Mechanisms of Β- Lactamase Inhibition And

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Β- Lactamase Inhibition And MECHANISMS OF β- LACTAMASE INHIBITION AND HETEROTROPIC ALLOSTERIC REGULATION OF AN ENGINEERED β- LACTAMASE-MBP FUSION PROTEIN By WEI KE Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy. Dissertation Advisor: Dr. Focco ven den Akker Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY May, 2011 CASE WESTERN RESERVE UNVERISTY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Wei Ke . candidate for the Ph.D degree*. (signed)Paul Carey . (chair of the committee) Focco van den Akker . Menachem Shoham . Robert A. Bonomo . Marion Skalweit . ___________________________________________ (date) 23 March, 2011 *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS LIST OF TABLES ………………………………………………………………………8 LIST OF FIGURES ………………………………...…………………………………9 ACKNOWLEDGEMENTS ...………………………………………………………..13 LIST OF ABBREVIATIONS …………………...……………………………………15 ABSTRACT ……………………………….………………………………………...17 CHAPTER 1 Background and Significance …………………………………………....18 1.1 Antibiotic Resistance Crisis……………….…………………………….…...18 1.2 β-lactamases overview……………………………………………………….19 1.3 β-Lactam antibiotics and β-lactamase inhibitors ……………………………23 1.4 Structures of class A β –lactamases …………………………………………25 CHAPTER 2 Crystal Structures of SHV-1 β-Lactamase in Complex with Boronic Acid Transition State Inhibitors …………………………………………………...…….32 2.1 Introduction ………………………………………………………………….32 2.2 Materials and Methods ………………………………………………….…...34 2.2.1. Inhibitor synthesis and enzyme kinetics ……………….…………34 2.2.2. Enzyme purification ……………………………………...……….34 - 3 - 2.2.3. Crystallization and soaking.......................................................…...34 2.2.4. Data collection and structure determination ……………………...35 2.3 Results ……………………………………………………………………….36 2.3.1. Ceftazidime BATSI structure ………………………….…………38 2.3.2. Cefoperazone BATSI structure …………………………….…….39 2.3.3. Compound 1 and compound 2 structures …………………..…….40 2.4 Discussion ………………………………………………………….…..……41 Chapter 3 Crystal Structure of SHV-1 β-Lactamase in Complex with Penem and penam sulfone inhibitors that form cyclic inhibitory intermediates …………………….58 3.1 Introduction …………………………………………………………….……58 3.2 Materials and Methods ……………………………………………...……….60 3.2.1. Enzyme purification ………………………………………….…...60 3.2.2. Crystallization and soaking ......................................................…...60 3.2.3. Data collection and structure determination …………………...…60 3.3 Results and Discussion ……………………………………………..……….62 3.3.1. SHV-1: Penem 1 structure …………………………………..……62 3.3.2. SHV-1: SA1-204 structure ………………………………………..64 Chapter 4 Trans-Enamine Intermediate Formation as a β-Lactamase Inhibition Strategy Probed for Inhibitor-Resistant S130G SHV β-Lactamase...................................76 - 4 - 4.1 Introduction ..............................................................................................…...76 4.2 Materials and Methods ………………………………………………………78 4.2.1. Inhibitors..................................................................................…....78 4.2.2. Mutagenesis, purification and crystallization …………………….78 4.2.3. Soaking, data collection and structure determination …………….78 4.3 Results ......................................................................................................…...79 4.4 Discussion ……………………………………………………………..…….80 Chapter 5 Crystal Structure of KPC-2 β-Lactamase ………………………………..….88 5.1 Introduction …………………………………………………………….……88 5.2 Materials and Methods ………………………………………………………90 5.2.1. Enzyme expression and purification ……………………………...90 5.2.2. Crystallization ………….………………………………………....91 5.2.3. Data collection and structure determination …………………..….91 5.3 Results …………………………………………………………………….....93 5.4 Discussion ……………………………………………………………...……95 Chapter 6 Crystal Structure of KPC-2 β-Lactamase in Complex with 3-NPBA and PSR3-226 ………………………………………………………………...……….114 6.1 Introduction ………………………………………………………………...114 - 5 - 6.2 Materials and Methods ……………………………………………….…….115 6.2.1 Subcloning ………………………………………………….…....115 6.2.2 Expression and purification ……………………………………...116 6.2.3 Crystallization and soaking ………………………………………117 6.2.4 Data collection and structure determination ……………………..118 6.3 Results and Discussion……………………………………………………..118 6.3.1 KPC-2: 3-NPBA structure …………………………….…………118 6.3.2 KPC-2: PSR3-226 structure ……………………………….……..120 6.4 Conclusion..............................................................................................…...122 Chapter 7 Heterotropic Allosteric Regulation Mechanism of an Engineered β- Lactamase-MBP Fusion Protein………………………………………………………..131 7.1 Introduction ……………………………………………………..…………131 7.2 Materials and Methods …………………………………………………….133 7.2.1 Expression and purification ………………..…………………….133 7.2.2 Crystallization and soaking ……………………………….……...134 7.2.3 Data collection and structure determination ……………..………134 7.2.4 Molecular Dynamics Simulation ………………………….……..136 7.3 Results ………………………………………………………………….…..137 - 6 - 7.3.1 Overall structure ………………………………………………….137 7.3.2 Zinc binding ………………………………………………….…..139 7.3.3 MBP domain and TEM-1 domain ………………………….…….140 7.3.4 Mutagenesis………………………………………………….…...142 7.3.5 Molecular dynamics simulations of RG13……………………….143 7.4 Discussion…………………………………………………………….……144 7.4.1 Insights into maltose activation of RG13…………………..….145 7.4.2 General applicability of MBP as a sensory allosteric domain in fusion constructs……………………………………………………..149 7.4.3 Serendipitous zinc binding and regulation in RG13………..….151 Chapter 8 Summary and Future Directioins …………………………………………..174 8.1 Summary ………………………………………………………...…………174 8.2 Future directions …………………………………………………..……….180 Bibliography …………………………………………………………………………185 - 7 - LIST OF TABLES Table 2.1 Inhibition data for BATSI compounds…………………………………..56 Table 2.2 Data collection and refinement statistics…………………...……………57 Table 3.1 Data collection and refinement statistics………………………...………75 Table 4.1 Data collection and refinement statistics………………………….……..87 Table 5.1 Data collection and refinement statistics for KPC-2 structure………….111 Table 5.2 Active site distance changes of carbapenemases and non-carbapenemases.................................................................................................…...112 Table 5.3 Relative shifts in active site residues of carbapenemases compared to non-carbapenemases……………………………………………………………………113 Table 6.1 Inhibition and kinetics data………………..……………………………129 Table 6.2 Data collection and refinement statistics ……………………………....130 Table 7.1 Data collection and refinement statistics..........................................…...172 Table 7.2 Kinetics data from the literature……………………………..…………173 - 8 - LIST OF FIGURES Figure 1.1 Defense mechanisms of gram-negative bacteria against β-lactam antibiotics and β-lactamase inhibitors……………………………………...…..28 Figure 1.2 Typical structures in the β-lactam family are listed including the representative penicillin, cephalosporin, carbapenems and β-lactamase inhibitors ………………………………………………………………………….……..29 Figure 1.3 Crystal structure of SHV-1 β-lactamase (PDB ID: 1SHV)……… …..…30 Figure 2.1 Chemical structures of compounds and the synthesis scheme ...........…...49 Figure 2.2 Unbiased omit Fo-Fc maps……………………………………...……….50 Figure 2.3 Stereo view of interactions of the bound ligands within SHV-1 β-lactamase active site………………………………………………………………….. 51 Figure 2.4 Comparisons of β-lactamases and their bound BATSIs… …………...…53 Figure 3.1 Chemical structures and reaction schemes ……………………………...68 Figure 3.2 Electron density maps are depicted ……………………………………..70 Figure 3.3 Stereo view of interactions of the bound ligands within SHV-1 β-lactamase active site…………………………………………………………………...72 Figure 3.4 Structural superpositions ………………………...………………………73 Figure 4.1 Chemical structures of Clavulanic acid, tazobactam and SA2-13 and proposed reaction scheme of a generalized inhibitor with Class A β-lactamases based on previous work …………………………………………………………………….…..82 Figure 4.2 Electron density of the SA2-13 compound in the active site of S130G SHV-1 β-lactamase …………………………………………….………………………..83 - 9 - Figure 4.3 Stereo view of interactions of SA2-13 within S130G SHV β-lactamase active site……………………………………………………………………...…………84 Figure 4.4 All Cα superposition of SA2-13-S130G SHV with SA2-13-SHV-1……85 Figure 5.1 Schematic diagram of penicillin G, a carbapenem (imipenem), cephamycin (cefoxitin), a cephalosporin (cephalothin), and bicine………………..…..104 Figure 5.2 Electron density map………………………………..…………………..105 Figure 5.3 Structure of KPC-2 β-lactamase…………………………...………...…106 Figure 5.4 Stereo figure depicting the active site of KPC-2 with bicine and a superpositioned cephalosporin and schematic diagram of interactions of bicine in the active site of KPC-2………………………………………………………………….…107 Figure 5.5 Superposition of class A carbapenemases and the active sites of the carbapenemases and non-carbapenemase β-lactamases …………….…………………108 Figure 5.6 Active site adjustments of KPC-2 and their postulated role in accommodating cefoxitin……………………………………………………………….109 Figure 6.1 Chemical structures of the inhibitors and the proposed reaction scheme ……………………………………………………………………………..…. 123 Figure 6.2 Unbiased omit Fo-Fc maps contoured at 2.5σ are depicted ………………………………………………………….……………………..………. 124 Figure 6.3 Stereo view of interactions of the bound inhibitors within KPC-2 β- lactamase active site…………………………………………………………………….126 Figure
Recommended publications
  • Penicillin Skin Testing
    Penicillin Skin Testing Penicillin Skin Testing: Frequently Asked Questions Benzylpenicilloyl Polylysine (Pre-Pen®) and Diluted Penicillin G June 2012 VA Pharmacy Benefits Management Services, Medical Advisory Panel and VISN Pharmacist Executives Benzylpenicilloyl polylysine (Pre-Pen®) was FDA approved in 2009 for the assessment of sensitization to penicillin in those patients suspected, based upon previous experience, of having a clinical hypersensitivity to penicillin. Penicillin skin testing is the most reliable way to evaluate patients for IgE-mediated penicillin allergy. Skin testing is conducted using benzylpenicilloyl polylysine (major determinant), penicillin G diluted with normal saline to 10,000 units/ml (minor determinant), a positive and negative control. Testing with both the major and minor determinant of penicillin can identify up to 97% of patients with an immediate hypersensitivity to penicillin. The intent of this document is to help guide appropriate use of penicillin skin testing. 1. WHEN IS PENICILLIN SKIN TESTING INDICATED? Penicillin skin testing can be considered in those patients with a prior history of hypersensitivity to penicillin or allergy to penicillin in situations where the provider considers penicillin the drug of choice or prefers treatment with penicillin. If skin testing is indicated, the patient should be referred to a VA Allergy Specialist or other appropriately trained physician who is experienced in the application and interpretation of PCN skin testing, as locally designated. Although approximately 10% of patients will remain allergic to penicillin their entire lives, a large majority will stop expressing penicillin-specific IgE-mediated antibodies and can be safely treated with penicillin. Skin testing with benzylpenicilloyl polylysine is contraindicated in patients who are known to be extremely hypersensitive to penicillin and in those patients who have experienced a systemic or marked local reaction to prior administration of benzylpenicilloyl polylysine.
    [Show full text]
  • B-Lactams: Chemical Structure, Mode of Action and Mechanisms of Resistance
    b-Lactams: chemical structure, mode of action and mechanisms of resistance Ru´ben Fernandes, Paula Amador and Cristina Prudeˆncio This synopsis summarizes the key chemical and bacteriological characteristics of b-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This review also summarizes the main resistance mechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum b-lactamases and AmpC b-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump b-lactams out of the bacterial cell. Keywords: b-lactams, chemical structure, mechanisms of resistance, mode of action Historical perspective Alexander Fleming first noticed the antibacterial nature of penicillin in 1928. When working with Antimicrobials must be understood as any kind of agent another bacteriological problem, Fleming observed with inhibitory or killing properties to a microorganism. a contaminated culture of Staphylococcus aureus with Antibiotic is a more restrictive term, which implies the the mold Penicillium notatum. Fleming remarkably saw natural source of the antimicrobial agent. Similarly, under- the potential of this unfortunate event. He dis- lying the term chemotherapeutic is the artificial origin of continued the work that he was dealing with and was an antimicrobial agent by chemical synthesis [1]. Initially, able to describe the compound around the mold antibiotics were considered as small molecular weight and isolates it. He named it penicillin and published organic molecules or metabolites used in response of his findings along with some applications of penicillin some microorganisms against others that inhabit the same [4].
    [Show full text]
  • Download (12Mb)
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/110352 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications THE BRITISH LIBRARY BRITISH THESIS SERVICE THE DISTRIBUTION OF PHENOTYPIC AND GENOTYPIC CHARACTERS WITHIN STREPTOMYCETES AND THEIR RELATIONSHIP TITLE . TO ANTIBIOTIC PRODUCTION. AUTHOR........ Lesley Phillips, DEGREE.................................................... AWARDING BODY _ TI. .. The University of Warwick, THESIS NUMBER THIS THESIS HAS BEEN MICROFILMED EXACTLY AS RECEIVED The quality of this reproduction is dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction. Some pages may have indistinct print, especially if the original papers were poorly produced or if the awarding body sent an inferior copy. If pages are missing, please contact the awarding body which granted the degree. Previously copyrighted materials (journal articles, published texts, etc.) are not filmed. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that Its copyright rests with its author and that no information derived from it may be published without the author's prior written consent. Reproduction of this thesis, other than as permitted under the United Kingdom Copyright Designs and Patents Act 1988, or under specific agreement with the copyright holder, is prohibited.
    [Show full text]
  • Empiric Treatment with Antibiotic Combination Therapy Compared with Monotherapy for Adult Patients with Septic Shock of Unknown
    REPORT 2020 SYSTEMATIC REVIEW: Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin Utgitt av Norwegian Institute of Public Health Division for Health Services Title Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin: a systematic review Norwegian title Hva er effekten av empirisk kombinasjonsbehandling med antibiotika sammen- lignet med monoterapi for voksne pasienter med septisk sjokk forårsaket av ukjent patogen og ukjent opprinnelse: en systematisk oversikt Responsible Camilla Stoltenberg, Director General Authors Jan PW Himmels, project leader, seniorrådgiver, Norwegian Institute of Public Health Gunn Elisabeth Vist, seniorforsker, Norwegian Institute of Public Health Liv Giske, seniorforsker, Norwegian Institute of Public Health Eva Helene Arentz-Hansen, seniorforsker, Norwegian Institute of Public Health Gyri Hval, bibliotekar, Norwegian Institute of Public Health ISBN 978-82-8406-084-2 Project number RL035 Type of report Systematic Review No. of pages 26 (32 inklusiv vedlegg) Client Helsedirektoratet Subject Septic shock, antibiotic dual treatment, antibiotic monotherapy, antimicrobi- heading(MeSH) otic ressistance (AMR) Citation Himmels JPW, Vist GE, Giske L, Arentz-Hansen EH, Hval G. Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin: a systematic
    [Show full text]
  • Antibiotic Discovery
    ANTIBIOTIC DISCOVERY RESISTANCE PROFILING OF MICROBIAL GENOMES TO REVEAL NOVEL ANTIBIOTIC NATURAL PRODUCTS By CHELSEA WALKER, H. BSc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University © Copyright by Chelsea Walker, May 2017 McMaster University MASTER OF SCIENCE (2017) Hamilton, Ontario (Biochemistry and Biomedical Sciences) TITLE: Resistance Profiling of Microbial Genomes to Reveal Novel Antibiotic Natural Products. AUTHOR: Chelsea Walker, H. BSc. (McMaster University) SUPERVISOR: Dr. Nathan A. Magarvey. COMMITTEE MEMBERS: Dr. Eric Brown and Dr. Michael G. Surette. NUMBER OF PAGES: xvii, 168 ii Lay Abstract It would be hard to imagine a world where we could no longer use the antibiotics we are routinely being prescribed for common bacterial infections. Currently, we are in an era where this thought could become a reality. Although we have been able to discover antibiotics in the past from soil dwelling microbes, this approach to discovery is being constantly challenged. At the same time, the bacteria are getting smarter in their ways to evade antibiotics, in the form of resistance, or self-protection mechanisms. As such is it essential to devise methods which can predict the potential for resistance to the antibiotics we use early in the discovery and isolation process. By using what we have learned in the past about how bacteria protect themselves for antibiotics, we can to stay one step ahead of them as we continue to search for new sources of antibiotics from bacteria. iii Abstract Microbial natural products have been an invaluable resource for providing clinically relevant therapeutics for almost a century, including most of the commonly used antibiotics that are still in medical use today.
    [Show full text]
  • General Prescription
    GENERAL PRESCRIPTION LESSON 1. INTRODUCTION. PRESCRIPTION. SOLID MEDICINAL FORMS Objective: To study the structure of the prescription, learn the rules and get practical skills in writing out solid medicinal forms in prescription. To carry out practical tasks on prescriptions it is recommended to use Appendix 1. Key questions: 1. Pharmacology as a science and the basis of therapy. Main development milestones of modern pharmacology. Sections of Pharmacology. 2. The concept of medicinal substance, medicinal agent (medicinal drug, drug), medicinal form. 3. The concept of the pharmacological action and types of the action of drugs. 4. The sources of obtaining drugs. 5. International and national pharmacopeia, its content and purpose. 6. Pharmacy. Rules of drug storage and dispensing. 7. Prescription and its structure. Prescription forms. General rules for writing out a prescription. State regulation of writing out and dispensing drugs. 8. Name of medicinal products (international non-proprietary name - INN, trade name). 9. Peculiarities of writing out narcotic, poisonous and potent substances in prescription. 10. Drugs under control. Drugs prohibited for prescribing. 11. Solid medicinal forms: tablets, dragee (pills), powders, capsules. Their characteristics, advantages and disadvantages. Rules of prescribing. Write out prescriptions for: 1. 5 powders of Codeine 0.015 g. 1 powder orally twice a day. 2. 10 powders of Didanosine 0.25 g in sachets to prepare solution for internal use. Accept inside twice a day one sachet powder after dissolution in a glass of boiled water. 3. 50 mg of Alteplase powder in the bottle. Dissolve the content of the bottle in 50 ml of saline. First 15 ml introduce intravenously streamly, then intravenous drip.
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Β-Lactam/Β-Lactamase Inhibitors for the Treatment of Infections Caused by Extended-Spectrum Β-Lactamase (ESBL)-Producing Enterobacteriaceae
    β-lactam/β-lactamase Inhibitors for the Treatment of Infections Caused by Extended-Spectrum β-Lactamase (ESBL)-producing Enterobacteriaceae Alireza FakhriRavari, Pharm.D. PGY-2 Pharmacotherapy Resident Controversies in Clinical Therapeutics University of the Incarnate Word Feik School of Pharmacy San Antonio, Texas November 13, 2015 Learning Objectives At the completion of this activity, the participant will be able to: 1. Describe different classes of β-lactamases produced by gram-negative bacteria. 2. Identify β-lactamase inhibitors and their spectrum of inhibition of β-lactamases. 3. Evaluate the evidence for use of β-lactam/β-lactamase inhibitors compared to carbapenems for treatment of ESBL infections. β-lactam/β-lactamase inhibitors for the treatment of infections caused by ESBL-producing Enterobacteriaceae 1 1. A Brief History of the Universe A. Timeline: 1940s a. β-lactams and β-lactamases i. Sir Alexander Fleming discovered penicillin from Penicillium notatum (now Penicillium chrysogenum) in 1928.1,2 ii. Chain, Florey, et al isolated penicillin in 1940, leading to its commercial production.3 iii. First β-lactamase was described as a penicillinase in Escherichia coli in 1940.4 iv. Giuseppe Brotzu discovered cephalosporin C from the mold Cephalosporin acremonium (now Acremonium chrysogenum) in 1945, but cephalosporins were not clinically used for another 2 decades.2,5 b. What are β-lactamases? i. β-lactamases are enzymes that hydrolyze the amide bond of the β-lactam ring, thereby inactivating them.6 Figure 1: Mechanism of action of β-lactamases ii. β-lactamase production is the principal mechanism by which gram-negative bacteria resist β-lactam antibiotics.6 iii.
    [Show full text]
  • Nethmap-Maran 2014
    NethMap 2014 MARAN 2014 Consumption of antimicrobial agents and Monitoring of Antimicrobial Resistance antimicrobial resistance among and Antibiotic Usage in Animals medically important bacteria in the Netherlands in 2013 in the Netherlands Autoriteit Diergeneesmiddelen Autoriteit Diergeneesmiddelen Autoriteit Diergeneesmiddelen Autoriteit Diergeneesmiddelen PART 1: NethMap 2014 pg 1 - 98 Part 2: MARAN 2014 pg 1 - 68 NethMap 2014 Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in The Netherlands in 2013 June 2014 NethMap 2014 1 Colophon This report is published under the acronym NethMap by the SWAB, the Dutch Foundation of the Working Party on Antibiotic Policy, in collaboration with the Centre for Infectious disease control (CIb) of the RIVM, the National Institute for Public Health and the Environment of the Netherlands. SWAB is fully supported by a structural grant from CIb, on behalf of the Ministry of Health, Welfare and Sports of the Netherlands. The information presented in NethMap is based on data from ongoing surveillance systems on the use of antimicrobial agents in human medicine and on the prevalence of resistance to relevant antimicrobial agents among medically important bacteria isolated from healthy individuals and patients in the community and from hospitalized patients. The document was produced on behalf of the SWAB by the Studio of the RIVM. NethMap can be ordered from the SWAB secretariat, c/o Secretariaat SWAB p/a Universitair Medisch Centrum St Radboud Medische Microbiologie, Huispost 777, route 777 Postbus 9101, 6500 HB Nijmegen, Tel.: (024) 36 19041/14356 or by email to [email protected]. NethMap 2014 and earlier versions are also available from the website of the SWAB: www.swab.nl.
    [Show full text]
  • From Clostridium Butyricum
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Aug. 1989, p. 1302-1307 Vol. 33, No. 8 0066-4804/89/081302-06$02.00/0 Copyright © 1989, American Society for Microbiology Purification and Characterization of a New r-Lactamase from Clostridium butyricum TADATAKA KESADO, LENNART LINDQVIST, MARIA HEDBERG, KAJSA TUNER, AND CARL ERIK NORD* Department of Microbiology, Huddinge University Hospital, Karolinska Institute, S-141 86 Huddinge, and National Bacteriological Laboratory, S-105 21 Stockholm,* Sweden Received 9 December 1988/Accepted 23 May 1989 A highly penicillin-resistant j-lactamase-producing strain of Clostridium butyricum, strain NBL 3, was isolated. The specific activity of the unpurified ,I-lactamase was 0.29 U/mg of protein. The enzyme was purified 1,130-fold by QAE Zetaprep, Sephacryl S-300, and Mono Q column passages. The purified enzyme was judged homogeneous by sodium dodecyl sulfate gradient gel electrophoresis and fast protein liquid chromatography. The enzyme hydrolyzed phenoxymethylpenicillin, benzylpenicillin, ampicillin, and carbenicillin more rapidly than piperacillin and cephaloridine. Cephalothin, cephalexin, cefoxitin, moxalactam, cefotaxime, and imi- penem were only slightly hydrolyzed, at less than 1% the rate for phenoxymethylpenicillin. The enzyme was inhibited by clavulanic acid, sulbactam, tazobactam, and p-chloromercuribenzoate. The molecular weight was determined by gel filtration and sodium dodecyl sulfate gradient gel electrophoresis to be 32,000. The isoelectric point was 4.4. Aspartic acid-asparagine, glutamic acid-glutamine, leucine, lysine, alanine, and serine dominated the amino acid composition. Several investigators have reported that Bacteroides fra- late log phase (18 h) by centrifugation at 10,000 x g for 30 gilis and closely related species produce ,-lactamases with min at 4°C.
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] http://bmjopen.bmj.com/ on September 26, 2021 by guest. Protected copyright. BMJ Open BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from Treatment of stable chronic obstructive pulmonary disease: a protocol for a systematic review and evidence map Journal: BMJ Open ManuscriptFor ID peerbmjopen-2018-027935 review only Article Type: Protocol Date Submitted by the 15-Nov-2018 Author: Complete List of Authors: Dobler, Claudia; Mayo Clinic, Evidence-Based Practice Center, Robert D.
    [Show full text]
  • Swedres-Svarm 2014
    2014 SWEDRES|SVARM Consumption of antibiotics and occurrence of antibiotic resistance in Sweden 2 SWEDRES |SVARM 2014 A report on Swedish Antibiotic Utilisation and Resistance in Human Medicine (Swedres) and Swedish Veterinary Antibiotic Resistance Monitoring (Svarm) Published by: Public Health Agency of Sweden and National Veterinary Institute Editors: Jenny Hellman and Olov Aspevall, Public Health Agency of Sweden Björn Bengtsson and Märit Pringle, National Veterinary Institute Addresses: Public Health Agency of Sweden SE-171 82 Solna, Sweden Phone: +46 (0) 10 205 20 00 Fax: +46 (0) 8 32 83 30 E-mail: [email protected] www.folkhalsomyndigheten.se National Veterinary Institute SE-751 89 Uppsala, Sweden Phone: +46 (0) 18 67 40 00 Fax: +46 (0) 18 30 91 62 E-mail: [email protected] www.sva.se ISSN 1650-6332 ISBN 978-91-7603-360-9 (pdf) ISBN 978-91-7603-361-6 (print) Article no. at Folkhälsomyndigheten 14027 This title and previous Swedres and Svarm reports are available for downloading at www.folkhalsomyndigheten.se/publicerat-material/ or www.sva.se. The title can also be ordered from the webshop at: www.folkhalsomyndigheten.se/publicerat-material/ or Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, SE-751 89 Uppsala, Sweden Phone: +46 (0) 18 67 40 00 Fax: +46 (0) 18 30 91 62 E-mail: [email protected] Text and tables may be cited and reprinted only with reference to this report. Images, photographs and illustrations are protected by copyright. Suggested citation: Swedres-Svarm 2014. Consumption of antibiotics and occurrence of antibiotic resistance in Sweden.
    [Show full text]