The Postnatal Development of Gut Lamina Propria Lymphocytes: Number, Proliferation, and T and B Cell Subsets in Conventional and Germ-Free Pigs1

Total Page:16

File Type:pdf, Size:1020Kb

The Postnatal Development of Gut Lamina Propria Lymphocytes: Number, Proliferation, and T and B Cell Subsets in Conventional and Germ-Free Pigs1 003 1-3998/91/2903-0237$03.00/0 PEDIATRIC RESEARCH Vol. 29, No. 3. 1991 Copyright O 1991 International Pediatric Research Foundation, Inc. I'rinrcd in U.S. A. The Postnatal Development of Gut Lamina Propria Lymphocytes: Number, Proliferation, and T and B Cell Subsets in Conventional and Germ-Free Pigs1 H. J. ROTHKOTTER, H. ULBRICH, AND R. PABST Cenrre oJAnatomy. Medical School of Hannover, Hannover, Gcrtnany ABSTRACT. The lamina propria (LP) contains many lym- nutritional antigens increases when the mother's milk is gradually phocytes that are effector cells as well as memory cells of replaced by other forms of food (3). Therefore, major changes the gut immune system. This compartment was studied in can be expected in the number and subset composition of normal and germ-free pigs in the early postnatal period up lymphocytes in the LP. to 91 d of age. The number of LP lymphocytes nearly In this study, the LP lymphocytes were examined in pigs for doubled between the 1st and 29th d. LP lymphocytes several reasons: pigs can be reared under germ-free conditions proliferated more in the crypt region than in the villi with (10); being omnivorous, pigs have been used in experimental a mitotic rate/h comparable to that in nonfollicular com- gastroenterology for studying the development of intestinal en- partments of Peyer's patches and lymph nodes. The deter- zymes (1 1) as well as mucosal permeability (12); and pigs can mination of the subpopulations of LP lymphocytes showed serve as animal models for the Campylobacter jejuni infection a 10-fold increase in CD2+ cells between d 1 and 40. About (13). In the postnatal period in pigs, the size of the organized 80% of the LP T cells in 1- and 5-d-old pigs had the lymphoid tissue of the gut, the PP, increases dependent on unusual CD2+CD4-CD8- phenotype. Ig-positive cells ap- microbial and nutritional antigens, and the lymphocytes prolif- peared later in the postnatal period than the T cells. On d erate dependent on age (14). In the conventional pig, the lym- 1, only a few IgM+ cells were observed. In 40-d-old ani- phocyte subset composition shows major differences in the two mals, the number of IgA+ cells exceeded that of IgM'. Ten types of PP (15), which are absent in germ-free animals. times more Ig' cells were detected in the crypt region than Our study had the following aims: 1)to determine the number in the villi. The germ-free pigs at an age of 49 d had a T of LP lymphocytes at different ages in the postnatal period, 2) cell subset pattern comparable to that of 5-d-old normal to study whether lymphocytes proliferate locally in the LP, 3) to animals. (Pediatr Res 29: 237-242, 1991) determine the T and B subpopulations of LP lymphocytes to find out whether there are different patterns of development for Abbreviations each subset, and 4) to study the lymphocyte numbers and subsets under germ-free conditions to get an idea of how microbial LP, lamina propria antigen influences the development of the LP cells. PP, Peyer's patches TBS, Tris-buffered saline MATERIALS AND METHODS VCR, vincristine sulphate Animals. Normal and germ-free male and female German landrace pigs of different ages were examined. The animals had been reared in different ways as described earlier (14). The various groups and the different experiments camed out in these The gut immune system is an essential part of the bamer groups are listed in Table I. All animals were killed using an i.v. function of the gut wall. The uptake of microbial and nutritional injection of T 61 (embutramid, mebezoniumjodit, tetracainhy- antigens in the gut starts immune responses by initiating either drochlorid; Hoechst Veterinar, UnterschleilJheim/Munich, Ger- tolerance or a specific secretory immune reaction (for review see many). refs. 1-4). Large numbers of lymphocytes are distributed in the Lymphocyle prolferarion. These experiments had been done epithelium and LP of the gut mucosa. Some of the LP lympho- earlier to study lymphocyte proliferation in the PP (14, 16). Now cytes are PP-derived B lymphoblasts, becoming mature plasma tissue samples of the same pigs were used to determine prolifer- cells in the LP. They preferentially produce IgA (5, 6). The ation in the LP. In brief, pigs of 1, 5, 12, 40, and 91 d of age majority of T cells in the LP are CD4+ (7, 8). The T cells show were injected with 0.25 mg/kg body weight of VCR (Eli Lilly, a high expression of genes associated with cell activation (9). The Giessen, Germany) i.v. to arrest all mitoses in the metaphase. At proportion of antigen-primed memory cells is higher in LP T 1, 2, 2.5, or 3.5 h after the VCR injection, the animals were cells than in peripheral blood lymphocytes (reviewed in 4). killed. The 13-wk-old animals were laparotomized under anes- In the early postnatal period, the gut wall is exposed to micro- thesia (Thiopental: Trapanal, Byk-Gulden, Konstanz, Germany) bial antigens for the first time. Additionally, the amount of and in every pig samples of the gut were taken for histology Received April I 1, 1990; accepted October 9, 1990. before and 1, 2, 2.5, and 3.5 h after the injection of VCR. Correspondence: Dr. H. J. Rothkotter, Zentmm Anatornie 4150, Medizinische Histology and immunohistology. Pieces of the jejunum and Hochschule Hannover, Postfach 6 10 180, D-3000 Hannover 6 1, Germany. ileum were excised and fixed in Schaffer's solution. The tissue Supported by the Deutsche Forschungsgemeinschaft,"Gastrointestinal Banier," was embedded in glycolmethacrylate, cut at 4 pm and stained Project C I. ' Presented in part at the 5th lnternational Congress of Mucosal Immunology. with Giemsa or hematoxylin and eosin solution. For immuno- London, July 1989. histology the following method was used as described previously 2 Table 1. Animal groups and experimental design Number of Breeding Lymphocyte Lymphocyte animals conditions number Proliferation subsets Conventional Conventional Feeding machine Feeding machine Feeding machine Feeding machine Feeding machine Feeding machine Conventional Germ-free Table 2. MAb used in this study (1 7): Small parts of the gut were frozen in liquid nitrogen and Antibody Specificity Reference Dilution stored at -70°C. Cryostat sections (5 pm) were cut, dried for at least 1 h, and stored at -20°C. After being removed from the T cells freezer, the cryostat sections were dried for 30 min and then 74-12-4 CD4 18 1:200 fixed for 90 s in equal parts of methanol and acetone. TBS 295/33 CD8 18 1:30 containing 0.05% Tween 20 (Serva, Heidelberg, Germany) 8/ 1 Resting T cells 18 1 :400 served as washing buffer. The sections were incubated with 50 Mac80 CD2 18 1 :300 pL of the primary antibody dilution for 30 min in a humid Ig' cells chamber. The MAb (reviewed in ref. 18) used in this study are 27.9.1 anti-pig IgA 18 1 :20000 listed in Table 2. The sections were incubated with the second 23.7.1 b anti-pig IgG 18 1:20000 (rabbit anti-mouse Ig) and third antibody (alkaline phosphatase 28.4.1 anti-pig IgM 18 1:20000 anti-alkaline phosphatase complex), both diluted 150 (Dako, Hamburg, Germany). The color reaction was carried out with a fast red solution (10 mg fast red salt in 9.8 mL 0.1 M TBS containing 2 mg naphthol AS-MX phosphate, 200 pL N,N- dimethylformamide, and 10 pL 1 M levamisole, all from Sigma, Munich, Germany), counterstained, and mounted in glycergel (Dako). For sections of 12- and 40-d-old animals the indirect peroxidase method was used: goat anti-mouse F'(ab)2 fragments diluted 150 served as second antibody and the surface labeling was developed in these sections with 3,3'-diaminobenzidine- tetrahydrochloride (Sigma) dissolved in TBS at a concentration of 1 mg/mL containing 0.02% H202. These sections were coun- terstained as described above and mounted. To test whether the - o conventional animals sensitivity of both methods was comparable, in six samples both techniques were used. The number of positive cells/mm2 were , ' :::I similar (40-d-old animals, alkaline phosphatase or peroxidase 0 rea , , , , . , , , , technique: CD2+, 1340 f 240 and 1240 f 396; CD8+, 910 rt 0 10 20 30 40 50 60 70 80 90 270 and 780 & 290 cells/mm2). Evaluation. Only cells with all the morphologic characteristics Fig. I. Number of lymphocytes in the LP of the gut mucosa of of lymphocytes were counted. A Zeiss microscope was used with conventionally reared pigs of different ages and in germ-free animals 49 an ocular grid containing 100 rectangles (total area, 0.0 1 mm2 at d of age. The results are given as the mean number of cells/mm2 + SD. 625X magnification). The cell counts were carried out as follows: The grid was moved in the villi or crypt region of the jejunum and ileum. At 625x magnification, the area of the LP was determined by counting the number of the rectangles placed over the LP. The number of lymphocytes, mitoses, or membrane- stained lymphocytes in the measured area was counted. The cell number/mm2 was calculated with the number of the counted EE4 villi 0crypts rectangles. For the number of lymphocytes and mitoses, at least 50 grids and for lymphocyte subsets at least 20 grids were examined both in the crypt and in the villi region. Using regression analysis, the relative number of mitoses per h was calculated, and p 5 0.05 in the two-tailed t test for linear regression was regarded as significant for the relative number of mitoses per h.
Recommended publications
  • Costimulation of T-Cell Activation and Virus Production by B7 Antigen on Activated CD4+ T Cells from Human Immunodeficiency Virus Type 1-Infected Donors OMAR K
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11094-11098, December 1993 Immunology Costimulation of T-cell activation and virus production by B7 antigen on activated CD4+ T cells from human immunodeficiency virus type 1-infected donors OMAR K. HAFFAR, MOLLY D. SMITHGALL, JEFFREY BRADSHAW, BILL BRADY, NITIN K. DAMLE*, AND PETER S. LINSLEY Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121 Communicated by Leon E. Rosenberg, August 3, 1993 (receivedfor review April 29, 1993) ABSTRACT Infection with the human immunodeficiency sequence (CTLA-4) (34), a protein structurally related to virus type 1 (HIV-1) requires T-cefl activation. Recent studies CD28 but only expressed on T cells after activation (12). have shown that interactions of the T-lymphocyte receptors CTLA-4 acts cooperatively with CD28 to bind B7 and deliver CD28 and CTLA-4 with their counter receptor, B7, on antigen- T-cell costimulatory signals (13). presenting cells are required for optimal T-cell activation. Here Because of the importance of the CD28/CTLA-4 and B7 we show that HIV-1 infection is associated with decreased interactions in immune responses, it is likely that these expression of CD28 and increased expression of B7 on CD4+ interactions are also important during HIV-1 infection. Stud- T-cell lines generated from seropositive donors by afloantigen ies with anti-CD28 monoclonal antibodies (mAbs) suggested stimulation. Loss of CD28 expression was not seen on CD4+ a role for CD28 in up-regulating HIV-1 long terminal repeat- T-ceU lines from seronegative donors, but up-regulation of B7 driven transcription of a reporter gene in leukemic cell lines expression was observed upon more prolonged culture.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Papers J Clin Pathol: First Published As 10.1136/Jcp.49.7.539 on 1 July 1996
    Clin Pathol 1996;49:539-544 539 Papers J Clin Pathol: first published as 10.1136/jcp.49.7.539 on 1 July 1996. Downloaded from Differential expression of T cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry L Ginaldi, N Farahat, E Matutes, M De Martinis, R Morilla, D Catovsky Abstract diagnosis by comparison with findings in Aims-To obtain reference values of the normal counterparts. level of expression of T cell antigens on ( Clin Pathol 1996;49:539-544) normal lymphocyte subsets in order to disclose differences which could reflect Keywords: flow cytometry, T cell antigens, peripheral their function or maturation stages, or blood lymphocytes. both. Methods-Peripheral blood from 15 healthy donors was processed by flow The most common use of flow cytometry is to cytometry with triple colour analysis. For determine the percent of "positive" or "nega- each sample phycoerythrin (PE) conju- tive" cells for each antigen in different cell gated CD2, CD4, CD5, CD8, and CD56 populations. However, valuable information is monoclonal antibodies were combined lost when the relative intensities of the positive with Cy5-R-phycoerythrin (TC) conju- cells, reflecting antigenic densities, are not considered. A cell population with a well gated CD3 and fluorescein isothiocyanate http://jcp.bmj.com/ (FITC) conjugated CD7; CD2- and defined phenotype, positive for one antigen, CD7-PE were also combined with might be heterogeneous with regard to its level CD3-TC and CD4-FITC. Standard mi- of expression. This may reflect different crobeads with different capacities to bind functional or maturational states, or both, or mouse immunoglobulins were used to identify subpopulations on the basis of the dif- convert the mean fluorescence intensity ferent numbers of molecules of antigen per cell.
    [Show full text]
  • CD18) in a Patient with Leukocyte Adhesion Molecule (Leu-CAM) Deficiency
    Point mutations impairing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency. M A Arnaout, … , D G Tenen, D M Fathallah J Clin Invest. 1990;85(3):977-981. https://doi.org/10.1172/JCI114529. Research Article The leukocyte adhesion molecules CD11a/CD18, CD11b/CD18, and CD11c/CD18 (Leu-CAM) are members of the integrin receptor family and mediate crucial adhesion-dependent functions in leukocytes. The molecular basis for their deficient cell surface expression was sought in a patient suffering from severe and recurrent bacterial infections. Previous studies revealed that impaired cell surface expression of Leu-CAM is secondary to heterogeneous structural defects in the common beta subunit (CD18). Cloning and sequencing of complementary DNA encoding for CD18 in this patient revealed two mutant alleles, each representing a point mutation in the coding region of CD18 and resulting in an amino acid substitution. Each mutant allele results in impaired CD18 expression on the cell surface membrane of transfected COS M6 cells. One substitution involves an arginine residue (Arg593----cysteine) that is conserved in the highly homologous fourth cysteine-rich repeats of other mammalian integrin subfamilies. The other substitution involves a lysine residue (Lys196----threonine) located within another highly conserved region in integrins. These data identify crucial residues and regions necessary for normal cell surface expression of CD18 and possibly other integrin beta subunits and define a molecular basis for impaired cell surface expression of CD18 in this patient. Find the latest version: https://jci.me/114529/pdf Rapid Publication Point Mutations Impairing Cell Surface Expression of the Common ,B Subunit (CD18) in a Patient with Leukocyte Adhesion Molecule (Leu-CAM) Deficiency M.
    [Show full text]
  • The Immunological Synapse and CD28-CD80 Interactions Shannon K
    © 2001 Nature Publishing Group http://immunol.nature.com ARTICLES The immunological synapse and CD28-CD80 interactions Shannon K. Bromley1,Andrea Iaboni2, Simon J. Davis2,Adrian Whitty3, Jonathan M. Green4, Andrey S. Shaw1,ArthurWeiss5 and Michael L. Dustin5,6 Published online: 19 November 2001, DOI: 10.1038/ni737 According to the two-signal model of T cell activation, costimulatory molecules augment T cell receptor (TCR) signaling, whereas adhesion molecules enhance TCR–MHC-peptide recognition.The structure and binding properties of CD28 imply that it may perform both functions, blurring the distinction between adhesion and costimulatory molecules. Our results show that CD28 on naïve T cells does not support adhesion and has little or no capacity for directly enhancing TCR–MHC- peptide interactions. Instead of being dependent on costimulatory signaling, we propose that a key function of the immunological synapse is to generate a cellular microenvironment that favors the interactions of potent secondary signaling molecules, such as CD28. The T cell receptor (TCR) interaction with complexes of peptide and as CD2 and CD48, which suggests that CD28 might have a dual role as major histocompatibility complex (pMHC) is central to the T cell an adhesion and a signaling molecule4. Coengagement of CD28 with response. However, efficient T cell activation also requires the partici- the TCR has a number of effects on T cell activation; these include pation of additional cell-surface receptors that engage nonpolymorphic increasing sensitivity to TCR stimulation and increasing the survival of ligands on antigen-presenting cells (APCs). Some of these molecules T cells after stimulation5. CD80-transfected APCs have been used to are involved in the “physical embrace” between T cells and APCs and assess the temporal relationship of TCR and CD28 signaling, as initiat- are characterized as adhesion molecules.
    [Show full text]
  • (12) United States Patent (405
    USOO6291239B1 (12) United States Patent (10) Patent No.: US 6,291,239 B1 Prodinger et al. (45) Date of Patent: Sep. 18, 2001 (54) MONOCLONAL ANTIBODY Recess Formed Between SCR1 and SCR 2 of Complement Receptor Type Two', Prodinger. (76) Inventors: Wolfgang Prodinger, Kirschentalgasse Immunopharmacology, vol. 38, No. 1-2, Dec., 1997, pp. 16, A-6020 Innsbruck; Michael 141-148, XP002089604, “Expression in Insect Cells of the Schwendinger, Semmelweisgasse 4, Functional Domain of CD21 (Complement Receptor Type A-7100 Neusiedl/See, both of (AT) Two) as a Truncated... ", Prodinger. Journal of Immunology, vol. 156, No. 7 Apr. 1, 1996, pp. (*) Notice: Subject to any disclaimer, the term of this 2580–2584, XP002089605, “Ligation of the Functional patent is extended or adjusted under 35 Domain of Complement Receptor Type 2 (CR2, CD21) is U.S.C. 154(b) by 0 days. Relevant for Complex . , Prodinger. Journal of Immunology, vol. 154, No. 10, May 15, 1995, pp. (21) Appl. No.: 09/276,296 5426–5435, XP002089606, “Characterization of a Comple (22) Filed: Mar. 25, 1999 ment Receptor 2 (CR2, CD21) Ligand Binding Site for C3”, H. Molina et al. (51) Int. Cl. ............................... C12N 5/06; C12O 1/70; Journal of Immunology, vol. 161, Nov. 1, 1998, pp. G01N 33/53; CO7K 16/00; A61K 39/395 4604–4610, XP002089607, “Characterization of C3dg Binding to a Recess Formed Between Short Consensus (52) U.S. Cl. ............................ 435/339.1; 435/5; 435/7.1; Repeats 1 and 2 ... ', Prodinger. 435/334; 530/388.1; 530/388.35; 424/141.1; 424/143.1; 424/159.1 Primary Examiner Hankyel T.
    [Show full text]
  • CD20-Positive Peripheral T-Cell Lymphoma: Report of a Case After Nodular Sclerosis Hodgkin’S Disease and Review of the Literature Renee L
    CD20-Positive Peripheral T-Cell Lymphoma: Report of a Case after Nodular Sclerosis Hodgkin’s Disease and Review of the Literature Renee L. Mohrmann, M.D., Daniel A. Arber, M.D. Division of Pathology, City of Hope National Medical Center, Duarte, California CASE REPORT We present a case of peripheral T-cell lymphoma co-expressing CD3 and CD20, as well as demon- A 47-year-old man presented in 1993 with a brief strating T-cell receptor gene rearrangement, in a history of right axillary lymph node enlargement patient who had been diagnosed with nodular scle- and mild fatigue. Biopsy showed nodular sclerosis rosis Hodgkin’s disease 5 years previously. Although Hodgkin’s disease. He was treated with six courses 15 cases of CD20-positive T-cell neoplasms have of mechlorethamine, vincristine, procarbazine, been previously reported in the literature, this is the prednisone/doxorubicin, bleomycin, vinblastine first report of CD20-positive T-cell lymphoma oc- chemotherapy over a period of 6 months. Clinical curring subsequent to treatment of Hodgkin’s dis- remission was achieved for 5 years. In early 1998, the patient noticed enlargement of lymph nodes in ease. The current case affords an opportunity to the posterior cervical region, which were followed review the rarely reported expression of CD20 in clinically for several months. Weight loss of 15 lbs., T-cell neoplasms as well as the relationship between fatigue, and flu-like symptoms ensued. The lymph Hodgkin’s disease and subsequently occurring non- nodes became firmer to palpation and were biop- Hodgkin’s lymphomas. In addition, the identifica- sied, showing peripheral T-cell lymphoma, diffuse tion of this case supports the suggestion that the use large-cell type.
    [Show full text]
  • Immunological Synapse Formation Licenses CD40-CD40L Accumulations at T-APC Contact Sites1
    The Journal of Immunology Immunological Synapse Formation Licenses CD40-CD40L Accumulations at T-APC Contact Sites1 Judie Boisvert, Samuel Edmondson, and Matthew F. Krummel2 The maintenance of tolerance is likely to rely on the ability of a T cell to polarize surface molecules providing “help” to only specific APCs. The formation of a mature immunological synapse leads to concentration of the TCR at the APC interface. In this study, we show that the CD40-CD154 receptor-ligand pair is also highly concentrated into a central region of the synapse on mouse lymphocytes only after the formation of the TCR/CD3 c-SMAC. Concentration of this ligand was strictly dependent on TCR recognition, the binding of ICAM-1 to T cell integrins and the presence of an intact cytoskeleton in the T cells. This may provide a novel explanation for the specificity of T cell help directing the help signal to the site of Ag receptor signal. It may also serve as a site for these molecular aggregates to coassociate and/or internalize alongside other signaling receptors. The Journal of Im- munology, 2004, 173: 3647–3652. uring the onset and propagation of immune responses, T Interactions of T cells with Ag-bearing APCs is associated with cells send and receive signals via Ag-dependent and Ag- a coalescence of TCRs, other related receptors such as CD2, CD4, independent ligands. Whereas peptide-class II MHC CD28, and signaling molecules such as p56lck, fyn, linker for ac- D ϩ complexes on APC are recognized by the TCR on CD4 helper T tivation of T cells, and protein kinase C␪ into the central portion of cells, separate cell surface receptors modulate T cell-APC inter- an “immunological synapse” (15–23).
    [Show full text]
  • Processing Epitope Precursor Recognition and Analogue Provides
    The Journal of Immunology Crystal Structure of Insulin-Regulated Aminopeptidase with Bound Substrate Analogue Provides Insight on Antigenic Epitope Precursor Recognition and Processing Anastasia Mpakali,* Emmanuel Saridakis,* Karl Harlos,† Yuguang Zhao,† Athanasios Papakyriakou,* Paraskevi Kokkala,*,‡ Dimitris Georgiadis,‡ and Efstratios Stratikos* Aminopeptidases that generate antigenic peptides influence immunodominance and adaptive cytotoxic immune responses. The mechanisms that allow these enzymes to efficiently process a vast number of different long peptide substrates are poorly understood. In this work, we report the structure of insulin-regulated aminopeptidase, an enzyme that prepares antigenic epitopes for cross- presentation in dendritic cells, in complex with an antigenic peptide precursor analog. Insulin-regulated aminopeptidase is found in a semiclosed conformation with an extended internal cavity with limited access to the solvent. The N-terminal moiety of the peptide is located at the active site, positioned optimally for catalysis, whereas the C-terminal moiety of the peptide is stabilized along the extended internal cavity lodged between domains II and IV. Hydrophobic interactions and shape complementarity enhance peptide affinity beyond the catalytic site and support a limited selectivity model for antigenic peptide selection that may underlie the generation of complex immunopeptidomes. The Journal of Immunology, 2015, 195: 2842–2851. ytotoxic adaptive immune responses rely on the recogni- process, and present external Ags onto MHCI to allow cross-priming tion on the cell surface of complexes of MHC class I of naive CD8+ T cells (2). The cross-presentation pathway is key for C molecules (MHCI) with antigenic peptides. These peptides the immune defense against many viruses, bacteria, and tumors and are generated inside the cell by proteolytic digestion that often can help the immune system avoid immune evasion strategies.
    [Show full text]
  • Efficient Generation of Human Natural Killer Cell Lines by Viral Transformation
    Letters to the Editor 192 2 Department of Immunology, Erasmus MC, Erasmus University selected children with hypoplastic refractory cytopenia. Haematologica 2007; 92: Medical Center, Rotterdam, The Netherlands; 397–400. 3Department of Pediatrics and Adolescent Medicine, Division of 4 Dunn DE, Tanawattanacharoen P, Boccuni P, Nagakura S, Green SW, Kirby MR Pediatric Hematology and Oncology, University of Freiburg, et al. Paroxysmal nocturnal hemoglobinuria cells in patients with bone marrow Freiburg, Germany; failure syndromes. Ann Intern Med 1999; 131: 401–408. 4Department of Pathology, Clinical Centre South West, Bo¨blingen 5 Maciejewski JP, Follmann D, Nakamura R, Saunthararajah Y, Rivera CE, Simonis T et al. Increased frequency of HLA-DR2 in patients with paroxysmal nocturnal Clinics, Bo¨blingen, Germany; 5 hemoglobinuria and the PNH/aplastic anemia syndrome. Blood 2001; 98: Department of Clinical Genetics, Erasmus MC, Erasmus University 3513–3519. Medical Center, Rotterdam, The Netherlands; 6 Wang H, Chuhjo T, Yasue S, Omine M, Nakao S. Clinical significance of a minor 6 St. Anna Children’s Hospital and Children’s Cancer Research Institute, population of paroxysmal nocturnal hemoglobinuria-type cells in bone marrow Department of Pediatrics, Medical University of Vienna, failure syndrome. Blood 2002; 100: 3897–3902. Vienna, Austria; 7 Yoshida N, Yagasaki H, Takahashi Y, Yamamoto T, Liang J, Wang Y et al. 7Department of Pediatrics, Aarhus University Hospital Skejby, Clinical impact of HLA-DR15, a minor population of paroxysmal Aarhus, Denmark; nocturnal haemoglobinuria-type cells, and an aplastic anaemia-associated auto- 8Department of Pediatric Hematology-Oncology, IRCCS Ospedale antibody in children with acquired aplastic anaemia. Br J Haematol 2008; 142: 427–435.
    [Show full text]
  • And CD28 (T P44) Induces Autocrine Interleukin 2/Interleukin 2 Receptor-Mediated Cell Proliferation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central A NOVEL ACTIVATION PATHWAY FOR MATURE THYMOCYTES Costimulation of CD2 (T,p50) and CD28 (T p44) Induces Autocrine Interleukin 2/Interleukin 2 Receptor-mediated Cell Proliferation By SOO YOUNG YANG, STEPHEN M. DENNING,' SHINICHI MIZUNO, BO DUPONT, AND BARTON F. HAYNES* From the Laboratories of Human and Biochemical Immunogenetics, Sloan-Kettering Institute for Cancer Research, New York, New York 10021; and the "Department of Medicine, Division of Rheumatology, Immunology, and Cardiology, Duke University School of Medicine, Durham, North Carolina 27710 Bone marrrow-derived T progenitor cells undergo proliferation and maturation under the influence of the thymic microenvironment (1). Only a small fraction of thymocytes are selected to account for self tolerance, as well as self restriction, and become immunocompetent T cells (2). The molecular and cellular mechanisms for the growth and maturation of thymocytes are poorly understood. Cell surface phenotype analyses have shown that thymocytes are composed ofhighly heterogeneous populations. Based on cell surface expression of the TCR accessory molecules CD4 and CD8, thymocytes can be divided into three major subpopula- tions, which generally are thought to relate to maturation stages. They are the CD2+CD1 - CD4- 8- (double-negative) cells, CD2'CD1'CD4'8' (double-positive) cells, and CD2' CDl - CD4' 8- or CD2' CDl - CD4- 8' (single-positive) mature thymocytes. Both double-negative and double-positive thymocytes are immature cells located in the cortical compartment of human thymus (3). Mature thymocytes do not express the cortical specific marker CD1 but express TCRA and B chain subunits associated with the CD3 complex and reside predominantly in the medullary com- partment (4) .
    [Show full text]
  • Integrins As Therapeutic Targets: Successes and Cancers
    cancers Review Integrins as Therapeutic Targets: Successes and Cancers Sabine Raab-Westphal 1, John F. Marshall 2 and Simon L. Goodman 3,* 1 Translational In Vivo Pharmacology, Translational Innovation Platform Oncology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; [email protected] 2 Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; [email protected] 3 Translational and Biomarkers Research, Translational Innovation Platform Oncology, Merck KGaA, 64293 Darmstadt, Germany * Correspondence: [email protected]; Tel.: +49-6155-831931 Academic Editor: Helen M. Sheldrake Received: 22 July 2017; Accepted: 14 August 2017; Published: 23 August 2017 Abstract: Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments. Keywords: integrin; therapy; clinical trial; efficacy; health care economics 1. Introduction Integrins are heterodimeric cell-surface adhesion molecules found on all nucleated cells. They integrate processes in the intracellular compartment with the extracellular environment. The 18 α- and 8 β-subunits form 24 different heterodimers each having functional and tissue specificity (reviewed in [1,2]).
    [Show full text]