles of Shewanella species, indicating heterogeneous polyamine patterns within the genus. Oceanomonas baumannii and O. doudoroffi contained putrescine, cadaverine and spermidine. Cardiobacterium and Suttonella belonging to the family Cardiobacteriaceae contained diaminopropane and spermidine.
    [Show full text]