M-21-07 Completing the Transition to Internet Protocol Version 6 (Ipv6)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accelerating Adoption of Ipv6
Accelerating Adoption of IPv6 LUDVIG AHLINDER and ANDERS ERIKSSON KTH Information and Communication Technology Degree project in Communication Systems First level, 15.0 HEC Stockholm, Sweden Accelerating Adoption of IPv6 Ludvig Ahlinder and Anders Eriksson 2011.05.17 Mentor and Examiner: Prof. Gerald Q. Maguire Jr School of Information and Communications Technology Royal Institute of Technology (KTH) Stockholm, Sweden Abstract It has long been known that the number of unique IPv4-addresses would be exhausted because of the rapid expansion of the Internet and because countries such as China and India are becoming more and more connected to the rest of the world. IPv6 is a new version of the Internet Protocol which is supposed to succeed the old version, IPv4, in providing more addresses and new services. The biggest challenge of information and communication technology (ICT) today is to transition from IPv4 to IPv6. The purpose of this thesis is to accelerate the adoption of IPv6 by highlighting the benefits of it compared to IPv4. Although the need for more IP-addresses is the most urgent incentive for the transition to IPv6, other factors also exist. IPv6 offers many improvements to IPv4 which are necessary for the continued expansion of Internet-based applications and services. Some argue that we do not need to transition to IPv6 as the problems with IPv4, mainly the address- shortage, can be solved in other ways. One of the methods of doing this is by extending the use of Network Address Translators (NATs), but the majority of experts and specialists believe that NATs should not be seen as a long-term solution. -
INTERNET ADDRESSING: MEASURING DEPLOYMENT of Ipv6
INTERNET ADDRESSING: MEASURING DEPLOYMENT OF IPv6 APRIL 2010 2 FOREWORD FOREWORD This report provides an overview of several indicators and data sets for measuring IPv6 deployment. This report was prepared by Ms. Karine Perset of the OECD‟s Directorate for Science, Technology and Industry. The Working Party on Communication Infrastructures and Services Policy (CISP) recommended, at its meeting in December 2009, forwarding the document to the Committee for Information, Computer and Communications Policy (ICCP) for declassification. The ICCP Committee agreed to make the document publicly available in March 2010. Experts from the Internet Technical Advisory Committee to the ICCP Committee (ITAC) and the Business and Industry Advisory Committee to the OECD (BIAC) have provided comments, suggestions, and contributed significantly to the data in this report. Special thanks are to be given to Geoff Huston from APNIC and Leo Vegoda from ICANN on behalf of ITAC/the NRO, Patrick Grossetete from ArchRock, Martin Levy from Hurricane Electric, Google and the IPv6 Forum for providing data, analysis and comments for this report. This report was originally issued under the code DSTI/ICCP/CISP(2009)17/FINAL. Issued under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the OECD member countries. ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 30 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. -
Ipv6 in Mobile Networks APRICOT 2016 – February 2016
IPv6 in Mobile Networks APRICOT 2016 – February 2016 Telstra Unrestricted Introduction Sunny Yeung - Senior Technology Specialist, Telstra Wireless Network Engineering Technical Lead for Wireless IPv6 deployment Wireless Mobile IP Edge/Core Architect Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 2 Agenda 1. Why IPv6 in Mobile Networks? 2. IPv6 – it’s here. Really. 3. Wireless Network Architectures 4. 464XLAT – Saviour? Or the devil in disguise? 5. Solution Testing and Results 6. Conclusion 7. Q&A Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 3 Why IPv6 in Mobile Networks? Why IPv6 in Mobile Networks? • Exponential Growth in mobile data traffic and user equipment • Network readiness for Internet-of-Things • IPv4 public address depletion • IPv4 private address depletion • Offload the NAT44 architecture • VoLTE/IMS Remember – IPv6 should be invisible to the end-user Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 5 IPv6 It’s Here. Really. IPv6 Global Traffic The world according to Google Source - https://www.google.com/intl/en/ipv6/statistics.html Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 7 Carrier Examples SP1 SP2 / SP3 SP4 Dual-Stack SS+NAT64+DNS64+CLAT SS/DS+NAT64+DNS-HD +CLAT 1. Every carrier will have a unique set of circumstances that dictates which transition method they will use. There is no standard way of doing this. 2. You must determine which is the best method for your network. In any method, remember to ensure you have a long-term strategy for the eventual deployment of native Single Stack IPv6! Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 8 IPv4 reality – from a business perspective 1. -
Evolution of Mobile Networks and Ipv6
Evolution of Mobile Networks and IPv6 Miwa Fujii <[email protected]> APNIC, Senior Advisor Internet Development 25th April 2014 APEC TEL49 Yangzhou, China Issue Date: [25/04/2014] Revision: [3] Overview • Growth path of the Internet – Asia Pacific region • Evolution of mobile networks • IPv6 deployment in mobile networks: Case study • IPv6 deployment status update • IPv6 in mobile networks: way forward 2 Growth path of the Internet The next wave of Internet growth • The Internet has experienced phenomenal growth in the last 20 years – 16 million users in 1995 and 2.8 billion users in 2013 • And the Internet is still growing: Research indicates that by 2017, there will be about 3.6 billion Internet users – Over 40% of the world’s projected population (7.6 billion) • The next wave of Internet growth will have a much larger impact on the fundamental nature of the Internet – It is coming from mobile networks http://www.allaboutmarketresearch.com/internet.htm 4 Internet development in AP region: Internet users 100.00 Internet Users (per 100 inhabitants) New Zealand, 89.51 90.00 Canada, 86.77 Korea, 84.10 Australia, 82.35 80.00 United States, 81.03 Japan, 79.05 Chinese Taipei, 75.99 Singapore, 74.18 70.00 Hong Kong, China, 72.80 Malaysia, 65.80 Chile, 61.42 60.00 Brunei Darussalam, 60.27 Russia, 53.27 50.00 China, 42.30 Viet Nam, 39.49 40.00 Mexico, 38.42 Peru, 38.20 The Philippines, 36.24 30.00 Thailand, 26.50 20.00 Indonesia, 15.36 10.00 Papua New Guinea, 2.30 0.00 2005 2006 2007 2008 2009 2010 2011 2012 http://statistics.apec.org/ 5 Internet -
Is QUIC a Better Choice Than TCP in the 5G Core Network Service Based Architecture?
DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN Master in Communication Systems Date: November 22, 2020 Supervisor at KTH: Marco Chiesa Supervisor at Ericsson: Zaheduzzaman Sarker Examiner: Peter Sjödin School of Electrical Engineering and Computer Science Host company: Ericsson AB Swedish title: Är QUIC ett bättre val än TCP i 5G Core Network Service Based Architecture? iii Abstract The development of the 5G Cellular Network required a new 5G Core Network and has put higher requirements on its protocol stack. For decades, TCP has been the transport protocol of choice on the Internet. In recent years, major Internet players such as Google, Facebook and CloudFlare have opted to use the new QUIC transport protocol. The design assumptions of the Internet (best-effort delivery) differs from those of the Core Network. The aim of this study is to investigate whether QUIC’s benefits on the Internet will translate to the 5G Core Network Service Based Architecture. A testbed was set up to emulate traffic patterns between Network Functions. The results show that QUIC reduces average request latency to half of that of TCP, for a majority of cases, and doubles the throughput even under optimal network conditions with no packet loss and low (20 ms) RTT. Additionally, by measuring request start and end times “on the wire”, without taking into account QUIC’s shorter connection establishment, we believe the results indicate QUIC’s suitability also under the long-lived (standing) connection model. -
Internet Protocol Suite
InternetInternet ProtocolProtocol SuiteSuite Srinidhi Varadarajan InternetInternet ProtocolProtocol Suite:Suite: TransportTransport • TCP: Transmission Control Protocol • Byte stream transfer • Reliable, connection-oriented service • Point-to-point (one-to-one) service only • UDP: User Datagram Protocol • Unreliable (“best effort”) datagram service • Point-to-point, multicast (one-to-many), and • broadcast (one-to-all) InternetInternet ProtocolProtocol Suite:Suite: NetworkNetwork z IP: Internet Protocol – Unreliable service – Performs routing – Supported by routing protocols, • e.g. RIP, IS-IS, • OSPF, IGP, and BGP z ICMP: Internet Control Message Protocol – Used by IP (primarily) to exchange error and control messages with other nodes z IGMP: Internet Group Management Protocol – Used for controlling multicast (one-to-many transmission) for UDP datagrams InternetInternet ProtocolProtocol Suite:Suite: DataData LinkLink z ARP: Address Resolution Protocol – Translates from an IP (network) address to a network interface (hardware) address, e.g. IP address-to-Ethernet address or IP address-to- FDDI address z RARP: Reverse Address Resolution Protocol – Translates from a network interface (hardware) address to an IP (network) address AddressAddress ResolutionResolution ProtocolProtocol (ARP)(ARP) ARP Query What is the Ethernet Address of 130.245.20.2 Ethernet ARP Response IP Source 0A:03:23:65:09:FB IP Destination IP: 130.245.20.1 IP: 130.245.20.2 Ethernet: 0A:03:21:60:09:FA Ethernet: 0A:03:23:65:09:FB z Maps IP addresses to Ethernet Addresses -
Empirical Analysis of the Effects and the Mitigation of Ipv4 Address Exhaustion
TECHNISCHE UNIVERSITÄT BERLIN FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIK LEHRSTUHL FÜR INTELLIGENTE NETZE UND MANAGEMENT VERTEILTER SYSTEME Empirical Analysis of the Effects and the Mitigation of IPv4 Address Exhaustion vorgelegt von M.Sc. Philipp Richter geboren in Berlin von der Fakultät IV – Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades DOKTOR DER NATURWISSENSCHAFTEN -DR. RER. NAT.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Sebastian Möller, Technische Universität Berlin Gutachterin: Prof. Anja Feldmann, Ph.D., Technische Universität Berlin Gutachter: Prof. Vern Paxson, Ph.D., University of California, Berkeley Gutachter: Prof. Steve Uhlig, Ph.D., Queen Mary University of London Tag der wissenschaftlichen Aussprache: 2. August 2017 Berlin 2017 Abstract IP addresses are essential resources for communication over the Internet. In IP version 4, an address is represented by 32 bits in the IPv4 header; hence there is a finite pool of roughly 4B addresses available. The Internet now faces a fundamental resource scarcity problem: The exhaustion of the available IPv4 address space. In 2011, the Internet Assigned Numbers Authority (IANA) depleted its pool of available IPv4 addresses. IPv4 scarcity is now reality. In the subsequent years, IPv4 address scarcity has started to put substantial economic pressure on the networks that form the Internet. The pools of available IPv4 addresses are mostly depleted and today network operators have to find new ways to satisfy their ongoing demand for IPv4 addresses. Mitigating IPv4 scarcity is not optional, but mandatory: Networks facing address shortage have to take action in order to be able to accommodate additional subscribers and customers. Thus, if not confronted, IPv4 scarcity has the potential to hinder further growth of the Internet. -
The Internet Protocol, Version 4 (Ipv4)
Today’s Lecture I. IPv4 Overview The Internet Protocol, II. IP Fragmentation and Reassembly Version 4 (IPv4) III. IP and Routing IV. IPv4 Options Internet Protocols CSC / ECE 573 Fall, 2005 N.C. State University copyright 2005 Douglas S. Reeves 1 copyright 2005 Douglas S. Reeves 2 Internet Protocol v4 (RFC791) Functions • A universal intermediate layer • Routing IPv4 Overview • Fragmentation and reassembly copyright 2005 Douglas S. Reeves 3 copyright 2005 Douglas S. Reeves 4 “IP over Everything, Everything Over IP” IP = Basic Delivery Service • Everything over IP • IP over everything • Connectionless delivery simplifies router design – TCP, UDP – Dialup and operation – Appletalk – ISDN – Netbios • Unreliable, best-effort delivery. Packets may be… – SCSI – X.25 – ATM – Ethernet – lost (discarded) – X.25 – Wi-Fi – duplicated – SNA – FDDI – reordered – Sonet – ATM – Fibre Channel – Sonet – and/or corrupted – Frame Relay… – … – Remote Direct Memory Access – Ethernet • Even IP over IP! copyright 2005 Douglas S. Reeves 5 copyright 2005 Douglas S. Reeves 6 1 IPv4 Datagram Format IPv4 Header Contents 0 4 8 16 31 •Version (4 bits) header type of service • Functions version total length (in bytes) length (x4) prec | D T R C 0 •Header Length x4 (4) flags identification fragment offset (x8) 1. universal 0 DF MF s •Type of Service (8) e time-to-live (next) protocol t intermediate layer header checksum y b (hop count) identifier •Total Length (16) 0 2 2. routing source IP address •Identification (16) 3. fragmentation and destination IP address reassembly •Flags (3) s •Fragment Offset ×8 (13) e t 4. Options y IP options (if any) b •Time-to-Live (8) 0 4 ≤ •Protocol Identifier (8) s e t •Header Checksum (16) y b payload 5 •Source IP Address (32) 1 5 5 6 •Destination IP Address (32) ≤ •IP Options (≤ 320) copyright 2005 Douglas S. -
IGF 2016 Best Practice Forum on Ipv6 'Understanding the Commercial And
Fall 08 IGF 2016 Best Practice Forum on IPv6 ‘Understanding the commercial and economic incentives behind a successful IPv6 deployment’ Editor Wim Degezelle January 2017 IGF 2016 Best Practice Forum on IPv6 ‘Understanding the commercial and economic incentives behind a successful IPv6 deployment’ Table of contents Table of contents ......................................................................................................................................... 2 Executive Summary ................................................................................................................................... 3 Glossary of Terms ....................................................................................................................................... 5 1. Introduction & Background ................................................................................................................ 7 1.1. About the IGF & BPFs ..................................................................................................................................... 7 1.2. Scope and Goal of the 2016 BPF ................................................................................................................. 7 2. Why deploy IPv6? ................................................................................................................................ 10 2.1. The Internet Protocol version 6 (IPv6) ..................................................................................................... 10 2.2. Why Adopt IPv6? -
61A Lecture 35 Distributed Computing Internet Protocol Transmission
Announcements • Homework 9 (6 pts) due Wednesday 11/26 @ 11:59pm ! Homework Party Monday 6pm-8pm in 2050 VLSB • Guest in live lecture, TA Soumya Basu, on Monday 11/24 • Optional Scheme recursive art contest due Monday 12/1 @ 11:59pm 61A Lecture 35 • No lecture on Wednesday 11/26 (turkey) • No lab on Tuesday 11/25 & Wednesday 11/26 • The week of 12/1: Homework 10 due Wednesday 12/3 & Quiz 3 due Thursday 12/4 on SQL Monday, November 24 ! The lab on SQL (12/2 & 12/3) will be an excellent place to get homework help 2 Distributed Computing A distributed computing application consists of multiple programs running on multiple computers that together coordinate to perform some task. • Computation is performed in parallel by many computers. • Information can be restricted to certain computers. • Redundancy and geographic diversity improve reliability. Distributed Computing Characteristics of distributed computing: • Computers are independent — they do not share memory. • Coordination is enabled by messages passed across a network. • Individual programs have differentiating roles. Distributed computing for large-scale data processing: • Databases respond to queries over a network. • Data sets can be partitioned across multiple machines (next lecture). 4 Network Messages Computers communicate via messages: sequences of bytes transmitted over a network. Messages can serve many purposes: • Send data to another computer • Request data from another computer • Instruct a program to call a function on some arguments. Internet Protocol • Transfer a program to be executed by another computer. Messages conform to a message protocol adopted by both the sender (to encode the message) & receiver (to interpret the message). -
Ipv6 – What Is It, Why Is It Important, and Who Is in Charge? … Answers to Common Questions from Policy Makers, Executives and Other NonTechnical Readers
IPv6 – What is it, why is it important, and who is in charge? … answers to common questions from policy makers, executives and other nontechnical readers. A factual paper prepared for and endorsed by the Chief Executive Officers of ICANN and all the Regional Internet Registries, October 2009. 1. What is IPv6? “IP” is the Internet Protocol, the set of digital communication codes which underlies the Internet infrastructure. IP allows the flow of packets of data between any pair of points on the network, providing the basic service upon which the entire Internet is built. Without IP, the Internet as we know it would not exist. Currently the Internet makes use of IP version 4, or IPv4, which is now reaching the limits of its capacity to address additional devices. IPv6 is the “next generation” of IP, which provides a vastly expanded address space. Using IPv6, the Internet will be able to grow to millions of times its current size, in terms of the numbers of people, devices and objects connected to it1. 2. Just how big is IPv6? To answer this question, we must compare the IPv6 address architecture with that of IPv4. The IPv4 address has 32 bits, allowing today’s Internet to connect up to around four billion devices. By contrast, IPv6 has an address of 128 bits. Because each additional bit doubles the size of the address space, an extra 96 bits increases the theoretical size of the address space by many trillions of times. For comparison, if IPv4 were represented as a golf ball, then IPv6 would be approaching the size of the Sun.2 IPv6 is certainly not infinite, but it is not going to run out any time soon. -
Ipv6 Deployment – Ipv4 Lifetime Exhaustion Sooner Than Expected?
IPv6 Deployment – IPv4 lifetime Exhaustion sooner than expected? Tony Hain Cisco Systems - Technical Leader IPv6 Forum Fellow [email protected] Session Number Presentation_ID © 2003 Cisco Systems, Inc. All rights reserved. 1 Distribution of IPv4 addresses by /8 Central 93 ARIN 23 RIPE NCC 19 APNIC 16 LACNIC 4 AfriNIC 1 Defined 4 Multicast 16 Experimental 16 IANA - Pool 25% remaining 64 0 102030405060708090100 IANA allocated 22 /8’s between Jan. 1, 2004 and Jul. 1, 2005 Presentation_ID © 2003 Cisco Systems, Inc. All rights reserved. 222 Allocation of IPv4 /8 blocks per month by IANA 7 6 5 IANA Allocations to RIR's 4 Raw /8 allocations per month 3 2 1 Presentation_ID 0 Jan-95 Jan-96 Jan-97 © 2003 Cisco Systems, Inc. All rights reserved.Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 333 Allocation of IPv4 /8 blocks per month by IANA IANA Allocations to RIR's Sliding-window 6 month geo-mean scale normalized to current 1 per month 2.50000 2.00000 1.50000 1.00000 0.50000 0.00000 Sep-95 Sep-96 Sep-97 Sep-98 Sep-99 Sep-00 Sep-01 Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Presentation_ID © 2003 Cisco Systems, Inc. All rights reserved. 444 Allocation of IPv4 /8 blocks per month by IANA 2.75 3 2.5 2.25 IANA Allocations to RIR's 1.75 2 Sliding-window 12 month average 1.5 1.25 0.75 1 0.5 0.25 0 Presentation_ID Jan-95 Jan-96 Jan-97 Jan-98 © 2003 Cisco Systems, Inc.