Camera Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Resolution Should Your Images Be?
What Resolution Should Your Images Be? The best way to determine the optimum resolution is to think about the final use of your images. For publication you’ll need the highest resolution, for desktop printing lower, and for web or classroom use, lower still. The following table is a general guide; detailed explanations follow. Use Pixel Size Resolution Preferred Approx. File File Format Size Projected in class About 1024 pixels wide 102 DPI JPEG 300–600 K for a horizontal image; or 768 pixels high for a vertical one Web site About 400–600 pixels 72 DPI JPEG 20–200 K wide for a large image; 100–200 for a thumbnail image Printed in a book Multiply intended print 300 DPI EPS or TIFF 6–10 MB or art magazine size by resolution; e.g. an image to be printed as 6” W x 4” H would be 1800 x 1200 pixels. Printed on a Multiply intended print 200 DPI EPS or TIFF 2-3 MB laserwriter size by resolution; e.g. an image to be printed as 6” W x 4” H would be 1200 x 800 pixels. Digital Camera Photos Digital cameras have a range of preset resolutions which vary from camera to camera. Designation Resolution Max. Image size at Printable size on 300 DPI a color printer 4 Megapixels 2272 x 1704 pixels 7.5” x 5.7” 12” x 9” 3 Megapixels 2048 x 1536 pixels 6.8” x 5” 11” x 8.5” 2 Megapixels 1600 x 1200 pixels 5.3” x 4” 6” x 4” 1 Megapixel 1024 x 768 pixels 3.5” x 2.5” 5” x 3 If you can, you generally want to shoot larger than you need, then sharpen the image and reduce its size in Photoshop. -
Paul Hightower Instrumentation Technology Systems Northridge, CA 91324 [email protected]
COMPRESSION, WHY, WHAT AND COMPROMISES Authors Hightower, Paul Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings Rights Copyright © held by the author; distribution rights International Foundation for Telemetering Download date 06/10/2021 11:41:22 Link to Item http://hdl.handle.net/10150/631710 COMPRESSION, WHY, WHAT AND COMPROMISES Paul Hightower Instrumentation Technology Systems Northridge, CA 91324 [email protected] ABSTRACT Each 1080 video frame requires 6.2 MB of storage; archiving a one minute clip requires 22GB. Playing a 1080p/60 video requires sustained rates of 400 MB/S. These storage and transport parameters pose major technical and cost hurdles. Even the latest technologies would only support one channel of such video. Content creators needed a solution to these road blocks to enable them to deliver video to viewers and monetize efforts. Over the past 30 years a pyramid of techniques have been developed to provide ever increasing compression efficiency. These techniques make it possible to deliver movies on Blu-ray disks, over Wi-Fi and Ethernet. However, there are tradeoffs. Compression introduces latency, image errors and resolution loss. The exact effect may be different from image to image. BER may result the total loss of strings of frames. We will explore these effects and how they impact test quality and reduce the benefits that HD cameras/lenses bring telemetry. INTRODUCTION Over the past 15 years we have all become accustomed to having television, computers and other video streaming devices show us video in high definition. It has become so commonplace that our community nearly insists that it be brought to the telemetry and test community so that better imagery can be used to better observe and model systems behaviors. -
Foveon FO18-50-F19 4.5 MP X3 Direct Image Sensor
® Foveon FO18-50-F19 4.5 MP X3 Direct Image Sensor Features The Foveon FO18-50-F19 is a 1/1.8-inch CMOS direct image sensor that incorporates breakthrough Foveon X3 technology. Foveon X3 direct image sensors Foveon X3® Technology • A stack of three pixels captures superior color capture full-measured color images through a unique stacked pixel sensor design. fidelity by measuring full color at every point By capturing full-measured color images, the need for color interpolation and in the captured image. artifact-reducing blur filters is eliminated. The Foveon FO18-50-F19 features the • Images have improved sharpness and immunity to color artifacts (moiré). powerful VPS (Variable Pixel Size) capability. VPS provides the on-chip capabil- • Foveon X3 technology directly converts light ity of grouping neighboring pixels together to form larger pixels that are optimal of all colors into useful signal information at every point in the captured image—no light for high frame rate, reduced noise, or dual mode still/video applications. Other absorbing filters are used to block out light. advanced features include: low fixed pattern noise, ultra-low power consumption, Variable Pixel Size (VPS) Capability and integrated digital control. • Neighboring pixels can be grouped together on-chip to obtain the effect of a larger pixel. • Enables flexible video capture at a variety of resolutions. • Enables higher ISO mode at lower resolutions. Analog Biases Row Row Digital Supplies • Reduces noise by combining pixels. Pixel Array Analog Supplies Readout Reset 1440 columns x 1088 rows x 3 layers On-Chip A/D Conversion Control Control • Integrated 12-bit A/D converter running at up to 40 MHz. -
Image Resolution
Image resolution When printing photographs and similar types of image, the size of the file will determine how large the picture can be printed whilst maintaining acceptable quality. This document provides a guide which should help you to judge whether a particular image will reproduce well at the size you want. What is resolution? A digital photograph is made up of a number of discrete picture elements, known as “pixels”. We can see these elements if we magnify an image on the screen (see right). Because the number of pixels in the image is fixed, the bigger we print the image, then the bigger the pixels will be. If we print the image too big, then the pixels will be visible to the naked eye and the image will appear to be poor quality. Let’s take as an example an image from a “5 megapixel” digital camera. Typically this camera at its maximum quality setting will produce images which are 2592 x 1944 pixels. (If we multiply these two figures, we get 5,038,848 pixels, which approximately equates to 5 million pixels/5 megapixels.) Printing this image at various sizes, we can calculate the number of pixels per inch, more commonly referred to as dots per inch (dpi). Just note that this measure is dependent on the image being printed, it is unrelated to the resolution of the printer, which is also expressed in dpi. Original image size 2592 x 1944 pixels Small format (up to A3) When printing images onto A4 or A3 pages, aim for 300dpi if at all Print size (inches) 8 x 6 16 x 12 24 x 16 32 x 24 possible. -
The Strategic Impact of 4K on the Entertainment Value Chain
The Strategic Impact of 4K on the Entertainment Value Chain December 2012 © 2012 Futuresource Consulting Ltd, all rights reserved Reproduction, transfer, distribution or storage of part or all of the contents in this document in any form without the prior written permission of Futuresource Consulting is prohibited. Company Registration No: 2293034 For legal limitations, please refer to the rear cover of this report 2 © 2012 Futuresource Consulting Ltd Contents Section Page 1. Introduction: Defining 4K 4 2. Executive Summary 6 3. 4K in Digital Cinema 9 4. 4K in Broadcast 12 5. 4K Standards and Delivery to the Consumer 20 a) Pay TV 24 b) Blu-ray 25 c) OTT 26 6. Consumer Electronics: 4K Issues and Forecasts 27 a) USA 31 b) Western Europe 33 c) UK, Germany, France, Italy and Spain 35 7. 4K in Professional Displays Markets 37 8. Appendix – Company Overview 48 3 © 2012 Futuresource Consulting Ltd Introduction: Defining 4K 4K is the latest resolution to be hailed as the next standard for the video and displays industries. There are a variety of resolutions that are claimed to be 4K, but in general 4K offers four times the resolution of standard 1080p HD video. A number of names or acronyms for 4K are being used across the industry including Quad Full HD (QFHD), Ultra HD or UHD and 4K2K. For the purposes of this report, the term 4K will be used. ● These terms all refer to the same resolution: 3,840 by 2,160. ● The EBU has defined 3,840 by 2,160 as UHD-1. -
Single-Pixel Imaging Via Compressive Sampling
© DIGITAL VISION Single-Pixel Imaging via Compressive Sampling [Building simpler, smaller, and less-expensive digital cameras] Marco F. Duarte, umans are visual animals, and imaging sensors that extend our reach— [ cameras—have improved dramatically in recent times thanks to the intro- Mark A. Davenport, duction of CCD and CMOS digital technology. Consumer digital cameras in Dharmpal Takhar, the megapixel range are now ubiquitous thanks to the happy coincidence that the semiconductor material of choice for large-scale electronics inte- Jason N. Laska, Ting Sun, Hgration (silicon) also happens to readily convert photons at visual wavelengths into elec- Kevin F. Kelly, and trons. On the contrary, imaging at wavelengths where silicon is blind is considerably Richard G. Baraniuk more complicated, bulky, and expensive. Thus, for comparable resolution, a US$500 digi- ] tal camera for the visible becomes a US$50,000 camera for the infrared. In this article, we present a new approach to building simpler, smaller, and cheaper digital cameras that can operate efficiently across a much broader spectral range than conventional silicon-based cameras. Our approach fuses a new camera architecture Digital Object Identifier 10.1109/MSP.2007.914730 1053-5888/08/$25.00©2008IEEE IEEE SIGNAL PROCESSING MAGAZINE [83] MARCH 2008 based on a digital micromirror device (DMD—see “Spatial Light Our “single-pixel” CS camera architecture is basically an Modulators”) with the new mathematical theory and algorithms optical computer (comprising a DMD, two lenses, a single pho- of compressive sampling (CS—see “CS in a Nutshell”). ton detector, and an analog-to-digital (A/D) converter) that com- CS combines sampling and compression into a single non- putes random linear measurements of the scene under view. -
One Is Enough. a Photograph Taken by the “Single-Pixel Camera” Built by Richard Baraniuk and Kevin Kelly of Rice University
One is Enough. A photograph taken by the “single-pixel camera” built by Richard Baraniuk and Kevin Kelly of Rice University. (a) A photograph of a soccer ball, taken by a conventional digital camera at 64 64 resolution. (b) The same soccer ball, photographed by a single-pixel camera. The image is de- rived× mathematically from 1600 separate, randomly selected measurements, using a method called compressed sensing. (Photos courtesy of R. G. Baraniuk, Compressive Sensing [Lecture Notes], Signal Processing Magazine, July 2007. c 2007 IEEE.) 114 What’s Happening in the Mathematical Sciences Compressed Sensing Makes Every Pixel Count rash and computer files have one thing in common: compactisbeautiful.Butifyou’veevershoppedforadigi- Ttal camera, you might have noticed that camera manufac- turers haven’t gotten the message. A few years ago, electronic stores were full of 1- or 2-megapixel cameras. Then along came cameras with 3-megapixel chips, 10 megapixels, and even 60 megapixels. Unfortunately, these multi-megapixel cameras create enor- mous computer files. So the first thing most people do, if they plan to send a photo by e-mail or post it on the Web, is to com- pact it to a more manageable size. Usually it is impossible to discern the difference between the compressed photo and the original with the naked eye (see Figure 1, next page). Thus, a strange dynamic has evolved, in which camera engineers cram more and more data onto a chip, while software engineers de- Emmanuel Candes. (Photo cour- sign cleverer and cleverer ways to get rid of it. tesy of Emmanuel Candes.) In 2004, mathematicians discovered a way to bring this “armsrace”to a halt. -
Making the Transition from Film to Digital
TECHNICAL PAPER Making the Transition from Film to Digital TABLE OF CONTENTS Photography became a reality in the 1840s. During this time, images were recorded on 2 Making the transition film that used particles of silver salts embedded in a physical substrate, such as acetate 2 The difference between grain or gelatin. The grains of silver turned dark when exposed to light, and then a chemical and pixels fixer made that change more or less permanent. Cameras remained pretty much the 3 Exposure considerations same over the years with features such as a lens, a light-tight chamber to hold the film, 3 This won’t hurt a bit and an aperture and shutter mechanism to control exposure. 3 High-bit images But the early 1990s brought a dramatic change with the advent of digital technology. 4 Why would you want to use a Instead of using grains of silver embedded in gelatin, digital photography uses silicon to high-bit image? record images as numbers. Computers process the images, rather than optical enlargers 5 About raw files and tanks of often toxic chemicals. Chemically-developed wet printing processes have 5 Saving a raw file given way to prints made with inkjet printers, which squirt microscopic droplets of ink onto paper to create photographs. 5 Saving a JPEG file 6 Pros and cons 6 Reasons to shoot JPEG 6 Reasons to shoot raw 8 Raw converters 9 Reading histograms 10 About color balance 11 Noise reduction 11 Sharpening 11 It’s in the cards 12 A matter of black and white 12 Conclusion Snafellnesjokull Glacier Remnant. -
Preparing Images for Powerpoint, the Web, and Publication a University of Michigan Library Instructional Technology Workshop
Preparing Images for PowerPoint, the Web, and Publication A University of Michigan Library Instructional Technology Workshop What is Resolution? ....................................................................................................... 2 How Resolution Affects File Memory Size ................................................................... 2 Physical Size vs. Memory Size ...................................................................................... 3 Thinking Digitally ........................................................................................................... 4 What Resolution is Best For Printing? ............................................................................ 5 Professional Publications ............................................................................................................................. 5 Non-Professional Printing ........................................................................................................................... 5 Determining the Resolution of a Photo ........................................................................ 5 What Resolution is Best For The Screen? ..................................................................... 6 For PowerPoint ............................................................................................................................................. 6 For Web Graphics ........................................................................................................................................ -
Evaluation of the Foveon X3 Sensor for Astronomy
Evaluation of the Foveon X3 sensor for astronomy Anna-Lea Lesage, Matthias Schwarz [email protected], Hamburger Sternwarte October 2009 Abstract Foveon X3 is a new type of CMOS colour sensor. We present here an evaluation of this sensor for the detection of transit planets. Firstly, we determined the gain , the dark current and the read out noise of each layer. Then the sensor was used for observations of Tau Bootes. Finally half of the transit of HD 189733 b could be observed. 1 Introduction The detection of exo-planet with the transit method relies on the observation of a diminution of the ux of the host star during the passage of the planet. This is visualised in time as a small dip in the light curve of the star. This dip represents usually a decrease of 1% to 3% of the magnitude of the star. Its detection is highly dependent of the stability of the detector, providing a constant ux for the star. However ground based observations are limited by the inuence of the atmosphere. The latter induces two eects : seeing which blurs the image of the star, and scintillation producing variation of the apparent magnitude of the star. The seeing can be corrected through the utilisation of an adaptive optic. Yet the eect of scintillation have to be corrected by the observation of reference stars during the observation time. The perturbation induced by the atmosphere are mostly wavelength independent. Thus, record- ing two identical images but at dierent wavelengths permit an identication of the wavelength independent eects. -
Technologies Journal of Research Into New Media
Convergence: The International Journal of Research into New Media Technologies http://con.sagepub.com/ HD Aesthetics Terry Flaxton Convergence 2011 17: 113 DOI: 10.1177/1354856510394884 The online version of this article can be found at: http://con.sagepub.com/content/17/2/113 Published by: http://www.sagepublications.com Additional services and information for Convergence: The International Journal of Research into New Media Technologies can be found at: Email Alerts: http://con.sagepub.com/cgi/alerts Subscriptions: http://con.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav Citations: http://con.sagepub.com/content/17/2/113.refs.html >> Version of Record - May 19, 2011 What is This? Downloaded from con.sagepub.com by Tony Costa on October 24, 2013 Debate Convergence: The International Journal of Research into HD Aesthetics New Media Technologies 17(2) 113–123 ª The Author(s) 2011 Reprints and permission: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1354856510394884 Terry Flaxton con.sagepub.com Bristol University, UK Abstract Professional expertise derived from developing and handling higher resolution technologies now challenges academic convention by seeking to reinscribe digital image making as a material process. In this article and an accompanying online resource, I propose to examine the technology behind High Definition (HD), identifying key areas of understanding to enable an enquiry into those aesthetics that might derive from the technical imperatives within the medium. (This article is accompanied by a series of online interviews entitled A Verbatim History of the Aesthetics, Technology and Techniques of Digital Cinematography. -
HD Camcorder
PUB. DIE-0508-000 HD Camcorder Instruction Manual COPYRIGHT WARNING: Unauthorized recording of copyrighted materials may infringe on the rights of copyright owners and be contrary to copyright laws. 2 Trademark Acknowledgements • SD, SDHC and SDXC Logos are trademarks of SD-3C, LLC. • Microsoft and Windows are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. • macOS is a trademark of Apple Inc., registered in the U.S. and other countries. • HDMI, the HDMI logo and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC in the United States and other countries. • “AVCHD”, “AVCHD Progressive” and the “AVCHD Progressive” logo are trademarks of Panasonic Corporation and Sony Corporation. • Manufactured under license from Dolby Laboratories. “Dolby” and the double-D symbol are trademarks of Dolby Laboratories. • Other names and products not mentioned above may be trademarks or registered trademarks of their respective companies. • This device incorporates exFAT technology licensed from Microsoft. • “Full HD 1080” refers to Canon camcorders compliant with high-definition video composed of 1,080 vertical pixels (scanning lines). • This product is licensed under AT&T patents for the MPEG-4 standard and may be used for encoding MPEG-4 compliant video and/or decoding MPEG-4 compliant video that was encoded only (1) for a personal and non- commercial purpose or (2) by a video provider licensed under the AT&T patents to provide MPEG-4 compliant video. No license is granted or implied for any other use for MPEG-4 standard. Highlights of the Camcorder The Canon XA15 / XA11 HD Camcorder is a high-performance camcorder whose compact size makes it ideal in a variety of situations.