Pleuromutilins: Potent Drugs for Resistant Bugs—Mode of Action and Resistance

Total Page:16

File Type:pdf, Size:1020Kb

Pleuromutilins: Potent Drugs for Resistant Bugs—Mode of Action and Resistance Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Pleuromutilins: Potent Drugs for Resistant Bugs—Mode of Action and Resistance Susanne Paukner and Rosemarie Riedl Nabriva Therapeutics AG, A-1110 Vienna, Austria Correspondence: [email protected]; [email protected] Pleuromutilins are antibiotics that selectively inhibit bacterial translation and are semisyn- thetic derivatives of the naturally occurring tricyclic diterpenoid pleuromutilin, which re- ceived its name from the pleuromutilin-producing fungus Pleurotus mutilus. Tiamulin and valnemulin are two established derivatives in veterinary medicine for oral and intramuscular administration. As these early pleuromutilin drugs were developed at a time when companies focused on major antibacterial classes, such as the b-lactams, and resistance was not regard- ed as an issue, interest in antibiotic research including pleuromutilins was limited. Over the last decade or so, there has been a resurgence in interest to develop this class for human use. This has resulted in a topical derivative, retapamulin, and additional derivatives in clinical development. The most advanced compound is lefamulin, which is in late-stage develop- ment for the intravenous and oral treatment of community-acquired bacterial pneumonia and acute bacterial skin infections. Overall, pleuromutilins and, in particular, lefamulin are characterized by potent activity against Gram-positive and fastidious Gram-negative patho- gens as well as against mycoplasmas and intracellular organisms, such as Chlamydia spp. and Legionella pneumophila. Pleuromutilins are unaffected by resistance to other major antibiotic classes, such as macrolides, fluoroquinolones, tetracyclines, b-lactam antibiotics, and others. Furthermore, pleuromutilins display very low spontaneous mutation frequencies and slow, stepwise resistance development at sub-MIC in vitro. The potential for resistance development in clinic is predicted to be slow as confirmed by extremely low resistance rates to this class despite the use of pleuromutilins in veterinary medicine for .30 years. Although rare, resistant strains have been identified in human- and livestock-associated environments and as with any antibiotic class, require close monitoring as well as prudent use in veterinary medicine. This review focuses on the structural characteristics, mode of action, antibacterial www.perspectivesinmedicine.org activity, and resistance development of this potent and novel antibacterial class for systemic use in humans. leuromutilins are a well-known class of an- (Kavanagh et al. 1951). Semisynthetic derivati- Ptibiotics discovered in the 1950s by the iso- zations have led to tiamulin and valnemulin, lation of the naturally occurring pleuromutilin which were introduced to veterinary medicine from Pleurotus mutilus (now renamed Clitophi- in 1979 and 1999, respectively, for the treatment lus scyphoides), an edible mushroom (Fig. 1) of pulmonary and intestinal infections caused Editors: Lynn L. Silver and Karen Bush Additional Perspectives on Antibiotics and Antibiotic Resistance available at www.perspectivesinmedicine.org Copyright # 2017 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a027110 Cite this article as Cold Spring Harb Perspect Med 2017;7:a027110 1 Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press S. Paukner and R. Riedl 20 18 19 OH O 13 12 11 HO 10 17 21 O 14 22 H 15 5 4 9 16 1 Pleurotus mutilus 7 (Clitopilus scyphoides) 6 8 3 O 2 Figure 1. Structure of pleuromutilin with numbering system (Arigoni 1968). (Left panel from Lindsey 2006.) by Mycoplasma spp., Brachyspira spp., and Law- development for topical and oral administra- sonia intracellularis in pigs, poultry, and, to tion, respectively. In addition, recent research some extent, in rabbits. Despite the use of pleu- has been directed at further extending the romutilins for treatment in veterinary medicine antibacterial spectrum to include the ESKAPE for more than three decades, resistance devel- pathogens (Boucher et al. 2009; Paukner et opment has been uncommon. This can likely al. 2014a,b, 2015a,b,c; Strickmann et al. 2014; be attributed to several factors including the Wicha and Ivezic-Schoenfeld 2014; Wicha et al. unique and highly specific mode of action of 2015b). the pleuromutilins. Further, this class has not To the question “Are pleuromutilins finally been used for enhancement of food-producing fit for human use?” (Novak 2011), which has animal production (e.g., as growth promoters been raised because of unjustified anecdotal or for enhancement of feed efficiency) unlike concerns regarding metabolic stability, gastro- the tetracyclines, penicillins, or sulfonamides intestinal side effects, cardiac safety, or intrave- (EMA 2014a,b). Even though oral valnemulin nous tolerability, a clear response can be given: has been reported to be efficacious in the treat- Yes. In a phase 2 study, lefamulin was well- ment of persistent or life-threatening mycoplas- tolerated and showed comparable efficacy to ma infection in humans (Heilmann et al. 2001), IV vancomycin in patients with ABSSSI (Prince no pleuromutilin had received marketing au- et al. 2013). Despite challenging medicinal thorization by the end of the last century. chemistry, a number of compounds are in the In the new millennium, interest in the pleu- pipeline and further developments in this anti- www.perspectivesinmedicine.org romutilin class significantly increased as evi- biotic class are anticipated. denced by the development of new derivatives for human use. Retapamulin, a topical agent, was the first to be approved for the treatment PLEUROMUTILINS—MODE OF ACTION, of impetigo and infected small lacerations, ACTIVITY, AND RESISTANCE abrasion or sutured wounds caused by Staphy- Structure lococcus aureus and Streptococcus pyogenes (FDA 2007; EMA 2008). More recently, lefamulin, the The diterpenoid pleuromutilin comprises a tri- first pleuromutilin for intravenous and oral cyclic scaffold with unique annelation of a five-, administration, has entered into late-stage clin- six-, and eight-membered ring and eight stable ical development for the treatment of commu- chiral centers, as well as a glycolic ester moiety nity-acquired bacterial pneumonia (CABP) and forming the side chain also regarded as an ex- acute bacterial skin and skin structure infec- tension at position C14 (Fig. 1) (Anchel 1952; tions (ABSSSIs). BC-7013 and BC-3205, which Arigoni 1962, 1968; Birch et al. 1963, 1966). have a similar antibacterial profile but differ in Remarkable efforts have been made to achieve ADMET properties, are in early-stage clinical chemical modifications at several positions of 2 Cite this article as Cold Spring Harb Perspect Med 2017;7:a027110 Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Pleuromutilins: Potent Drugs for Resistant Bugs the tricyclic core (Naegeli 1961; Berner et al. characteristics, including exceptional solubil- 1980, 1981, 1983, 1987; Brooks and Hunt 2000; ity, potent antimicrobial activity, and excellent Bacque´ et al. 2002; Springer et al. 2003, 2008; ADMET properties including metabolic stabil- Takadoi et al. 2007; Wang et al. 2009; Paukner ity enabling administration by both the intra- et al. 2015b), as well as biotransformation (Han- venous and oral routes. son et al. 2002), and the total synthesis of this unique scaffold (Gibbons 1982; Paquette and Mode of Action Bullman-Page 1985; Paquette and Wiedemann 1985; Bacque´ et al. 2003; Liu et al. 2011; Lotesta Pleuromutilins inhibit bacterial protein synthe- et al. 2011; Ruscoe et al. 2015). Most modifi- sis by binding to the central part of domain V cations, however, are primarily performed at of the 50S ribosomal subunit at the peptidyl the glycolic side chain of pleuromutilin with transferase center (PTC), which prevents the replacement of the terminal hydroxyl group or correct positioning of the CCA ends of tRNAs the entire side chain resulting in semisynthetic for peptide transfer in the A- and P-site, thereby pleuromutilin analogs of twomain types: (1) the inhibiting peptide bond formation (Hogenauer flexible sulfanylacetyl, and (2) the rigid acyl- 1975; Hogenauer and Ruf 1981; Hogenauer carbamate linker type. Despite significant ef- et al. 1981; Poulsen et al. 2001; Schlunzen et al. forts in the field of acylcarbamate pleuromuti- 2004; Long et al. 2006; Davidovich et al. 2007). lins by the GlaxoSmithKline group (Hunt 2000; Figure 3 shows the positioning of lefamulin in Brooks et al. 2001; Andemichael et al. 2009), the PTC of the bacterial ribosome in relation to only sulfanylacetyl derivatives, mostly with one the positions of A- and P-site tRNA. Positioning basic function at the side chain, have progressed is similar for various pleuromutilin derivatives beyond phase 1 clinical studies. The early work in that the tricyclic core is located in a pocket of the Sandoz group resulted in lipophilic orally close to the A-site, whereas the C14 side chain available veterinary products, tiamulin (Egger extends toward the P-site hindering the 30-end and Reinshagen 1978) and valnemulin (Fig. tRNA A- to P-site rotary motion, as shown by 2A) (Berner and Vyplel 1987), whereas work various footprinting and crystallographic stud- from GlaxoSmithKline and Sandoz/Nabriva ies for tiamulin, valnemulin (Poulsen
Recommended publications
  • NEW ANTIBACTERIAL DRUGS Drug Pipeline for Gram-Positive Bacteria
    NEW ANTIBACTERIAL DRUGS Drug pipeline for Gram-positive bacteria Françoise Van Bambeke, PharmD, PhD Paul M. Tulkens, MD, PhD Pharmacologie cellulaire et moléculaire Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium http://www.facm.ucl.ac.be Based largely on presentations given at the 24th and 25th European Congress of Clinical Microbiology and Infectious Diseases and the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 1 Disclosures Research grants for work on investigational compounds discussed in this presentation from • Cempra Pharmaceuticals • Cerexa • GSK • Melinta therapeutics • The Medicine Company • MerLion Pharmaceuticals • Theravance • Trius 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 2 Belgium 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 3 Belgium 10 millions inhabitants … 10 Nobel prizes (10/850) • Peace - Institute of International Law, Ghent (1904) - Auguste Beernaert (1909) - Henri Lafontaine (1913) - Father Dominique Pire (1958) • Literature - Maurice Maeterlinck, Ghent (1911) • Medicine - Jules Bordet, Brussels (1919) - Corneille Heymans, Ghent (1938) - Christian de Duve, Louvain (1974) - Albert Claude, Brussels (1974) • Chemistry - Ilya Prigogyne, Brussels (1977) - Physics - François Englert, Brussels (2013) 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 4 The Catholic University of Louvain in brief (1 of 4) • originally founded in 1425 in the city of Louvain (in French and English; known as Leuven in Flemish) 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 5 The Catholic University of Louvain in brief (2 of 4) • It was one of the major University of the so-called "Low Countries" in the 1500 – 1800 period, with famous scholars and discoverers (Vesalius for anatomy, Erasmus for philosophy, …).
    [Show full text]
  • Unsafe €Œcrossover-Use― of Chloramphenicol in Uganda
    The Journal of Antibiotics (2021) 74:417–420 https://doi.org/10.1038/s41429-021-00416-3 BRIEF COMMUNICATION Unsafe “crossover-use” of chloramphenicol in Uganda: importance of a One Health approach in antimicrobial resistance policy and regulatory action 1,2 1,2 3 1 1 Kayley D. McCubbin ● John W. Ramatowski ● Esther Buregyeya ● Eleanor Hutchinson ● Harparkash Kaur ● 3 2 1 Anthony K. Mbonye ● Ana L. P. Mateus ● Sian E. Clarke Received: 22 December 2020 / Revised: 2 February 2021 / Accepted: 16 February 2021 / Published online: 19 March 2021 © The Author(s) 2021. This article is published with open access Abstract Since the introduction of antibiotics into mainstream health care, resistance to these drugs has become a widespread issue that continues to increase worldwide. Policy decisions to mitigate the development of antimicrobial resistance are hampered by the current lack of surveillance data on antibiotic product availability and use in low-income countries. This study collected data on the antibiotics stocked in human (42) and veterinary (21) drug shops in five sub-counties in Luwero district of Uganda. Focus group discussions with drug shop vendors were also employed to explore antibiotic use practices in the 1234567890();,: 1234567890();,: community. Focus group participants reported that farmers used human-intended antibiotics for their livestock, and community members obtain animal-intended antibiotics for their own personal human use. Specifically, chloramphenicol products licensed for human use were being administered to Ugandan poultry. Human consumption of chloramphenicol residues through local animal products represents a serious public health concern. By limiting the health sector scope of antimicrobial resistance research to either human or animal antibiotic use, results can falsely inform policy and intervention strategies.
    [Show full text]
  • Danmap 2006.Pmd
    DANMAP 2006 DANMAP 2006 DANMAP 2006 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark Statens Serum Institut Danish Veterinary and Food Administration Danish Medicines Agency National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark Editors: Hanne-Dorthe Emborg Danish Zoonosis Centre National Food Institute, Technical University of Denmark Mørkhøj Bygade 19 Contents DK - 2860 Søborg Anette M. Hammerum National Center for Antimicrobials and Contributors to the 2006 Infection Control DANMAP Report 4 Statens Serum Institut Artillerivej 5 DK - 2300 Copenhagen Introduction 6 DANMAP board: National Food Institute, Acknowledgements 6 Technical University of Denmark: Ole E. Heuer Frank Aarestrup List of abbreviations 7 National Veterinary Institute, Tecnical University of Denmark: Sammendrag 9 Flemming Bager Danish Veterinary and Food Administration: Summary 12 Justin C. Ajufo Annette Cleveland Nielsen Statens Serum Institut: Demographic data 15 Dominique L. Monnet Niels Frimodt-Møller Anette M. Hammerum Antimicrobial consumption 17 Danish Medicines Agency: Consumption in animals 17 Jan Poulsen Consumption in humans 24 Layout: Susanne Carlsson Danish Zoonosis Centre Resistance in zoonotic bacteria 33 Printing: Schultz Grafisk A/S DANMAP 2006 - September 2007 Salmonella 33 ISSN 1600-2032 Campylobacter 43 Text and tables may be cited and reprinted only with reference to this report. Resistance in indicator bacteria 47 Reprints can be ordered from: Enterococci 47 National Food Institute Escherichia coli 58 Danish Zoonosis Centre Tecnical University of Denmark Mørkhøj Bygade 19 DK - 2860 Søborg Resistance in bacteria from Phone: +45 7234 - 7084 diagnostic submissions 65 Fax: +45 7234 - 7028 E.
    [Show full text]
  • Inhibition of Peptide Bond Formation by Pleuromutilins: the Structure of the 50S Ribosomal Subunit from Deinococcus Radiodurans in Complex with Tiamulin
    Blackwell Science, LtdOxford, UKMMIMolecular Microbiology0950-382XBlackwell Publishing Ltd, 2004? 200454512871294Original ArticleStructure of 50S ribosomal subunit in complex with TiamulinF. Schlünzen et al. Molecular Microbiology (2004) 54(5), 1287–1294 doi:10.1111/j.1365-2958.2004.04346.x Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin Frank Schlünzen,1 Erez Pyetan,2,3 Paola Fucini,1 clic nucleus composed of a cyclo-pentanone, cyclo-hexyl Ada Yonath2,3 and Jörg M. Harms2* and cyclo-octane, and a (((2-(diethylamino)ethyl)thio)- 1Max-Planck Institute for Molecular Genetics, D-14195 acetic acid) side-chain on C14 of the octane ring (Fig. 1A). Berlin, Germany. The drug is soluble in water and readily absorbed; it is 2Max-Planck-Research-Unit for Ribosome Structure, D- therefore one of the few antibiotics that can be easily 22607 Hamburg, Germany. administered to animals. So far, pleuromutilin derivatives 3Weizmann Institute of Science, IL-76100 Rehovot, Israel. are only employed in veterinary practice and most fre- quently to treat swine dysentery. However, the increasing number of pathogens resistant to common antibiotics has Summary raised a new interest in pleuromutilin derivatives, which Tiamulin, a prominent member of the pleuromutilin may be suitable for human therapy (Brooks et al., 2001; class of antibiotics, is a potent inhibitor of protein Bacque et al., 2002; 2003; Pearson et al., 2002; Springer synthesis in bacteria. Up to now the effect of pleuro- et al., 2003). mutilins on the ribosome has not been determined Early biochemical and genetic studies of the antimicro- on a molecular level.
    [Show full text]
  • Antibiotics Currently in Clinical Development
    A data table from Sept 2014 Antibiotics Currently in Clinical Development As of September 2014, an estimated 38 new antibiotics1 with the potential to treat serious bacterial infections are in clinical development for the U.S. market. The success rate for drug development is low; at best, only 1 in 5 candidates that enter human testing will be approved for patients.* This snapshot of the antibiotic pipeline will be updated periodically as products advance or are known to drop out of development. Please contact Rachel Zetts at [email protected] or 202-540-6557 with additions or updates. Cited for potential Development Known QIDP4 Drug name Company Drug class activity against gram- Potential indication(s)?5 phase2 designation? negative pathogens?3 Approved (for acute Acute bacterial skin and skin structure bacterial skin and skin infections, hospital-acquired bacterial Tedizolid Cubist Pharmaceuticals Oxazolidinone Yes structure infections), pneumonia/ventilator-acquired bacterial June 20, 2014 pneumonia Approved, May 23, Acute bacterial skin and skin structure Dalbavancin Durata Therapeutics Lipoglycopeptide Yes 2014 infections Approved, August 6, Acute bacterial skin and skin structure Oritavancin The Medicines Company Glycopeptide Yes 2014 infections New Drug Application (NDA) submitted (for Complicated urinary tract infections, complicated urinary complicated intra-abdominal infections, Novel cephalosporin+beta- Ceftolozane+tazobactam8 tract infection and Cubist Pharmaceuticals Yes Yes acute pyelonephritis (kidney infection), lactamase
    [Show full text]
  • Abstracts Accepted for Publication Only
    S635 Abstracts accepted for publication only body fluid (0.7%). In order to microbiologic studies all of samples Pathogenesis were cultured according to standard procedure. Some disks with especial antibiotics were chosen for each bacterium during the study of antibiotic R2126 The use of the PREVI™ Isola system in faecal and genital sensibility via disk diffusion agar (kirby bauer). Minimum inhibitory samples concentration via E-test method was used for especial antibiotic and E.A. Verhoef-Verhage °, A.P. van Boxtel (Utrecht, NL) finally compared two antibiogram methods together. Results: Most isolated bacterium was S. aureus (33.6%), Pseudomonas Introduction: This study is a follow up of the study with urine samples aeruginosa (14.5%), and least isolated was Eikenella, Morganella, in which the value of the PREVI Isola (bioM´erieux) system in the routine Showenella (0.8). diagnostic laboratory was analyzed (ECCMID 2009 − Ab.Nr. 1459). Conclusion: There are a number of possible pathogens but Staphylococ- PREVI Isola is a system for automated inoculation and streaking and cus aureus is by far the most common, that our study showed same result. is able to process any material from patients (liquid format). For urine Comparison of Antibiogram results that Treatment and evaluation of samples we observed less sub culturing and earlier identification resulting osteomyelitis infection according to E-test method was more successful in saving labor time and costs. The aim of this study was to explore the than kirby bauer method. We found that Eikenella corrodens can be usefulness of the PREVI Isola for more difficult samples as feces and cause of Chronic Osteomylitis.
    [Show full text]
  • ARCH-Vet Anresis.Ch
    Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland Joint report 2013 ARCH-Vet anresis.ch Publishing details © Federal Office of Public Health FOPH Published by: Federal Office of Public Health FOPH Publication date: November 2015 Editors: Federal Office of Public Health FOPH, Division Communicable Diseases. Elisabetta Peduzzi, Judith Klomp, Virginie Masserey Design and layout: diff. Marke & Kommunikation GmbH, Bern FOPH publication number: 2015-OEG-17 Source: SFBL, Distribution of Publications, CH-3003 Bern www.bundespublikationen.admin.ch Order number: 316.402.eng Internet: www.bag.admin.ch/star www.blv.admin.ch/gesundheit_tiere/04661/04666 Table of contents 1 Foreword 4 Vorwort 5 Avant-propos 6 Prefazione 7 2 Summary 10 Zusammenfassung 12 Synthèse 14 Sintesi 17 3 Introduction 20 3.1 Antibiotic resistance 20 3.2 About anresis.ch 20 3.3 About ARCH-Vet 21 3.4 Guidance for readers 21 4 Abbreviations 24 5 Antibacterial consumption in human medicine 26 5.1 Hospital care 26 5.2 Outpatient care 31 5.3 Discussion 32 6 Antibacterial sales in veterinary medicines 36 6.1 Total antibacterial sales for use in animals 36 6.2 Antibacterial sales – pets 37 6.3 Antibacterial sales – food producing animals 38 6.4 Discussion 40 7 Resistance in bacteria from human clinical isolates 42 7.1 Escherichia coli 42 7.2 Klebsiella pneumoniae 44 7.3 Pseudomonas aeruginosa 48 7.4 Acinetobacter spp. 49 7.5 Streptococcus pneumoniae 52 7.6 Enterococci 54 7.7 Staphylococcus aureus 55 Table of contents 1 8 Resistance in zoonotic bacteria 58 8.1 Salmonella spp.
    [Show full text]
  • Pulmonary Disposition and Pharmacokinetics of Minocycline in the Adult Horse
    PULMONARY DISPOSITION AND PHARMACOKINETICS OF MINOCYCLINE IN THE ADULT HORSE BY KATE ECHEVERRIA THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in VMS - Veterinary Clinical Medicine in the Graduate College of the University of Illinois at Urbana-Champaign, 2017 Urbana, Illinois Master’s Committee: Assistant Professor Kara Lascola, Chair Professor Jonathan Foreman Clinical Assistant Professor Scott Austin ABSTRACT The purpose of this study was to determine the pharmacokinetics and pulmonary disposition of minocycline in horses after a single intravenous (IV) and intragastric (IG) dose and after multiple IG doses. The study hypotheses were that: minocycline would be present in the pulmonary epithelial lining fluid (PELF) and bronchoalveolar lavage (BAL) cells at concentrations exceeding those in plasma within 3 hours of IV or IG administration and achievable trough concentrations in the PELF and BAL cells after administration of IG minocycline would exceed a target concentration of 0.25 µg/mL. Seven healthy adult horses from the resident teaching herd were used for the two part study. For part one of the study, 6 horses received IV (2.2 mg/kg) or IG (4 mg/kg) minocycline in a randomized cross-over design. Plasma samples were collected prior to minocycline administration and 16 times within 36 hours. Bronchoalveolar lavages were performed 4 times within 24 hours for collection of PELF and BAL cells. For part two of the study, minocycline (4 mg/kg) was administered IG every 12 hours for 5 doses to 6 horses. Plasma samples were collected before minocycline administration and 20 times within 96 hours.
    [Show full text]
  • Antibiotics Currently in Clinical Development
    A data table from Feb 2014 Antibiotics Currently in Clinical Development As of February 2014, there are at least 45 new antibiotics1 with the potential to treat serious bacterial infections in clinical development for the U.S. market. The success rate for drug development is low; at best, only 1 in 5 candidates that enter human testing will be approved for patients.* This snapshot of the antibiotic pipeline will be updated periodically as products advance or are known to drop out of development. Please contact Rachel Zetts at [email protected] or 202-540-6557 with additions or updates. Cited for Potential Development Known QIDP4 Drug Name Company Drug Class Activity Against Gram- Potential Indication(s)5 Phase2 Designation? Negative Pathogens?3 New Drug Application Acute bacterial skin and skin structure Oritavancin The Medicines Company Glycopeptide Yes (NDA) submitted infections New Drug Application Acute bacterial skin and skin structure Dalbavancin Durata Therapeutics Lipoglycopeptide Yes (NDA) submitted infections NDA submitted (for Acute bacterial skin and skin structure acute bacterial skin infections, hospital acquired bacterial Tedizolid Cubist Pharmaceuticals Oxazolidinone Yes and skin structure pneumonia/ventilator acquired bacterial infection indication) pneumonia ACHN-975 Phase 1 Achaogen LpxC inhibitor Yes Bacterial infections Acute bacterial skin and skin structure infections6, methicillin-resistant Fabl inhibitor (AFN-1252 AFN-1720 Phase 1 Affinium Pharmaceuticals Staphylococcus aureus (MRSA) pulmonary pro-drug) infections
    [Show full text]
  • In Vitro Antibacterial Spectrum of BC-7013, a Novel Pleuromutilin Derivative for Topical Use in Humans Nabriva Therapeutics AG Leberstrasse 20 ICAAC 2009 D.J
    F1-1521 In Vitro Antibacterial Spectrum of BC-7013, a Novel Pleuromutilin Derivative for Topical Use in Humans Nabriva Therapeutics AG Leberstrasse 20 ICAAC 2009 D.J. BIEDENBACH1, R.N. JONES1, Z. IVEZIC-SCHOENFELD2, S. PAUKNER2, R. NOVAK2 1112 Vienna, Austria Tel.: +43 (0)1 74093 0 1 JMI Laboratories, North Liberty, Iowa, USA Fax.: +43 (0)1 74093 1900 2 Nabriva Therapeutics AG, Vienna, Austria www.nabriva.com Table 1. Antibacterial spectrum of BC-7013 and topical comparator antibiotics tested against Gram-positive bacteria Abstract Methods % susceptible/ % susceptible/ Conclusions Antimicrobial agent MIC MIC Range Antimicrobial agent MIC MIC Range 50 90 resistant a 50 90 resistant a Background: BC-7013 [14-O-[(3-Hydroxymethyl-phenylsulfanyl)-acetyl]-mutilin] is a novel Organism Collection: The activity of BC-7013 was determined against bacterial pathogens • BC-7013 was the most active compound against common Gram- semi-synthetic pleuromutilin derivative that inhibits prokaryotic protein synthesis. BC-7013 is in causing uSSSI. Organisms included strains isolated from patients in either the United States S. aureus (303) CoNS (105) early stage of clinical development for the topical treatment of uncomplicated skin and skin (USA, 52.3%) or European (47.6%) medical centers (n=67) primarily during 2006 to 2007. Less BC-7013 0.015 0.03 0.008 – 0.03 - / - BC-7013 0.03 0.06 0.008 – >8 - / - positive bacterial pathogens such as S. aureus, S. pyogenes and S. structure infections (uSSSI). We assessed BC-7013 activity against a wide range of clinical commonly isolated species and those organisms w ith characterized resistance mechanism were Retapamulin 0.12 0.12 0.03 – 0.12 - / - Retapamulin 0.06 0.5 0.015 – >8 - / - agalactiae when compared with other topical antibiotics.
    [Show full text]
  • Lefamulin the Potential for 1 Antibiotic Rather Than 2 in CABP March 13, 2018
    Lefamulin The potential for 1 antibiotic rather than 2 in CABP March 13, 2018 Prof. Mark H. Wilcox Professor of Medical Microbiology Leeds Teaching Hospitals & University of Leeds Confidential Disclosures Mark H. Wilcox has received Consulting fees from Abbott Laboratories, Actelion, Antabio, AiCuris, Astellas, Astra-Zeneca, Bayer, Biomèrieux, Cambimune, Cerexa, Da Volterra, The European Tissue Symposium, Ferring, The Medicines Company, MedImmune, Menarini, Merck, Meridian, Motif Biosciences, Nabriva, Paratek, Pfizer, Qiagen, Roche, Surface Skins, Sanofi-Pasteur, Seres, Summit, Synthetic Biologics, and Valneva Lecture fees from Abbott, Alere, Allergan, Astellas, Astra-Zeneca, Merck, Pfizer, Roche, and Seres Grant support from Abbott, Actelion, Astellas, Biomèrieux, Cubist, Da Volterra, Merck, MicroPharm, Morphochem AG, Sanofi-Pasteur, Seres, Spero, Summit, and The European Tissue Symposium Confidential Pleuromutilin Antibacterial Agents • Pleuromutilin antibiotics inhibit translation and are O OH R O 14 semisynthetic derivatives of the naturally occurring tricyclic H diterpenoid pleuromutilin isolated from an edible mushroom – Veterinary use: tiamulin and valnemulin (oral treatment of dysentery O Pleuromutilin R = OH and respiratory infections in swine and poultry) Pleurotus mutilus (Clitopilus – Human use: retapamulin (topical treatment of uSSSTI caused by scyphoides) MSSA or Streptococcus spp) Source: James Lindsey's Ecology of Commanster Site, 2006 • Lefamulin was discovered by Nabriva and is the first systemic CH2 pleuromutilin for
    [Show full text]
  • Gram Positive Cocci (GPC) Gram Neg (Rods = GNR) Anaerobes
    Gram Positive Cocci (GPC) Gram Neg (rods = GNR) Anaerobes Atypicals Classification Antibiotic Cluster Streptococcus Entero- Resp Enteric Non- Bacteroides, Mycoplasma = Staph β↓ & α-hemolytic↓ coccus (cocci) GI flora enteric Clostridium Legionella Beta-Lactams General Spectrum MSSA Group pneumo, faecalis H. flu, E. coli, Pseud- (non-dfficile) Chlamydia Penicillins of Activity → only A / B Viridans only M. cat Klebsiella omonas Peptostrep. (pneumonia) Natural Penicillin G IV/ PenVK PO +/- ++ + + 0 0 0 + 0 Anti- Oxacillin/Nafcillin IV, ++ ++ + 0 0 0 0 0 0 Staphylococcal Dicloxacillin PO Aminopenicillins Amp/Amoxicillin IV/PO 0 ++ + ++ +R +/- 0 + 0 Anti-Pseudomonal Piperacillin/Ticarcillin IV 0 + + + + + ++R + 0 Beta-Lactamase Clavulanate IV/PO, sulbactam Increase Inc by Increase Increase Inhibitor added tazobactam, vaborbactam IV by + + by + by + Cephalosporins Cefazolin IV/ ++ ++ +/- 0 +/- + 0 0 0 1st Generation Cephalexin PO 2nd Generation Cefuroxime IV/PO + ++ + 0 + + 0 +/- 0 Cephamycins Cefoxitin/Cefotetan IV 0 + 0 0 + + 0 + 0 3rd Generation Ceftriaxone/Cefotaxime IV + ++ ++ 0 ++ ++R 0 +/- 0 (PO in between 2nd Ceftazidime IV (+ Avibactam 0 + 0 0 ++ ++R ++R 0 0 and 3rd gen) for Carb-Resistant Enterics) 4th Generation Cefepime IV + ++ ++ 0 ++ ++ ++R 0 0 Novel Ceftolozane-tazo/Cefiderocol 0 + + 0 ++ ++ ++ +/- 0 Carbapenems Imipenem, Meropenem IV + + + +/- ++ ++ ++R ++ 0 (+rele/vaborbactam for CRE) Ertapenem IV + ++ ++ 0 ++ ++ 0 ++ 0 Monobactam Aztreonam IV 0 0 0 0 ++ ++R + 0 0 Non β-Lactams Includes MRSA Both sp. Aminoglycosides Gentamicin,
    [Show full text]