Production of (Hyper-)Fragments in Antiproton-Nucleus Collisions

Total Page:16

File Type:pdf, Size:1020Kb

Production of (Hyper-)Fragments in Antiproton-Nucleus Collisions Strangeness production and hypernuclear dynamics in antiproton-nucleus collisions Zhao-Qing Feng (冯兆庆) Institute of Modern Physics (IMP), Lanzhou, CAS OUTLINE Introduction and motivation Transport approach for antiproton-nucleus collisions (LQMD) Particle production in antiproton induced reactions Nuclear fragmentation and isospin effect Summary IWND2018, Huzhou June 10-14 2 I. Introduction and motivation 1928, antiparticle predicted by Paul Dirac (1933 Nobel Prizer) 1932, positron was discovered by Carl David Anderson (1936 Nobel Prizer) 1955, Emilio Segre and Owen Chamberlain observed antiprotons in collisions of protons on copper at 6.2 GeV (1959 Nobel Prizers) 1984, Carlo Rubbia and Simon van der Meer found the particles W and Z0 at CERN in colliding of proton and antiproton in storage ring (1984 Nobel Prizers) As secondary beams, low-energy antiprotons (<5GeV/c) have been produced at CERN-LEAR, BNL, KEK in the world Anti-hypertriton, andp-p interaction by STAR collaboration The FAIR facility at GSI will provide high-intensity antiproton beams (15 GeV/c, starting operation in 2025?) IWND2018, Huzhou June 10-14 3 home.cern/about/accelerators/low-energy-antiproton-ring Low Energy Antiproton Ring at CERN (1982-1996) Proton Synchrotron (PS), Antiproton Collector (AC), Antiproton Accumulator (AA) Physics: highly excited nucleus, delayed fission process, cold QGP, hadrons in-medium PANDA detector from http://www-panda.gsi.de/ PANDA(antiProton ANnihilation at Darmstadt) Physics purpose: Hadron Spectroscopy, Nucleon Structure, Hadron in Baryonic Matter, Hypernucleus IWND2018, Huzhou June 10-14 4 Nuclear reactions induced by antiprotons H. Tamura, Prog. Theor. Exp. Phys. (2012) 02B012 Cold quark-gluon plasma: prediction Particle production and transportation In-medium effects of hadrons (pion, etc) Decay modes of highly excited nucleus Isospin effect at sub-saturation density Delayed fission induced by antiproton annihilation in heavy nuclei IWND2018, Huzhou June 10-14 5 “Cold quark-gluon plasma” PLB207 (1988) 371 IWND2018, Huzhou June 10-14 6 Description of antiproton-nucleus collisions: Kinetic approach (C. M. Ko and R. Yuan, Phys. Lett. B 192, 31 (1987)) Intranuclear cascade (INC) model (J. Cugnon et al., Phys. Rev. C 41, 1701 (1990)) Statistical Multifragmentation Model (SMM) (J. P. Bondorf et al.,Phys. Rep. 257, 133 (1995)) Transport models (mean-field pot., all possible reaction channels) Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model (O. Buss et al., Phys. Rep. 512, 1 (2012)) Lanzhou quantum molecular dynamics model (Z. Q. Feng, Phys. Rev. C 89, 044617 (2014)) IWND2018, Huzhou June 10-14 7 II. Lanzhou Quantum Molecular Dynamics (LQMD) transport model Nuclear dynamics from 5 MeV/nucleon – 10 GeV/nucleon for HICs, antiproton (proton, , K, etc) Dynamics of low-energy heavy-ion collisions (dynamical interaction potential, barrier distribution, neck dynamics, fusion/caption excitation functions etc) Isospin physics at intermediate energies (constraining nuclear symmetry energy at sub- and supra- saturation densities in HICs and probing isospin splitting of nucleon effective mass from HICs) In-medium properties of hadrons in dense nuclear matter from heavy-ion collisions (extracting optical potentials, i.e., (1232), N*(1440), N*(1535)), hyperons (,,,) and mesons (,K,,,,), hypernucleus dynamics) Hadron (antiproton, proton, , K) induced reactions (hypernucleus production, e.g., ()X, X, X, X(S=1), in-medium modifications of hadrons, cold QGP) IWND2018, Huzhou June 10-14 8 Nuclear dynamics induced by antiprotons fragmentation nucleus pion cloudy p Particle multiplicities on different nuclei at stopped energy Nuclei + 0 - K+/K0 K-/K0 +0 + - 12C 0.6 1.2 1.5 0.027/0.034 0.013/0.008 0.021 0.009 0.01 197Au 0.8 1.4 1.6 0.045/0.051 0.01/0.007 0.051 0.011 0.017 IWND2018, Huzhou June 10-14 9 Mean-field potentials for antiprotons, resonances, hyperons and mesons 1. Mean-field potentials for resonances ((1232), N*(1440), ) are considered based on nucleon potentials, but distinguishing isospin effects 2. Mean-field potentials for hyperons and antiprotons in nuclear medium A factor ξ is introduced in evaluating self-energies of the antinucleon, e.g., ξ=0.25 for VNN= -160 MeV at = 0 IWND2018, Huzhou June 10-14 10 IWND2018, Huzhou June 10-14 11 Particle production channels in the LQMD model Reaction channels with antiproton: pN NN , Statistical model with SU(3) symmetry for annihilation (E.S. Golubeva et al., Nucl. Phys. A 537, 393 (1992)) and resonances ((1232), N*(1440), N*(1535), ) production: Collisions between resonances, NN*N, NN*NN* Strangeness channels: The PYTHIA and FRITIOF code are used for baryon(meson)-baryon and antibaryon-baryon collisions at high invariant energies IWND2018, Huzhou June 10-14 12 Pion-nucleon scattering Z. Q. Feng, Phys. Rev. C 94, 054617 (2016) max= IWND2018, Huzhou June 10-14 13 III (1) Particle production in antiproton-nucleus collisions Z. Q. Feng and H. Lenske, Phys. Rev. C 89, 044617 (2014) pinc=4 GeV/c pinc=608 MeV/c LEAR (Low-Energy Antiproton Ring) at CERN (P. L. McGaughey et al., Phys. Rev. Lett. 56, 2156 (1986)) IWND2018, Huzhou June 10-14 14 Slope parameters: 105 MeV (pion), 140 MeV (kaon), 125 MeV (antikaon) and 95 MeV (hyperon) 0 12 20 40 112 KEK data: 13513 MeV (K S), 976 MeV () Multiplicities of particlesp+ C, Ne, Ca, Sn, (Phys. Rev. C 38 (1988) 2788) 181Ta, 197Au and 238U at 4 GeV/c IWND2018, Huzhou June 10-14 15 System size dependence of neutral particles at incident momentum of 4 GeV/c Z. Q. Feng, Nuclear Science and Techniques 26 (2015) S20512 IWND2018, Huzhou June 10-14 16 12 p+ C, 1 GeV/c p+40Ca, 4 GeV/c IWND2018, Huzhou June 10-14 17 In-medium effect: proton-nucleus and nucleus-nucleus collisions Z. Q. Feng et al., Phys. Rev. C 90 (2014) 064604 VK+(0)= 28 MeV, VK-(0)= -100 MeV 18 In-medium effect: strangeness production in HICs 19 (2) Nuclear fragmentation and hyperfragment formation in antiproton-nucleus collisions (Z. Q. Feng, Phys. Rev. C 93, 041601(R) (2016)) Experimental data: LEAR at CERN, IWND2018,B. Lott Huzhouet al., June Phys. 10-14 Rev. C 63, 034616 (2001) with 1.22 GeV20 antiproton Nuclear fragmentation with low-energy antiproton Z. Q. Feng, Phys. Rev. C 94, 064601 (2016) IWND2018, Huzhou June 10-14 21 Mass and charge distributions of nucleonic fragments produced in the p + 63Cu reaction at incident momenta of 105 MeV/c and 4 GeV/c, respectively The data from LEAR facility at CERN. J. Jastrzebski et al., Phys. Rev. C 47, 216 (1993) IWND2018, Huzhou June 10-14 22 Rapidity and kinetic energy distributions in collisions of antiproton on nuclei Classical coalescence approach IWND2018, Huzhou June 10-14 23 Hyperfragments production in the antiproton induced reactions Phys. Rev. C 93, 041601(R) (2016) IWND2018, Huzhou June 10-14 24 (3) Unexpected neutron/proton ratio and isospin effect in low-energy antiproton-induced reactions (Z. Q. Feng, Phys. Rev. C 96, 034607 (2017), arXiv: 1701.0630) LEAR data: D. Polster et al., Phys. Rev. C 51, 1167 (1995) IWND2018, Huzhou June 10-14 25 D. Polster et al., Phys. Rev. C 51, 1167 (1995) p+65Cu@200 MeV/c I. A. Pshenichnov, A. S. Iljinov, Y. S. Golubeva, and D. Polster, Phys. Rev. C 52, 947 (1995) IWND2018, Huzhou June 10-14 26 The n/p ratios in antiproton induced reactions with different stiffness of symmetry energies and compared with the LEAR data IWND2018, Huzhou June 10-14 27 VI. Summary Nuclear dynamics induced by antiprotons has been investigated within the Lanzhou quantum molecular dynamics (LQMD) model. Strangeness exchange reactions dominate the hyperon production in low- energy antiproton-nucleus collisions. Hyperons are captured by nucleonic fragmentations to form hypernuclide within a narrower rapidity and lower kinetic energy. The inclusive spectra of preequilibrium nucleons is thoroughly investigated within the model and a soft symmetry energy is concluded with s=0.5 IWND2018, Huzhou June 10-14 28 .
Recommended publications
  • 8.701 Introduction to Nuclear and Particle Physics, Recitation 19
    Massachusetts Institute of Technology Department of Physics Course: 8.701 { Introduction to Nuclear and Particle Physics Term: Fall 2020 Instructor: Markus Klute TA : Tianyu Justin Yang Discussion Problems from recitation on December 1st, 2020 Problem 1: Bubble Chamber Carl David Anderson discovered positrons in cosmic rays. The picture below shows a cloud chamber image produced by Anderson in 1931. The cloud chamber is positioned in a magnetic field of 1:5 T with field lines pointing into the plane of the paper. A cosmic ray particle enters the chamber from below and leaves a circular track. There is a 6 mm thick lead plate in the cloud chamber visible as a horizontal line. The radius of curvature is 15:5 cm before and 5:3 cm after the passage through the lead plate. 1 Figure 1: Cloud-chamber image of a positron. This image is in the public domain. a) Estimate the momentum of the particle before and after the passage through the lead plate. What is the charge of the particle? b) Compare the energy loss during the passage through the lead plate for a proton, a pions, and an electron. For the energy loss calculation, you can use the approximate Bethe formula below and assume constant energy loss. dE Z 1 m γ2 β2 c2 = −4 π N r2 m c2 z 2 ·· ln e (1) A e e 2 dX Ion A β I Explain why this is sufficient to exclude the proton and pion hypothesis. The con- 23 −1 −12 A s stants in the equation are NA = 6; 022 × 10 mol , 0 = 8; 85 × 10 V m , me = e2 511 keV, re = 2 , Z = 82, A = 207, and I = 820 eV, the ionisation energy in (4 π0)me c lead.
    [Show full text]
  • A Short History of Physics (Pdf)
    A Short History of Physics Bernd A. Berg Florida State University PHY 1090 FSU August 28, 2012. References: Most of the following is copied from Wikepedia. Bernd Berg () History Physics FSU August 28, 2012. 1 / 25 Introduction Philosophy and Religion aim at Fundamental Truths. It is my believe that the secured part of this is in Physics. This happend by Trial and Error over more than 2,500 years and became systematic Theory and Observation only in the last 500 years. This talk collects important events of this time period and attaches them to the names of some people. I can only give an inadequate presentation of the complex process of scientific progress. The hope is that the flavor get over. Bernd Berg () History Physics FSU August 28, 2012. 2 / 25 Physics From Acient Greek: \Nature". Broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves. The universe is commonly defined as the totality of everything that exists or is known to exist. In many ways, physics stems from acient greek philosophy and was known as \natural philosophy" until the late 18th century. Bernd Berg () History Physics FSU August 28, 2012. 3 / 25 Ancient Physics: Remarkable people and ideas. Pythagoras (ca. 570{490 BC): a2 + b2 = c2 for rectangular triangle: Leucippus (early 5th century BC) opposed the idea of direct devine intervention in the universe. He and his student Democritus were the first to develop a theory of atomism. Plato (424/424{348/347) is said that to have disliked Democritus so much, that he wished his books burned.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • And Hyper-Nuclei Production at the LHC with ALICE †
    proceedings Proceedings Anti- and Hyper-Nuclei Production at the LHC with ALICE † Luca Barioglio, on behalf of the ALICE Collaboration Department of Physics, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino (TO), Italy; [email protected] † Presented at Hot Quarks 2018—Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions, Texel, The Netherlands, 7–14 September 2018. Published: 7 May 2019 Abstract: At the Large Hadron Collider (LHC) a significant production of (anti-)(hyper-)nuclei is observed in proton-proton (pp), proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions. The measurement of the production yields of light (anti-)nuclei is extremely important to provide insight into the production mechanisms of nuclear matter, which is still an open question in high energy physics. The outstanding particle identification (PID) capabilities of the ALICE detectors allow the identification of rarely produced particles such as deuterons, 3He and their antiparticles. From the production spectra measured for light (anti-)nuclei with ALICE, the key observables of the production mechanisms (antimatter/matter ratio, coalescence parameter, nuclei/protons ratio) are computed and compared with the available theoretical models. Another open question is the determination of the hypertriton lifetime: published experimental values show a lifetime shorter than the expected one, which should be close to that of the free L hyperon. Thanks to the high-resolution track reconstruction capabilities of the ALICE experiment, it has been possible to determine the hypertriton lifetime at the highest Pb-Pb collisions energy with the highest precision ever reached. Keywords: nuclei; antinuclei; hypertriton lifetime 1.
    [Show full text]
  • Introduction to LHC
    Introduction to LHC Aug. 25, 2015 CMSDAS @ KNU, Daegu, KOREA Inkyu Park University of Seoul Disclaimer • Language . English or Korean? Official language is English, but most of students in this classroom are Korean • Credits . Many of pictures, plots, ideas were from Frank Zimmermann’s 2015 CERN Summer school Chandra Bhat’s 2015 CMSDAS Daniel Brant’s 2010 CAS @ Varna 2015-08-25 CMSDAS - LHC primer 2 Menu del Dia • What is Particle Physics? How? . A brief history of Particle Physics • Accelerator basics . Accelerator or Collider? • LHC primer For today . Beam parameters . Luminosity, cross section, Pileup . Run history • Future accelerators . LHeC, FCC, … 2015-08-25 CMSDAS - LHC primer 3 What is Particle Physics? How? What is Particle Physics? Leon Lederman’s definition: “Particle physics is a search for the most primitive, primordial, unchanging and indestructible forms of matter and the rules by which they combine to compose all the things of the physical world. It deals with matter, energy, space, and time. The objectives of particle physics are to identify the most simple objects out of which all matter is composed and to understand the 1922- 1988 forces which cause them to interact and Leon Lederman "for the neutrino beam method combine to make more complex things.” and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino" What are the elementary building blocks? How do they interact with each others? 2015-08-25 CMSDAS - LHC primer 5 How to do Particle Physics? • To know about the elementary building blocks . Just look inside, if not possible, smash it • Then, how? .
    [Show full text]
  • Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective
    Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective A Dissertation Submitted to the Faculty of the Graduate School of the University of Minnesota by John Richard Gustafson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Advisor: Roger H. Stuewer Minneapolis, Minnesota July 2004 i © John Richard Gustafson 2004 ii To my father and mother Rudy and Aune Gustafson iii Abstract Wolfgang Pauli's philosophy and physics were intertwined. His philosophy was a variety of Platonism, in which Pauli’s affiliation with Carl Jung formed an integral part, but Pauli’s philosophical explorations in physics appeared before he met Jung. Jung validated Pauli’s psycho-philosophical perspective. Thus, the roots of Pauli’s physics and philosophy are important in the history of modern physics. In his early physics, Pauli attempted to ground his theoretical physics in positivism. He then began instead to trust his intuitive visualizations of entities that formed an underlying reality to the sensible physical world. These visualizations included holistic kernels of mathematical-physical entities that later became for him synonymous with Jung’s mandalas. I have connected Pauli’s visualization patterns in physics during the period 1900 to 1930 to the psychological philosophy of Jung and displayed some examples of Pauli’s creativity in the development of quantum mechanics. By looking at Pauli's early physics and philosophy, we gain insight into Pauli’s contributions to quantum mechanics. His exclusion principle, his influence on Werner Heisenberg in the formulation of matrix mechanics, his emphasis on firm logical and empirical foundations, his creativity in formulating electron spinors, his neutrino hypothesis, and his dialogues with other quantum physicists, all point to Pauli being the dominant genius in the development of quantum theory.
    [Show full text]
  • Standard Model Rohini M. Godbole Centre for High
    Standard Model. Rohini M. Godbole Standard Model Rohini M. Godbole Centre for High Energy Physics, IISc, Bangalore, India & Currently at: Spinoza Institute, Univ. of Utrecht, Utrecht, The Netherlands July 11 - July 15, 2011. CERN Summer Student Program. Standard Model. What will the lectures cover? Issues concerning the Standard Model of particle physics: Even though we call it a model it is actually the candidate for the ’theory’ of the fundamental particles and interactions among them! Built, brick by brick, over the last 50-60 years, combining information from a lot of different types of experiments and many many innovative theoretical ideas. The basic mathematical framework is that of quantum field theories (QFT) which possess some special properties (symmetries). Some aspects of these will be covered in lectures by Prof. Deredinger. July 11 - July 15, 2011. CERN Summer Student Program. Standard Model. What will the lectures cover? Using this information I intend then to cover the following : • How did we find out about the fundamental constituents and inter- actions among them. • How did we arrive at an understanding of the symmetries and hence a gauge theory description of the same: how was the SM built? • What is the significance of the different families of quarks and leptons: flavour physics. • What is the piece of the SM still left to be checked and how does the theory guide us about how and where to look for the missing piece. July 11 - July 15, 2011. CERN Summer Student Program. Standard Model. Nobels for Standard Model Among the Nobels awarded for physics till to date, 15 are for Standard Model: 1.
    [Show full text]
  • (Anti-)Hypertriton Lifetime and Hyperon Puzzle
    (Anti-)hypertriton lifetime and hyperon puzzle • Introduction • ALICE results • Future perspectives • Summary Jacek Otwinowski (IFJ PAN, Krakow) On behalf of the ALICE Collaboration Hypernuclei Hypernuclei are bound systems of nucleons and at least one hyperon (baryon with strange quark content) Hypernuclei measurements: • Properties of baryon-hyperon (N-Y) and hyperon-hyperon (Y-Y) strong and weak interactions in many-body systems • Direct tests of Pauli exclusion principle • Equation of State (EoS) of dense nuclear matter • Modification of hadron properties in dense nuclear matter • Phase transition from hadronic matter to quark-gluon plasma Theory of N-Y and Y-Y interactions using non-perturbative QCD: • Meson-exchange models (N-Y and Y-Y) • Chiral effective field theory (two and three body interactions) • Lattice QCD (recently big progress, almost physical quark masses) • Constraints from scattering experiments and astrophysical observations (e.g. pulsars, failed supernovea and gravitational waves) Resent reviews: I. Vidaña, Proc. R. Soc. A 474: 20180145, E. Botta et al. Nuovo Cimento 38 (2015) 387 11-06-2019 SQM2019 - Jacek Otwinowski 2 ~70 years of hypernuclear spectroscopy • Cosmic rays: photographic emulsions and ~ 1000 hypernuclei measured by now bubble chambers 700 • Discovery of hypernucleus (Pniewski & Proc. R. Soc. A 474: 20180145 Danysz 1952) 600 + + • Strangeness exchange reactions (AGS, CERN, n(π , K )Λ 500 [MeV/c] BNL, KEK and J-PARC): Λ + - A A - - p(γ, K )Λ • K + Z à �Z + � (K + n à � + �) 400 • Associate production
    [Show full text]
  • Graduate Nuclear and Particle Physics I
    PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2021 I. Tools 1. Introduction Or: What NOVA Covered See pdf: Handout Conventions, Essentials, Scattering References: [HM1; HG 1; cursorily HG 5; PRSZ 1] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University I.1.0 (a) Biased Remarks on Nuclear and Particle History Many excellent accounts – see e.g. [Per, App. B] 1894 Henri Becquerel ruins a photographic plate by leaving uranium salt on top of it. 1898 Pierre and Marie Curie isolate the first radioactive elements and coin the term radioactivity. 1909 Ernest Rutherford, Hans Geiger and Ernest Marsden: Atoms mostly empty, with small, heavy core. 1930 Wolfgang Pauli makes up the neutrino to save energy: “Dear Radioactive Ladies and Gentlemen”. 1932 James Chadwick discovers the neutron, Carl David Anderson finds Dirac’s positron (first antiparticle, first (?) lost-and-found): Theorists move from just explaining to predicting. 1938 Otto Hahn and Fritz Strassmann split the nucleus but need their exiled collaborator Lise Meitner and her nephew Otto Fritsch to explain to them what they did. The latter do not get The Prize. 1945 Three nuclear fission bombs change the world. 1947 Powell et al. find Yukawa’s pion (nucleon-nucleon force particle). 1960’s Quip that the Nobel Prize should be awarded to the Physicist who does not discover a particle. 1961/2 Murray Gell-Mann, Yuvrai Ne’eman and others tame the particle zoo: flavours.
    [Show full text]
  • Carl David Anderson
    Carl David Anderson LISTED IN Physicists FAMOUS AS Physicist NATIONALITY American Famous American Men BORN ON 03 September 1905 AD Famous 3rd September Birthdays ZODIAC SIGN Virgo Virgo Men BORN IN New York City, New York, USA DIED ON 11 January 1991 AD PLACE OF DEATH San Marino, California, USA FATHER Carl David Anderson MOTHER Emma Adolfina Ajaxson SPOUSE: Lorraine Bergman CHILDREN Marshall and David DISCOVERIES / INVENTIONS Discovery Of The Positron, Discovery Of The Muon AWARDS: Nobel Prize in Physics (1936) Elliott Cresson Medal (1937) Carl David Anderson was a renowned American physicists, who is best remembered for the discovery of positron in 1932. Born to Swedish immigrant parents, Anderson showed a knack for science from an early age. After completing his preliminary education, he enrolled at the California Institute of Technology for higher studies. His association with the institution remained life-long as first he earned his academic degrees from the same and later continued his research work at it. It was during his academic and research career at Caltech that he began his cosmic ray studies which eventually led to the discovery of positron. The discovery was important for the advancement of physics as positron became the first antimatter to be discovered. Later on, he carried out further research that led to the discovery of muon, a subatomic particle. For his discovery of positron, he was conferred with the Nobel Prize in Physics in 1936. Additionally, he was honoured with several other scientific awards as well. Career Completing his doctoral studies, he started working as a research fellow at the California Institute of Technology which he continued for three years from 1930 to 1933 Meanwhile it was in 1930 that together with Professor Robert Millikan he began the cosmic ray studies.
    [Show full text]
  • Precise Measurements of the Mass and the Binding Energy ) of The
    Proceedings of 13th International Conference on Nucleus-Nucleus Collisions Downloaded from journals.jps.jp by Deutsches Elek Synchrotron on 08/13/20 Proc. 13th Int. Conf. on Nucleus-Nucleus Collisions JPS Conf. Proc. 32, 010091 (2020) https://doi.org/10.7566/JPSCP.32.010091 Precise Measurements of thep Mass and the Binding Energy (BΛ) of the Hypertriton at sNN = 200 GeV with the Heavy Flavor Tracker at RHIC-STAR Peng Liu1;2;3 (for the STAR Collaboration) 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Brookhaven National Laboratory, Upton, New York 11973, USA E-mail: [email protected] (Received July 21, 2019) The excellent invariant mass distributions of hypertriton and antihypertriton are reconstructed via + itsp 2-body and 3-body mesonic decay channels using the high statistics data of Au Au collisions at sNN = 200 GeV collected by the STAR experiment in 2014 and 2016. The invariant mass distributions are almost combinatorial background free benefitting from the high precision tracking system of the Heavy Flavor Tracker, and the great particle identification of the Time Projection Chamber and Time-Of-Flight detector in the STAR experiment. These data allow us to precisely determine the hypertriton mass and its binding energy. KEYWORDS: Hypertriton mass, Binding energy, Heavy Flavor Tracker, Heavy-Ion Collisions 1. Introduction Recent astrophysics observations of the neutron stars, such as a star with the mass that is 2.2 of the solar mass measured using relativistic Shapiro delay in 2019 [1] and a star with radius about 11 km measured using gravitational waves from a neutron star merging in 2018 [2], challenge our understanding of the hyperon role in neutron stars (the so-called “hyperon puzzle” [3, 4]).
    [Show full text]
  • Carl David Anderson Biographical Memoir
    NATIONAL ACADEMY OF SCIENCES C A R L D A V I D A NDERSON 1905—1991 A Biographical Memoir by WILLIAM H. PICKERING Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1998 NATIONAL ACADEMIES PRESS WASHINGTON D.C. CourtesyofInstituteArchives,CaliforniaInstituteofTechnology,Pasadena CARLDAVIDANDERSON September3,1905–January11,1991 BYWILLIAMH.PICKERING ESTKNOWNFORHISdiscoveryofthepositiveelectron, Borpositron,CarlDavidAndersonwasawardedthe NobelPrizeinphysicsin1936atagethirty-one.Thedis- coveryofthepositronwasthefirstofthenewparticlesof modernphysics.Electronsandprotonshadbeenknown andexperimentedwithforaboutfortyyears,anditwas assumedthatthesewerethebuildingblocksofallmatter. Withthediscoveryofthepositron,anexampleofanti- matter,allmanneroftheoreticalandexperimentalpossi- bilitiesarose.TheRoyalSocietyofLondoncalledCarl’s discovery“oneofthemostmomentousofthecentury.” BornonSeptember3,1905,inNewYorkCity,Carlwas theonlysonofSwedishimmigrantparents.Hisfather,the seniorCarlDavidAnderson,hadbeenintheUnitedStates since1896.WhenCarlwassevenyearsold,thefamilyleft NewYorkforLosAngeles,whereCarlattendedpublic schoolsandin1923enteredtheCaliforniaInstituteof Technology.Caltechhadopeneditsdoorsin1921with RobertA.Millikan,himselfaNobellaureate,aschiefex- ecutive.TogetherwithchemistArthurA.Noyesandas- tronomerGeorgeElleryHale,Millikanestablishedthehigh standardofexcellenceandthesmallstudentbodythat todaycontinuestocharacterizeCaltech.
    [Show full text]