Arxiv:2009.05402V2 [Nucl-Th] 20 Feb 2021
Predictions for production of 3 H and 3 H in isobaric 96Ru+96Ru and 96Zr+96Zr Λ Λ 44 44 40 40 collisions at √sNN = 200 GeV Zhi-Lei She1,2, Gang Chen2,∗, Dai-Mei Zhou3, Liang Zheng2, Yi-Long Xie2, Hong-Ge Xu2 1 Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan,430074, China. 2 School of Mathematics and Physics, China University of Geosciences, Wuhan,430074, China. 3 Institute of Particle Physics, Central China Normal University, Wuhan 430079, China. 3 3 3 3 3 3 The production of ΛH and ΛH, as well as H, H, He, and He are studied in central collisions of 96 96 96 96 isobars 44Ru+44Ru and 40Zr+40Zr at √sNN = 200 GeV, using the dynamically constrained phase- space coalescence model and the PACIAE model with chiral magnetic effect. The yield, yield ratio, coalescence parameters, and strangeness population factor of (anti-)hypertriton and (anti-)nuclei 96 96 96 96 produced in isobaric 44Ru+44Ru and 40Zr+40Zr collisions are predicted. The (anti-)hypertriton and (anti-)nuclei production is found to be insensitive to the chiral magnetic effects. Experimental data of Cu+Cu, Au+Au and Pb+Pb collisions from RHIC, LHC, and the results of PACIAE+DCPC model are presented in the results for comparison. I. INTRODUCTION sion systems, such as 63Cu+63Cu, 197Au+197Au, and 208Pb+208Pb collisions. One can see that there exists a Hypernuclei and their antihypernuclei are copiously gap of the system size for nucleus-nucleus interactions between 63Cu+63Cu and 197Au+197Au collisions. How- produced under conditions of extreme high temperatures 96 96 ever, the recent isobar program consisting of 44Ru+44Ru and energy densities in high-energy heavy ion collisions.
[Show full text]