Next Generation Sequencing of the Upper Respiratory Tract Microbiota

Total Page:16

File Type:pdf, Size:1020Kb

Next Generation Sequencing of the Upper Respiratory Tract Microbiota The microbiome of otitis media and development of a probiotic to prevent otitis media in Indigenous Australian children Andrea Coleman Doctorate of Medicine; Bachelor of Speech Pathology (Hons I) https://orcid.org/0000-0001-8101-1585 A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2020 Faculty of Medicine 1 Abstract Background Indigenous Australian children have endemic rates of otitis media (OM), impacting negatively on development, schooling and employment. Current attempts to prevent and treat OM are largely ineffective. Beneficial microbes are used successfully in a range of diseases and show promise in OM in non-Indigenous children. We aim to explore the role of beneficial microbes in OM in Indigenous Australian children. Aims 1) Explore the knowledge gaps pertaining to upper respiratory tract (URT)/ middle ear microbiota (pathogens and commensals) in relation to OM in indigenous populations globally by systematic review of the literature. 2) To explore the URT microbiota in Indigenous Australian children in relation to ear/ URT health and infection. 3) To explore the ability of commensal bacteria found in the URT of Indigenous children to inhibit the growth of the main otopathogens. Methods The systematic review of the PubMed database was performed according to PRISMA guidelines, including screening of articles meeting inclusion criteria by two independent reviewers. To explore the URT microbiota, we cross-sectionally recruited Indigenous Australian children from two diverse communities. Demographic and clinical data were obtained from parent/carer interview and the child’s medical record. Swabs were obtained from the nasal cavity, buccal mucosa and palatine tonsils and the ears, nose and throat were examined. Samples were analysed using a culturomics approach with MALDI-TOF isolate identification. Real-time PCR was used to qualify otopathogen loads and detect respiratory viruses. Culture-independent analysis of the nasal microbiota was examined using16S rRNA amplicon next generation sequencing (NGS). The bacterial interference of lactobacilli and alpha haemolytic streptococci (AHS) were investigated using agar overlay and cell-free supernatant. Promising isolates underwent whole genome sequencing (WGS) to investigate genetic markers of URT tropism, antibiotic resistance and 2 virulence genes. In vitro antibiotic susceptibility was examined for ampicillin, amoxicillin + clavulanic acid, and azithromycin. Results The systematic review included 25 papers encompassing Indigenous Australian, Alaskan, and Greenlandic children. It identified high rates of nasopharyngeal colonisation with the main otopathogens in indigenous children with OM. There was significant heterogeneity between studies, particularly in microbiological methods, which were largely limited to culture-based detection of the main otopathogens with an absence of data regarding commensal bacterial flora in the upper airway. We recruited 103 Indigenous Australian children aged 2-7 years (mean 4.7 years). Seventeen (16.5%) children were ‘healthy’ (normal examination and no history of OM). Investigation of nasal microbiota showed that children with a history of OM/ current OM/URT infection (URTI) had higher otopathogen detection and loads, and rhinovirus detection compared to healthy children (all p < 0.04). Investigation of network relationships revealed a strong correlation between high otopathogens loads in children with a history of OM/ current OM/URTI. Healthy children demonstrated a more complex network of correlated genera and a strong correlation between Corynebacterium pseudodiphtheriticum and Dolosigranulum pigrum. 16S NGS showed that Dolosigranulum was ubiquitous across all otitis groups but correlated with different genera in each group. Ornithobacterium was only detected with 16S NGS and was identified in children with current/ historical OM. It was absent/ at low relative abundance in the healthy children. Ornithobacterium was strongly correlated with Helcococcus, Dichelobacter and clustered around Streptococcus and Haemophilus. In relation to nose health, children with purulent rhinorrhoea had higher nasal otopathogen detection and loads, and rhinovirus detection compared to those with healthy noses (all p < 0.04). Children with healthy noses had a strong correlation between C. pseudodiphtheriticum and D. pigrum. Twenty-six lactobacilli isolates and 66 AHS isolates from 17 remote children were tested against otopathogens. Lactobacilli could readily inhibit the growth of otopathogens; three Lactobacillus rhamnosus isolates were more effective than commercially available strains, L. rhamnosus GG and 3 L. rhamnosus LB21. AHS were less effective inhibitors, although some isolates were able to inhibit Streptococcus pneumoniae. Three lactobacilli progressed to WGS. One, L. rhamnosus (3160), had SpaCBA genes coding for pili to adhere to epithelial cells. We detected minor antibiotic resistance genes coding for antibiotic efflux pump and a ribosomal protection protein, neither associated with typical URT antimicrobials. The lactobacilli were susceptible to typical URT antimicrobials in vitro. Screening for virulence genes detected genes for two putative capsule proteins that have been described in bacteria from other genera. Conclusion We have demonstrated the importance of bacterial relationships in the expression of URT health or disease. Poor ear/ URT health is related to strong correlation between high otopathogens loads, suggesting otopathogen synergism. Healthy children demonstrate a strong relationship between C. pseudodiphtheriticum and D. pigrum, which is not seen in other phenotypes, suggesting that C. pseudodiphtheriticum-D. pigrum synergism supports URT health. We detected Ornithobacterium, likely Candidatus Ornithobacterium hominis, and in this population was correlated with a novel bacterium which appears to be related to poor upper respiratory tract/ear health. We found lactobacilli that readily inhibited otopathogens with in silico and in vitro support a positive safety profile. 4 Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, financial support and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my higher degree by research candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis and have sought permission from co-authors for any jointly authored works included in the thesis. 5 Publications included in this thesis Coleman A, Wood A, Bialasiewicz S, Ware RS, Marsh R. L., & Cervin, A. (2018). The unsolved problem of otitis media in indigenous populations: A systematic review of upper respiratory and middle ear microbiology in indigenous children with otitis media. Microbiome, 6(1), 1–15. Coleman A, Bialasiewicz S, Marsh RL, Grahn Håkansson E, Cottrell K, Wood A, Jayasundara N, Ware RS, Zaugg J, Sidjabat HE, Adams J, Ferguson J, Brown M, Roos K, Cervin A. Upper respiratory microbiota in relation to ear and nose health among Australian Aboriginal and Torres Strait Islander children. J Pediatric Infect Dis Soc. In press. 6 Submitted manuscripts included in this thesis Coleman A, Zaugg, J, Wood A, Cottrell K, Grahn Håkansson E, Adams J, Brown M, Cervin A, Bialasiewicz S. (2020). The upper respiratory tract microbiome of Australian Aboriginal and Torres Strait Islander children in ear and nose health and disease; a prospective cohort study. Under Review. Coleman A, Håkansson A, Grahn Håkansson E, Bialasiewicz S, Zaugg J, Cervin, A. (2020). Inhibition of respiratory pathogens by lactobacillus and alpha haemolytic streptococci from Aboriginal and Torres Strait Islander children. Journal of Applied Microbiology. Under Review. Other publications during candidature Peer-reviewed Papers: Coleman A & Cervin A. (2019). Probiotics in the treatment of otitis media. The past, the present and the future. International Journal of Pediatric Otorhinolaryngology, 116, 135–140 Conference Abstracts Coleman A. et al. Microbiome of the upper respiratory tract in Australian Indigenous children. The Australian Society of Otolaryngology Head and Neck Surgery’s Annual Scientific Meeting. 2019 Coleman, A et al. Is Dolosigranulum a potential microbiome therapeutic
Recommended publications
  • Human Milk Microbiota in Sub-Acute Lactational Mastitis Induces
    www.nature.com/scientificreports OPEN Human milk microbiota in sub‑acute lactational mastitis induces infammation and undergoes changes in composition, diversity and load Alba Boix‑Amorós1,2,4, Maria Teresa Hernández‑Aguilar3, Alejandro Artacho2, Maria Carmen Collado1,5 & Alex Mira1,5* Sub‑acute mastitis (SAM) is a prevalent disease among lactating women, being one of the main reasons for early weaning. Although the etiology and diagnosis of acute mastitis (AM) is well established, little is known about the underlying mechanisms causing SAM. We collected human milk samples from healthy and SAM‑sufering mothers, during the course of mastitis and after symptoms disappeared. Total (DNA‑based) and active (RNA‑based) microbiota were analysed by 16S rRNA gene sequencing and qPCR. Furthermore, mammary epithelial cell lines were exposed to milk pellets, and levels of the pro‑infammatory interleukin IL8 were measured. Bacterial load was signifcantly higher in the mastitis samples and decreased after clinical symptoms disappeared. Bacterial diversity was lower in SAM milk samples, and diferences in bacterial composition and activity were also found. Contrary to AM, the same bacterial species were found in samples from healthy and SAM mothers, although at diferent proportions, indicating a dysbiotic ecological shift. Finally, mammary epithelial cell exposure to SAM milk pellets showed an over‑production of IL8. Our work therefore supports that SAM has a bacterial origin, with increased bacterial loads, reduced diversity and altered composition, which partly recovered after treatment, suggesting a polymicrobial and variable etiology. Human milk is a complex and live fuid, containing a relatively diverse and potential benefcial microbiota under healthy conditions1, which enhances gut microbiota colonization, likely stimulates commensal tolerance and supports the maturation of the immune system2–5.
    [Show full text]
  • Microbial and Clinical Factors Are Related to Recurrence of Symptoms After Childhood Lower Respiratory Tract Infection
    ORIGINAL ARTICLE RESPIRATORY INFECTIONS Microbial and clinical factors are related to recurrence of symptoms after childhood lower respiratory tract infection Emma M. de Koff 1,2, Wing Ho Man1,3, Marlies A. van Houten1,4, Arine M. Vlieger5, Mei Ling J.N. Chu2, Elisabeth A.M. Sanders2,6 and Debby Bogaert2,7 Affiliations: 1Spaarne Academy, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands. 2Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands. 3Dept of Paediatrics, Willem-Alexander Children’s Hospital and Leiden University Medical Centre, Leiden, The Netherlands. 4Dept of Paediatrics, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands. 5Dept of Paediatrics, St Antonius Ziekenhuis, Nieuwegein, The Netherlands. 6Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands. 7Medical Research Council and University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK. Correspondence: Debby Bogaert, MRC Center for Inflammation Research, University of Ediburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK. E-mail: [email protected] ABSTRACT Childhood lower respiratory tract infections (LRTI) are associated with dysbiosis of the nasopharyngeal microbiota, and persistent dysbiosis following the LRTI may in turn be related to recurrent or chronic respiratory problems. Therefore, we aimed to investigate microbial and clinical predictors of early recurrence of respiratory symptoms as well as recovery of the microbial community following hospital admission for LRTI in children. To this end, we collected clinical data and characterised the nasopharyngeal microbiota of 154 children (4 weeks–5 years old) hospitalised for a LRTI (bronchiolitis, pneumonia, wheezing illness or mixed infection) at admission and 4–8 weeks later.
    [Show full text]
  • The Significance of Lactobacillus Crispatus and L. Vaginalis for Vaginal Health and the Negative Effect of Recent
    Jespers et al. BMC Infectious Diseases (2015) 15:115 DOI 10.1186/s12879-015-0825-z RESEARCH ARTICLE Open Access The significance of Lactobacillus crispatus and L. vaginalis for vaginal health and the negative effect of recent sex: a cross-sectional descriptive study across groups of African women Vicky Jespers1*, Janneke van de Wijgert2, Piet Cools3, Rita Verhelst4, Hans Verstraelen5, Sinead Delany-Moretlwe6, Mary Mwaura7, Gilles F Ndayisaba8, Kishor Mandaliya7, Joris Menten9, Liselotte Hardy1,10, Tania Crucitti10 and for the Vaginal Biomarkers Study Group Abstract Background: Women in sub-Saharan Africa are vulnerable to acquiring HIV infection and reproductive tract infections. Bacterial vaginosis (BV), a disruption of the vaginal microbiota, has been shown to be strongly associated with HIV infection. Risk factors related to potentially protective or harmful microbiota species are not known. Methods: We present cross-sectional quantitative polymerase chain reaction data of the Lactobacillus genus, five Lactobacillus species, and three BV-related bacteria (Gardnerella vaginalis, Atopobium vaginae,andPrevotella bivia) together with Escherichia coli and Candida albicans in 426 African women across different groups at risk for HIV. We selected a reference group of adult HIV-negative women at average risk for HIV acquisition and compared species variations in subgroups of adolescents, HIV-negative pregnant women, women engaging in traditional vaginal practices, sex workers and a group of HIV-positive women on combination antiretroviral therapy. We explored the associations between presence and quantity of the bacteria with BV by Nugent score, in relation to several factors of known or theoretical importance. Results: The presence of species across Kenyan, South African and Rwandan women was remarkably similar and few differences were seen between the two groups of reference women in Kenya and South Africa.
    [Show full text]
  • The Histidine Decarboxylase Gene Cluster of Lactobacillus Parabuchneri Was Gained by Horizontal Gene Transfer and Is Mobile Within the Species
    ORIGINAL RESEARCH published: 17 February 2017 doi: 10.3389/fmicb.2017.00218 The Histidine Decarboxylase Gene Cluster of Lactobacillus parabuchneri Was Gained by Horizontal Gene Transfer and Is Mobile within the Species Daniel Wüthrich 1, Hélène Berthoud 2, Daniel Wechsler 2, Elisabeth Eugster 2, Stefan Irmler 2 and Rémy Bruggmann 1* 1 Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland, 2 Agroscope, Institute for Food Sciences, Bern, Switzerland Histamine in food can cause intolerance reactions in consumers. Lactobacillus parabuchneri (L. parabuchneri) is one of the major causes of elevated histamine levels in cheese. Despite its significant economic impact and negative influence on human health, no genomic study has been published so far. We sequenced and Edited by: analyzed 18 L. parabuchneri strains of which 12 were histamine positive and 6 were Danilo Ercolini, histamine negative. We determined the complete genome of the histamine positive strain University of Naples Federico II, Italy FAM21731 with PacBio as well as Illumina and the genomes of the remaining 17 strains Reviewed by: using the Illumina technology. We developed the synteny aware ortholog finding algorithm Patrick Lucas, University of Bordeaux 1, France SynOrf to compare the genomes and we show that the histidine decarboxylase (HDC) Daniel M. Linares, gene cluster is located in a genomic island. It is very likely that the HDC gene cluster Teagasc - The Irish Agriculture and Food Development Authority, Ireland was transferred from other lactobacilli, as it is highly conserved within several lactobacilli *Correspondence: species. Furthermore, we have evidence that the HDC gene cluster was transferred within Rémy Bruggmann the L.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Comparative Genomics Analysis of Lactobacillus Mucosae from Different Niches
    G C A T T A C G G C A T genes Article Comparative Genomics Analysis of Lactobacillus mucosae from Different Niches Yan Jia 1,2, Bo Yang 1,2,3,* , Paul Ross 3,4, Catherine Stanton 3,5, Hao Zhang 1,2,6,7, Jianxin Zhao 1,2,6 and Wei Chen 1,2,6,8 1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; [email protected] (Y.J.); [email protected] (H.Z.); [email protected] (J.Z.); [email protected] (W.C.) 2 School of Food Science and Technology, Jiangnan University, Wuxi 214122, China 3 International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; [email protected] (P.R.); [email protected] (C.S.) 4 APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland 5 Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland 6 National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China 7 Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China 8 Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China * Correspondence: [email protected]; Tel.: +86-510-591-2155 Received: 5 December 2019; Accepted: 9 January 2020; Published: 14 January 2020 Abstract: The potential probiotic benefits of Lactobacillus mucosae have received increasing attention. To investigate the genetic diversity of L. mucosae, comparative genomic analyses of 93 strains isolated from different niches (human and animal gut, human vagina, etc.) and eight strains of published genomes were conducted.
    [Show full text]
  • View Details
    INDEX CHAPTER NUMBER CHAPTER NAME PAGE Extraction of Fungal Chitosan and its Chapter-1 1-17 Advanced Application Isolation and Separation of Phenolics Chapter-2 using HPLC Tool: A Consolidate Survey 18-48 from the Plant System Advances in Microbial Genomics in Chapter-3 49-80 the Post-Genomics Era Advances in Biotechnology in the Chapter-4 81-94 Post Genomics era Plant Growth Promotion by Endophytic Chapter-5 Actinobacteria Associated with 95-107 Medicinal Plants Viability of Probiotics in Dairy Products: A Chapter-6 Review Focusing on Yogurt, Ice 108-132 Cream, and Cheese Published in: Dec 2018 Online Edition available at: http://openaccessebooks.com/ Reprints request: [email protected] Copyright: @ Corresponding Author Advances in Biotechnology Chapter 1 Extraction of Fungal Chitosan and its Advanced Application Sahira Nsayef Muslim1; Israa MS AL-Kadmy1*; Alaa Naseer Mohammed Ali1; Ahmed Sahi Dwaish2; Saba Saadoon Khazaal1; Sraa Nsayef Muslim3; Sarah Naji Aziz1 1Branch of Biotechnology, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 2Branch of Fungi and Plant Science, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 3Department of Geophysics, College of remote sensing and geophysics, AL-Karkh University for sci- ence, Baghdad-Iraq *Correspondense to: Israa MS AL-Kadmy, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq. Email: [email protected] 1. Definition and Chemical Structure Biopolymer is a term commonly used for polymers which are synthesized by living organisms [1]. Biopolymers originate from natural sources and are biologically renewable, biodegradable and biocompatible. Chitin and chitosan are the biopolymers that have received much research interests due to their numerous potential applications in agriculture, food in- dustry, biomedicine, paper making and textile industry.
    [Show full text]
  • Citrobacter Braakii
    & M cal ed ni ic li a l C G f e Trivedi et al., J Clin Med Genom 2015, 3:1 o n l o a m n r DOI: 10.4172/2472-128X.1000129 i u c s o Journal of Clinical & Medical Genomics J ISSN: 2472-128X ResearchResearch Article Article OpenOpen Access Access Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Sambhu Charan Mondal2 and Snehasis Jana2* 1Trivedi Global Inc., Eastern Avenue Suite A-969, Henderson, NV, USA 2Trivedi Science Research Laboratory Pvt. Ltd., Chinar Fortune City, Hoshangabad Rd., Madhya Pradesh, India Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analysed on day 10 while Gr. IIB was stored and analysed on day 159 (Study I). After retreatment on day 159, the sample (Study II) was divided into three separate tubes. First, second and third tube was analysed on day 5, 10 and 15, respectively. All experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of C.
    [Show full text]
  • Phenotyping and 16S Rdna Analysis After Biofield
    Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana To cite this version: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, et al.. Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen. Journal of Clinical & Medical Genomics, Omics Publishing Group, 2015, 3 (1), pp.1000129. hal-01435926 HAL Id: hal-01435926 https://hal.archives-ouvertes.fr/hal-01435926 Submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License & M cal ed ni ic li a l C G f e Trivedi et al., J Clin Med Genom 2015, 3:1 o n l o a m n r DOI: 10.4172/2472-128X.1000129 i u c s o Journal of Clinical & Medical Genomics J ISSN: 2472-128X ResearchResearch Article Article OpenOpen Access Access Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Sambhu Charan Mondal2 and Snehasis Jana2* 1Trivedi Global Inc., Eastern Avenue Suite A-969, Henderson, NV, USA 2Trivedi Science Research Laboratory Pvt.
    [Show full text]
  • A New Symbiotic Lineage Related to Neisseria and Snodgrassella Arises from the Dynamic and Diverse Microbiomes in Sucking Lice
    bioRxiv preprint doi: https://doi.org/10.1101/867275; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Jana Říhová1, Giampiero Batani1, Sonia M. Rodríguez-Ruano1, Jana Martinů1,2, Eva Nováková1,2 and Václav Hypša1,2 1 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 2 Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic Author for correspondence: Václav Hypša, Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic, +42 387 776 276, [email protected] Abstract Phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have experienced a complex history of symbiont acquisition, loss, and replacement during their evolution. By combining metagenomics and amplicon screening across several populations of two louse genera (Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its' independent origin within dynamic lice microbiomes. While the genomes of these symbionts are highly similar in both lice genera, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseria-related bacterium is a dominant obligate symbiont universally present across several host’s populations, and seems to be replacing a presumably older and more degenerated obligate symbiont.
    [Show full text]
  • Bacterial Diversity and Functional Analysis of Severe Early Childhood
    www.nature.com/scientificreports OPEN Bacterial diversity and functional analysis of severe early childhood caries and recurrence in India Balakrishnan Kalpana1,3, Puniethaa Prabhu3, Ashaq Hussain Bhat3, Arunsaikiran Senthilkumar3, Raj Pranap Arun1, Sharath Asokan4, Sachin S. Gunthe2 & Rama S. Verma1,5* Dental caries is the most prevalent oral disease afecting nearly 70% of children in India and elsewhere. Micro-ecological niche based acidifcation due to dysbiosis in oral microbiome are crucial for caries onset and progression. Here we report the tooth bacteriome diversity compared in Indian children with caries free (CF), severe early childhood caries (SC) and recurrent caries (RC). High quality V3–V4 amplicon sequencing revealed that SC exhibited high bacterial diversity with unique combination and interrelationship. Gracillibacteria_GN02 and TM7 were unique in CF and SC respectively, while Bacteroidetes, Fusobacteria were signifcantly high in RC. Interestingly, we found Streptococcus oralis subsp. tigurinus clade 071 in all groups with signifcant abundance in SC and RC. Positive correlation between low and high abundant bacteria as well as with TCS, PTS and ABC transporters were seen from co-occurrence network analysis. This could lead to persistence of SC niche resulting in RC. Comparative in vitro assessment of bioflm formation showed that the standard culture of S. oralis and its phylogenetically similar clinical isolates showed profound bioflm formation and augmented the growth and enhanced bioflm formation in S. mutans in both dual and multispecies cultures. Interaction among more than 700 species of microbiota under diferent micro-ecological niches of the human oral cavity1,2 acts as a primary defense against various pathogens. Tis has been observed to play a signifcant role in child’s oral and general health.
    [Show full text]