Swedres-Svarm 2016

Total Page:16

File Type:pdf, Size:1020Kb

Swedres-Svarm 2016 2016 SWEDRES|SVARM Consumption of antibiotics and occurrence of antibiotic resistance in Sweden 2 SWEDRES |SVARM 2016 A report on Swedish Antibiotic Utilisation and Resistance in Human Medicine (Swedres) and Swedish Veterinary Antibiotic Resistance Monitoring (Svarm) Published by: Public Health Agency of Sweden and National Veterinary Institute Editors: Jenny Hellman and Olov Aspevall, Public Health Agency of Sweden Björn Bengtsson and Märit Pringle, National Veterinary Institute Addresses: The Public Health Agency of Sweden SE-171 82 Solna, Sweden Phone: +46 (0) 10 205 20 00 Fax: +46 (0) 8 32 83 30 E-mail: [email protected] www.folkhalsomyndigheten.se National Veterinary Institute SE-751 89 Uppsala, Sweden Phone: +46 (0) 18 67 40 00 Fax: +46 (0) 18 30 91 62 E-mail: [email protected] www.sva.se Text and tables may be cited and reprinted only with reference to this report. Images, photographs and illustrations are pro- tected by copyright. Suggested citation: Swedres-Svarm 2016. Consumption of antibiotics and occur- rence of resistance in Sweden. Solna/Uppsala ISSN1650-6332 ISSN 1650-6332 Article no. 16124 This title and previous Swedres and Svarm reports are avail- able for downloading at www.folkhalsomyndigheten.se/ Scan the QR code to open Swedres-Svarm 2016 as a pdf in publicerat-material/ or at www.sva.se your mobile device, for reading and sharing. Download a free QR code reader in the App Store for Apple Layout: ETC kommunikation devices or in Google Play for Android, for example Quick Scan QR Code Reader (iPhone) or QR Droid Code Scanner Print: Taberg Media Group, Taberg 2017 (Android). Cover by Ingvar Westerdahl/Thomas Isaksson SWEDRES |SVARM 2016 3 Preface The 2016 Swedish report from the monitoring of anti- echoed by action plans and strategies presented by the Swedish biotic resistance and antibiotic consumption in human and government with broad support in the Swedish Parliament. veterinary medicine, Swedres-Svarm, is an integrated report During 2016, the Unit for Antibiotics and Infection from the Public Health Agency of Sweden and the National Control at the Public Health Agency of Sweden was a desig- Veterinary Institute with data from humans, animals, and food. nated WHO Collaborating Centre for Antibiotic Resistance This report is a result of the successful collaboration between Containment. The activities of the Collaborating Centre the public health and veterinary sectors in Sweden. include support for country-level capacity building to promote The very word “antibiotics” is almost a contradiction. It is local and national use of surveillance data and to facili- derived from the Greek and means “against life”. However, tate participation and implementation of the Global AMR antibiotics make up a life-saving class of drugs and have shaped Surveillance System (GLASS). We also acknowledge the initi- modern human and veterinary medicine. The life that the ative by the OIE to collect data on the global use of antibiotics word refers to is the life of bacteria, and the power of these in animals. These kinds of comparisons increase transparency drugs lies in their ability to stop and eventually kill bacteria. and enable the international community to motivate more However, we are slowly losing more and more ways to keep states to join the collaboration against antibiotic resistance bacterial infections at bay due to antibiotic resistance, glob- and misuse of antibiotics. ally as well as in Sweden. It is therefore imperative that we The use of antibiotics in Swedish farm animals continues not only monitor the development of antibiotic resistance and to be at a steady, low level. The first examples in Sweden of continue to develop the tools at hand, but also to follow the tiamulin-resistant Brachyspira hyodysenteriae have been identi- actual use of antibiotics. fied in some pig production facilities. In contrast, no plas- In this joint report, we present the latest data on resistance mid-borne colistin resistance genes have been found in either and antibiotic use monitoring in Sweden. In addition to chap- fresh or archived veterinary isolates. This demonstrates the ters focusing on either human or veterinary medicine, there usefulness of regular surveillance to understand the dynamics is also an important chapter on comparative analysis. Only of resistance. To further strengthen the surveillance capac- by working together, across various disciplines, will we have a ity in Sweden, a new laboratory network was formed by the chance to face the complex challenge that antibiotic-resistant National Veterinary Institute in collaboration with major bacteria pose. In addition to this, the key to long-term success veterinary clinics. is international collaboration. The United Nations, the World Antibiotic resistance is a consequence of the use and, more Health Organization, and the World Organization of Animal importantly, the misuse of antibiotics. Only through broad Health (OIE) have all presented actions plans and strategies partnerships can we slow and hopefully prevent the rise of for the joint battle against antibiotic resistance. This is also ever more dangerous multi-resistant bacteria. Solna and Uppsala Johan Carlson Jens Mattsson Director General Director General Public Health Agency of Sweden National Veterinary Institute 4 SWEDRES |SVARM 2016 Contributors and participants Editors Other contributors in Svarm Olov Aspevall and Jenny Hellman, National Veterinary Institute Public Health Agency of Sweden. Boel Harbom, Mattias Myrenås and Eva Säker Björn Bengtsson and Märit Pringle, Farm & Animal Health National Veterinary Institute, Sweden. Maria Lindberg, Benedicta Molander Swedish Board of Agriculture Project Manager Kinfe Girma Peter Andréasson, Public Health Agency of Sweden Acknowledgements Authors Swedres The analysis of data was made in collaboration with: Jonatan Public Health Agency of Sweden Alvan, Ingrid Brännström, Mats Erntell, Annika Hahlin, Olov Aspevall, Hanna Billström, Petra Edquist, Malin Mikael Hoffmann, Gunnar Kahlmeter, Johan Struwe and Grape, Sara Hæggman, Jenny Hellman, Jerker Jonsson, Christina Åhrén. Sonja Löfmark, Eva Morfeldt, Barbro Mäkitalo, Christer Norman, Erika Olsson, Magdalena Prioux, Kristina Data on antibiotic use in relation to number of admissions Rizzardi, Karin Sjöström, Anders Ternhag, Tomas and number of patient days in somatic hospital care during Söderblom and Thomas Åkerlund 2012–2016 were kindly provided by pharmacists in local Strama-groups. Medical Products Agency Sahra Barzi The national surveillance of antibiotic resistance would not have been possible without the contribution of data and Strama Stockholm active support of all the Swedish clinical microbiology labo- Annika Hahlin and Emilia Titelman ratories. Department of Clinical Microbiology, Karolinska Complementary epidemiological information on clini- University Hospital, Stockholm cal notifications has been performed by the local County Christian Giske Departments for Communicable Disease Control. National Reference laboratory for Antibiotic Thank you to Kerstin Ortman and Hanna Arosenius at Resistance, Växjö Hospital Eurofins Agro, Skara for kindly providing SVA with clinical Gunnar Kahlmeter isolates and susceptibility results from clinical submissions from animals. National Reference Laboratory for Pathogenic Neisseria, Örebro University Hospital Thank you also to environmental departments in several Hans Fredlund, Susanne Jacobsson and Magnus Unemo municipalities for collecting samples of fresh meat from retail for ESBL-screening. Authors Svarm National Veterinary Institute Björn Bengtsson, Karin Bergström, Stefan Börjesson, Helle Ericsson Unnerstad, Christina Greko, Annica Landén, Oskar Nilsson and Märit Pringle SWEDRES |SVARM 2016 5 Content Preface ������������������������������������������������������������������������������������������������ 3 Zoonotic pathogens: Campylobacter and Salmonella ����������� 63 Contributors and participants �������������������������������������������������������� 4 In Focus WHO GLASS – Sammanfattning/Summary ������������������������������������������������������������� 7 Global Antimicrobial Resistance Surveillance System��������� 64 Guidance for readers ���������������������������������������������������������������������� 13 Antibiotic resistance in animals ........................................66 Consumption of antibiotics in humans ..............................17 Notifiable diseases ��������������������������������������������������������������������� 66 Total consumption of antibiotics �������������������������������������������� 17 ESBL-producing Enterobacteriaceae �������������������������������� 66 In Focus Antibiotics in outpatient care �������������������������������������������������� 18 Quantification of ESBLA and ESBLM- Gender differences �������������������������������������������������������������� 18 producing Escherichia coli in broilers�������������������������������������� 70 Antibiotics commonly used to treat Methicillin resistant S. aureus (MRSA) ���������������������������� 71 respiratory tract infections, urinary tract Methicillin-resistant infections and skin and soft tissue infections ������������������ 19 Staphylococcus pseudintermedius (MRSP) �������������������������� 71 Antibiotic consumption in children ��������������������������������� 23 Zoonotic pathogens ������������������������������������������������������������������ 74 County data �������������������������������������������������������������������������� 26 Salmonella �����������������������������������������������������������������������������
Recommended publications
  • Penicillin Skin Testing
    Penicillin Skin Testing Penicillin Skin Testing: Frequently Asked Questions Benzylpenicilloyl Polylysine (Pre-Pen®) and Diluted Penicillin G June 2012 VA Pharmacy Benefits Management Services, Medical Advisory Panel and VISN Pharmacist Executives Benzylpenicilloyl polylysine (Pre-Pen®) was FDA approved in 2009 for the assessment of sensitization to penicillin in those patients suspected, based upon previous experience, of having a clinical hypersensitivity to penicillin. Penicillin skin testing is the most reliable way to evaluate patients for IgE-mediated penicillin allergy. Skin testing is conducted using benzylpenicilloyl polylysine (major determinant), penicillin G diluted with normal saline to 10,000 units/ml (minor determinant), a positive and negative control. Testing with both the major and minor determinant of penicillin can identify up to 97% of patients with an immediate hypersensitivity to penicillin. The intent of this document is to help guide appropriate use of penicillin skin testing. 1. WHEN IS PENICILLIN SKIN TESTING INDICATED? Penicillin skin testing can be considered in those patients with a prior history of hypersensitivity to penicillin or allergy to penicillin in situations where the provider considers penicillin the drug of choice or prefers treatment with penicillin. If skin testing is indicated, the patient should be referred to a VA Allergy Specialist or other appropriately trained physician who is experienced in the application and interpretation of PCN skin testing, as locally designated. Although approximately 10% of patients will remain allergic to penicillin their entire lives, a large majority will stop expressing penicillin-specific IgE-mediated antibodies and can be safely treated with penicillin. Skin testing with benzylpenicilloyl polylysine is contraindicated in patients who are known to be extremely hypersensitive to penicillin and in those patients who have experienced a systemic or marked local reaction to prior administration of benzylpenicilloyl polylysine.
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • Swedres-Svarm 2010
    SVARM|2010 Swedish Veterinary Antimicrobial Resistance Monitoring Content Swedish Veterinary Antimicrobial Resistance Monitoring 2010 Preface .............................................................................................3 Guidance for readers ........................................................................4 Editors Summary ..........................................................................................5 Björn Bengtsson, Helle Ericsson Unnerstad, Sammanfattning...............................................................................7 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Use of antimicrobials .......................................................................9 Department of Animal Health and Zoonotic bacteria ...........................................................................14 Antimicrobial Strategies, National Veterinary Salmonella ...................................................................................14 Institute (SVA) SE-751 89 Uppsala, Sweden Campylobacter .............................................................................18 Methicillin resistant Staphylococcus aureus (MRSA) ....................19 Authors Highlight: Escherichia coli with ESBL - or transferrable Björn Bengtsson, Helle Ericsson Unnerstad, AmpC-type resistance in broilers .............................................22 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Indicator bacteria ...........................................................................24
    [Show full text]
  • Conjunctivitis Or Worse?
    Red Eye in Dogs and CatS: Conjunctivitis or Worse? Tracy Revoir, DVM Senior Manager of Veterinary Support, Dechra Veterinary Products It should come as no surprise that conjunctivitis is Common Causes of Conjunctivitis the most common ophthalmic disorder in dogs and cats. But because the clinical signs of conjunctivitis If you do confirm conjunctivitis, the next step is can mimic those of more serious ophthalmic identifying the cause. If both eyes are affected and diseases (glaucoma and uveitis), it’s important to abnormal clinical signs are apparent in other body confirm your diagnosis. systems, think underlying systemic disease. If only one eye is affected, rule out infection, tear film What are important clues to the severity of the deficiencies, an irritant, anatomical abnormality, condition? With conjunctivitis, the inflammation or deeper ocular disease. should be limited to the conjunctiva. Hyperemic conjunctival vessels are superficial, branching, In dogs, conjunctivitis can result from anatomical and bright red. They are movable over the deeper disorders, irritants, infection (usually bacterial), or episcleral vessels and can be blanched with topical atopy. Most bacterial infections are secondary dilute phenylephrine. With glaucoma and uveitis, the conditions, most often to allergies. In cats, herpes- episcleral vessels are engorged; they are dark red, virus and Chlamydophila felis are the most common deep, straight, and immobile and do not blanch with causes of conjunctivitis. Atopy can also be topical dilute phenylephrine. With conjunctivitis, an issue in cats. the Schirmer tear test and intraocular pressures are normal. And the cornea should be clear and no aqueous flare should be present. The pupil and Addressing the Problem pupillary responses are normal and intraocular structures should be visible.
    [Show full text]
  • Empiric Treatment with Antibiotic Combination Therapy Compared with Monotherapy for Adult Patients with Septic Shock of Unknown
    REPORT 2020 SYSTEMATIC REVIEW: Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin Utgitt av Norwegian Institute of Public Health Division for Health Services Title Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin: a systematic review Norwegian title Hva er effekten av empirisk kombinasjonsbehandling med antibiotika sammen- lignet med monoterapi for voksne pasienter med septisk sjokk forårsaket av ukjent patogen og ukjent opprinnelse: en systematisk oversikt Responsible Camilla Stoltenberg, Director General Authors Jan PW Himmels, project leader, seniorrådgiver, Norwegian Institute of Public Health Gunn Elisabeth Vist, seniorforsker, Norwegian Institute of Public Health Liv Giske, seniorforsker, Norwegian Institute of Public Health Eva Helene Arentz-Hansen, seniorforsker, Norwegian Institute of Public Health Gyri Hval, bibliotekar, Norwegian Institute of Public Health ISBN 978-82-8406-084-2 Project number RL035 Type of report Systematic Review No. of pages 26 (32 inklusiv vedlegg) Client Helsedirektoratet Subject Septic shock, antibiotic dual treatment, antibiotic monotherapy, antimicrobi- heading(MeSH) otic ressistance (AMR) Citation Himmels JPW, Vist GE, Giske L, Arentz-Hansen EH, Hval G. Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin: a systematic
    [Show full text]
  • Polymyxin B & Colistin Dosing Tip Sheet
    Stanford Antimicrobial Safety & Sustainability Program Polymyxin B & Colistin Dosing Tip Sheet What: Polymyxin B is preferred over Colistin (polymyxin E) for infections due to multidrug resistant gram- negative bacilli at Stanford Health Care. SHC formulary restriction criteria – Polymyxin B 1. Infectious Disease Consultation and ID recommendation for use 2. Cystic Fibrosis team SHC formulary restriction criteria – Colistin 1. Treatment of urinary tract infections 2. Inhalation route Why: Polymyxin B and Colistin have the same spectrum of activity. However, Polymyxin B has favorable clinical pharmacologic properties compared to Colistin o Polymyxin B is an active drug, whereas Colistin is administered as the prodrug colistimethate sodium (CMS) and has variable and slow (hours) conversion to the active moiety o Polymyxin B may be less nephrotoxic How: Polymyxin B and Colistin dosing is NOT interchangeable o Polymyxin B is usually dosed by “unit”, not “mg” o Note that with Polymyxin B, each 500,000 units is diluted in 300-500mL: a typical dose may result in 1L of fluid o Consult ID pharmacists if MIC ≥ 2 for alternative dosing strategies Dosing 50-79 30-49 10-29 IHD Route ≥80 mL/min mL/min mL/min mL/min CRRT Polymyxin B No Data; Use actual body IV 7,500 – 12,500 units/kg Q12H Consult ID weight; adjusted body wt for obese pharmacist 2.5 mg/kg 1.5 mg/kg 5 mg/kg/day 1.25–1.9 mg/kg Q24H 1.5 mg/kg Q24-48h Colistin IV in 2-3 divided -OR- Use ideal body Q12H Q36H 2.5 mg/kg weight doses 1.25 mg/kg Q12h Q12-24H Doses expressed in colistin base activity Inhalation 150 mg inhalation Q12H Conversions: Colistimethate sodium 1 mg = ~12,500 units of colistimethate sodium Colistimethate sodium ~2.67 mg = 1 mg of colistin base activity 1 mg colistin base activity (CBA) = 30,000 IU colistin 1 mg polymyxin B = 10,000 IU polymyxin B Orig date: 2/23/2015 LM, EM Stanford Antimicrobial Safety & Sustainability Program References: Micromedex online, accessed 2/17/2016 Nelson, Brian C., et al.
    [Show full text]
  • Farrukh Javaid Malik
    I Farrukh Javaid Malik THESIS PRESENTED TO OBTAIN THE GRADE OF DOCTOR OF THE UNIVERSITY OF BORDEAUX Doctoral School, SP2: Society, Politic, Public Health Specialization Pharmacoepidemiology and Pharmacovigilance By Farrukh Javaid Malik “Analysis of the medicines panorama in Pakistan – The case of antimicrobials: market offer width and consumption.” Under the direction of Prof. Dr. Albert FIGUERAS Defense Date: 28th November 2019 Members of Jury M. Francesco SALVO, Maître de conférences des universités – praticien hospitalier, President Université de Bordeaux M. Albert FIGUERAS, Professeur des universités – praticien hospitalier, Director Université Autonome de Barcelone Mme Antonia AGUSTI, Professeure, Vall dʹHebron University Hospital Referee Mme Montserrat BOSCH, Praticienne hospitalière, Vall dʹHebron University Hospital Referee II Abstract A country’s medicines market is an indicator of its healthcare system, the epidemiological profile, and the prevalent practices therein. It is not only the first logical step to study the characteristics of medicines authorized for marketing, but also a requisite to set up a pharmacovigilance system, thus promoting rational drug utilization. The three medicines market studies presented in the present document were conducted in Pakistan with the aim of describing the characteristics of the pharmaceutical products available in the country as well as their consumption at a national level, with a special focus on antimicrobials. The most important cause of antimicrobial resistance is the inappropriate consumption of antimicrobials. The results of the researches conducted in Pakistan showed some market deficiencies which could be addressed as part of the national antimicrobial stewardship programmes. III Résumé Le marché du médicament d’un pays est un indicateur de son système de santé, de son profil épidémiologique et des pratiques [de prescription] qui y règnent.
    [Show full text]
  • Belgian Veterinary Surveillance of Antibacterial Consumption National
    Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2020 Publication : 22 June 2021 1 SUMMARY This annual BelVet-SAC report is now published for the 12th time and describes the antimicrobial use (AMU) in animals in Belgium in 2020 and the evolution since 2011. For the third year this report combines sales data (collected at the level of the wholesalers-distributors and the compound feed producers) and usage data (collected at farm level). This allows to dig deeper into AMU at species and farm level in Belgium. With a consumption of 87,6 mg antibacterial compounds/kg biomass an increase of +0.2% is seen in 2020 in comparison to 2019. The increase seen in 2020 is spread over both pharmaceuticals (+0.2%) and antibacterial premixes (+4.0%). This unfortunately marks the end of a successful reduction in antibacterial product sales that was seen over the last 6 years resulting in a cumulative reduction of -40,2% since 2011. The gap seen in the coverage of the sales data with the Sanitel-Med collected usage data increased substantially compared to 2019, meaning continuous efforts need to be taken to ensure completeness of the collected usage data. When looking at the evolution in the number of treatment days (BD100) at the species level, as calculated from the SANITEL- MED use data, use increased in poultry (+5,0%) and veal calves (+1,9%), while it decreased in pigs (-3,1%). However, the numerator data for this indicator remain to be updated for 2020, potentially influencing the reliability of the result.
    [Show full text]
  • NEW ANTIBACTERIAL DRUGS Drug Pipeline for Gram-Positive Bacteria
    NEW ANTIBACTERIAL DRUGS Drug pipeline for Gram-positive bacteria Françoise Van Bambeke, PharmD, PhD Paul M. Tulkens, MD, PhD Pharmacologie cellulaire et moléculaire Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium http://www.facm.ucl.ac.be Based largely on presentations given at the 24th and 25th European Congress of Clinical Microbiology and Infectious Diseases and the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 1 Disclosures Research grants for work on investigational compounds discussed in this presentation from • Cempra Pharmaceuticals • Cerexa • GSK • Melinta therapeutics • The Medicine Company • MerLion Pharmaceuticals • Theravance • Trius 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 2 Belgium 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 3 Belgium 10 millions inhabitants … 10 Nobel prizes (10/850) • Peace - Institute of International Law, Ghent (1904) - Auguste Beernaert (1909) - Henri Lafontaine (1913) - Father Dominique Pire (1958) • Literature - Maurice Maeterlinck, Ghent (1911) • Medicine - Jules Bordet, Brussels (1919) - Corneille Heymans, Ghent (1938) - Christian de Duve, Louvain (1974) - Albert Claude, Brussels (1974) • Chemistry - Ilya Prigogyne, Brussels (1977) - Physics - François Englert, Brussels (2013) 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 4 The Catholic University of Louvain in brief (1 of 4) • originally founded in 1425 in the city of Louvain (in French and English; known as Leuven in Flemish) 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 5 The Catholic University of Louvain in brief (2 of 4) • It was one of the major University of the so-called "Low Countries" in the 1500 – 1800 period, with famous scholars and discoverers (Vesalius for anatomy, Erasmus for philosophy, …).
    [Show full text]
  • Unsafe €Œcrossover-Use― of Chloramphenicol in Uganda
    The Journal of Antibiotics (2021) 74:417–420 https://doi.org/10.1038/s41429-021-00416-3 BRIEF COMMUNICATION Unsafe “crossover-use” of chloramphenicol in Uganda: importance of a One Health approach in antimicrobial resistance policy and regulatory action 1,2 1,2 3 1 1 Kayley D. McCubbin ● John W. Ramatowski ● Esther Buregyeya ● Eleanor Hutchinson ● Harparkash Kaur ● 3 2 1 Anthony K. Mbonye ● Ana L. P. Mateus ● Sian E. Clarke Received: 22 December 2020 / Revised: 2 February 2021 / Accepted: 16 February 2021 / Published online: 19 March 2021 © The Author(s) 2021. This article is published with open access Abstract Since the introduction of antibiotics into mainstream health care, resistance to these drugs has become a widespread issue that continues to increase worldwide. Policy decisions to mitigate the development of antimicrobial resistance are hampered by the current lack of surveillance data on antibiotic product availability and use in low-income countries. This study collected data on the antibiotics stocked in human (42) and veterinary (21) drug shops in five sub-counties in Luwero district of Uganda. Focus group discussions with drug shop vendors were also employed to explore antibiotic use practices in the 1234567890();,: 1234567890();,: community. Focus group participants reported that farmers used human-intended antibiotics for their livestock, and community members obtain animal-intended antibiotics for their own personal human use. Specifically, chloramphenicol products licensed for human use were being administered to Ugandan poultry. Human consumption of chloramphenicol residues through local animal products represents a serious public health concern. By limiting the health sector scope of antimicrobial resistance research to either human or animal antibiotic use, results can falsely inform policy and intervention strategies.
    [Show full text]
  • Danmap 2006.Pmd
    DANMAP 2006 DANMAP 2006 DANMAP 2006 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark Statens Serum Institut Danish Veterinary and Food Administration Danish Medicines Agency National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark Editors: Hanne-Dorthe Emborg Danish Zoonosis Centre National Food Institute, Technical University of Denmark Mørkhøj Bygade 19 Contents DK - 2860 Søborg Anette M. Hammerum National Center for Antimicrobials and Contributors to the 2006 Infection Control DANMAP Report 4 Statens Serum Institut Artillerivej 5 DK - 2300 Copenhagen Introduction 6 DANMAP board: National Food Institute, Acknowledgements 6 Technical University of Denmark: Ole E. Heuer Frank Aarestrup List of abbreviations 7 National Veterinary Institute, Tecnical University of Denmark: Sammendrag 9 Flemming Bager Danish Veterinary and Food Administration: Summary 12 Justin C. Ajufo Annette Cleveland Nielsen Statens Serum Institut: Demographic data 15 Dominique L. Monnet Niels Frimodt-Møller Anette M. Hammerum Antimicrobial consumption 17 Danish Medicines Agency: Consumption in animals 17 Jan Poulsen Consumption in humans 24 Layout: Susanne Carlsson Danish Zoonosis Centre Resistance in zoonotic bacteria 33 Printing: Schultz Grafisk A/S DANMAP 2006 - September 2007 Salmonella 33 ISSN 1600-2032 Campylobacter 43 Text and tables may be cited and reprinted only with reference to this report. Resistance in indicator bacteria 47 Reprints can be ordered from: Enterococci 47 National Food Institute Escherichia coli 58 Danish Zoonosis Centre Tecnical University of Denmark Mørkhøj Bygade 19 DK - 2860 Søborg Resistance in bacteria from Phone: +45 7234 - 7084 diagnostic submissions 65 Fax: +45 7234 - 7028 E.
    [Show full text]
  • Mechanisms of Β- Lactamase Inhibition And
    MECHANISMS OF β- LACTAMASE INHIBITION AND HETEROTROPIC ALLOSTERIC REGULATION OF AN ENGINEERED β- LACTAMASE-MBP FUSION PROTEIN By WEI KE Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy. Dissertation Advisor: Dr. Focco ven den Akker Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY May, 2011 CASE WESTERN RESERVE UNVERISTY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Wei Ke . candidate for the Ph.D degree*. (signed)Paul Carey . (chair of the committee) Focco van den Akker . Menachem Shoham . Robert A. Bonomo . Marion Skalweit . ___________________________________________ (date) 23 March, 2011 *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS LIST OF TABLES ………………………………………………………………………8 LIST OF FIGURES ………………………………...…………………………………9 ACKNOWLEDGEMENTS ...………………………………………………………..13 LIST OF ABBREVIATIONS …………………...……………………………………15 ABSTRACT ……………………………….………………………………………...17 CHAPTER 1 Background and Significance …………………………………………....18 1.1 Antibiotic Resistance Crisis……………….…………………………….…...18 1.2 β-lactamases overview……………………………………………………….19 1.3 β-Lactam antibiotics and β-lactamase inhibitors ……………………………23 1.4 Structures of class A β –lactamases …………………………………………25 CHAPTER 2 Crystal Structures of SHV-1 β-Lactamase in Complex with Boronic Acid Transition State Inhibitors …………………………………………………...…….32 2.1 Introduction ………………………………………………………………….32 2.2 Materials and Methods ………………………………………………….…...34 2.2.1.
    [Show full text]