Sunshot Vision Study February 2012 ACKNOWLEDGMENTS

Total Page:16

File Type:pdf, Size:1020Kb

Sunshot Vision Study February 2012 ACKNOWLEDGMENTS SunShot Vision Study February 2012 ACKNOWLEDGMENTS The U.S. Department of Energy would like to acknowledge the project coordination and in-depth analysis conducted by the National Renewable Energy Laboratory (NREL) and the contributions by the Solar Energy Industries Association, Solar Electric Power Association, and the many organizations that participated in the development of this report. The preparation and production of this report was coordinated by New West Technologies, LLC, Energetics Incorporated, and NREL. All contributors to the report are listed in Appendix D. Cover photo renderings by Joshua Bauer, NREL MESSAGE FROM THE DIRECTOR OF THE SUNSHOT INITIATIVE The SunShot Initiative was launched in February 2011 with the goal of making solar energy cost- competitive with conventional electricity generating technologies within the decade. Achieving this goal will require dramatic decreases in the cost structure of solar technologies—on the order of a 75% reduction—across all markets including residential, commercial, and utility-scale deployments of solar. To do this most effectively, the SunShot Initiative spans the full spectrum from basic science to applied research and development. It also spans across multiple U.S. Department of Energy (DOE) offices, including Energy Efficiency and Renewable Energy (EERE), Advanced Research Projects Agency- Energy (ARPA-E) and the Office of Science (SC). The SunShot Vision Study explores the implications of achieving the SunShot Initiative’s targets both in terms of potential benefits as well as potential challenges. The potential benefits include solar contributing an increasingly significant share of electricity generation over the next 20 to 40 years, creating thousands of new jobs, and saving consumers money by placing downward pressure on electricity prices. The potential challenges include scaling-up manufacturing capacity, integrating large amounts of solar energy into the grid, and improving access to financing. The benefits and challenges of achieving the SunShot vision are discussed in detail in the study. By design, this study focuses on solar technologies and presents a “best case” solar scenario. It was specifically designed this way to highlight the potential for solar electricity to significantly impact the electricity generation portfolio and to explore the challenges likely to be encountered as the industry grows. The basic elements of this study include an analysis of the share of the total electricity market under the SunShot targets, while keeping other competing technologies (such as wind, geothermal, natural gas, etc.) on nominal cost-reduction curves. The reason to explore such an aggressive hypothesis was to ask the fundamental question: what is the upper bound of the electricity market share that can be captured by solar electricity, given the envisioned SunShot cost structures? This study is not intended to be viewed as a prediction that solar will beat out other competing technologies, but rather an exploration of how far solar could go under a specific set of assumptions. The study indicates that under these assumptions, solar electricity could contribute up to 14% and 27% of the total electricity demand by 2030 and 2050, respectively. While there are many challenges along the way, achieving this vision would represent a transformation in the way we generate, store, and utilize solar energy. Ramamoorthy Ramesh Director, SunShot Initiative Table of Contents Abbreviations and Acronyms .................................................. xiii Executive Summary .................................................................. xix 1. Introduction ........................................................................... 1 1.1 The SunShot Vision: Deep Price Reductions Spur Rapid, Large-Scale Solar Deployment ............................................................ 1 1.2 Solar Energy Basics .............................................................................. 2 1.3 Solar Energy History, Status, and Potential ....................................... 3 1.4 Modeling the SunShot Scenario ........................................................... 5 1.4.1 Defining the SunShot and Reference Scenarios ................................... 5 1.4.2 Solar Growth Results ........................................................................... 6 1.4.3 Differences between PV and CSP Deployment and Electricity Production ............................................................................................ 8 1.5 SunShot Impacts ................................................................................. 10 1.5.1 Electricity Generation and Fossil-Fuel Use ....................................... 10 1.5.2 Electricity Transmission..................................................................... 11 1.5.3 Cost .................................................................................................... 13 1.5.4 Environment ....................................................................................... 14 1.5.5 Employment ....................................................................................... 16 1.6 Realizing the SunShot Vision ............................................................. 17 1.6.1 Technology Improvements and Cost Reductions ............................... 18 1.6.2 Raw Materials .................................................................................... 18 1.6.3 Manufacturing Scale-Up .................................................................... 19 1.6.4 Grid Integration .................................................................................. 19 1.6.5 Siting .................................................................................................. 20 1.6.6 Financing ............................................................................................ 21 1.7 Conclusion ........................................................................................... 22 1.8 References ............................................................................................ 22 2. Solar Energy Market Evolution and Technical Potential ................................................................................25 2.1 Evolution of U.S. Solar Markets ........................................................ 25 2.1.1 Photovoltaics ...................................................................................... 26 2.1.2 Concentrating Solar Power ................................................................ 30 2.1.3 Solar Industry Employment ............................................................... 32 2.1.4 Hedging Against Energy Price Increases ........................................... 33 SunShot Vision Study – February 2012 i TABLE OF CONTENTS 2.2 Solar Resource Availability and Technical Potential ...................... 34 2.2.1 Photovoltaics ...................................................................................... 34 2.2.2 Concentrating Solar Power................................................................. 35 2.3 References ............................................................................................ 37 3. Analysis of PV and CSP Growth in the SunShot Scenario ............................................................................... 41 3.1 Introduction......................................................................................... 41 3.2 SunShot Growth Scenario .................................................................. 41 3.2.1 Analysis Models ................................................................................. 41 3.2.2 SunShot Scenario Assumptions and Total Solar Deployment Projections .......................................................................................... 42 3.2.3 Generation and Capacity Mix ............................................................ 47 3.2.4 Regional Deployment ......................................................................... 50 3.2.5 Transmission Requirements ............................................................... 53 3.2.6 Operational Impacts ........................................................................... 57 3.3 Costs and Benefits ............................................................................... 61 3.3.1 Costs ................................................................................................... 61 3.3.2 Carbon Emissions ............................................................................... 63 3.3.3 Employment ....................................................................................... 64 3.4 References ............................................................................................ 67 4. Photovoltaics: Technologies, Cost, and Performance ..... 69 4.1 Introduction......................................................................................... 69 4.2 Today’s PV Technology ..................................................................... 70 4.2.1 Components of a PV System .............................................................. 70 4.2.2 PV Module Technologies ................................................................... 70 4.2.3 PV Performance and Price ................................................................. 73 4.2.4 Levelized Cost of Energy ................................................................... 76 4.3 Overview of Strategies for Reducing PV System Prices ................. 77 4.4 Reducing PV Module Prices .............................................................
Recommended publications
  • Estimating the Quantity of Wind and Solar Required to Displace Storage-Induced Emissions † ‡ Eric Hittinger*, and Ineŝ M
    Article Cite This: Environ. Sci. Technol. 2017, 51, 12988-12997 pubs.acs.org/est Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions † ‡ Eric Hittinger*, and Ineŝ M. L. Azevedo † Department of Public Policy, Rochester Institute of Technology, Rochester, New York 14623, United States ‡ Department of Engineering & Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States *S Supporting Information ABSTRACT: The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy ff fi required to o set the CO2 emissions resulting from operation of new energy storage. We nd that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.
    [Show full text]
  • Part a Tutorial Prof. Saifur Rahman Virginia Tech, USA PES ISGT Asia
    Part A Tutorial PES ISGT Asia Prof. Saifur Rahman 20 May 2014 Virginia Tech, USA Kuala Lumpur, Malaysia 1 Part 1: Operational Issues for Wind Energy Technology • Wind turbine technology • Global deployment of wind energy technology • Interactions between wind electricity output and electrical power demand Part 2: Operational Issues for Solar Energy Technology • Solar energy technologies – solar thermal and photovoltaics • Global deployment of solar energy technology • Interactions between solar electricity output and electrical power demand 2 (c) Saifur Rahman Part 3: Demand Response Technologies • Demand response and demand side management (DSM) • Demand response technologies – supply side and demand side • Performance of demand response technologies Part 4: Demand Response Planning and Operations • Sample demand response programs in operation • Customer incentives and participation • Impact of demand response on the electrical load shape 3 (c) Saifur Rahman Source: International Energy Agency (IEA) 2007, 2010 and 2013 Key World Energy Statistics ** Others include solar, wind, geothermal, biofuels and waste, and heat 5/21/2014 4 ©Saifur Rahman WORLD 1971-2011* OECD 1971-2012* (Mtoe) (Mtoe) Biomass and Wast Hydro Nuclear Natural Gas Oil Coal/Peat * Includes aviation and international marine bunkers * Includes aviation and international marine bunkers, excludes electricity trade Source: International Energy Agency (IEA) Key World Energy Statistics 2013 5/21/2014 5 ©Saifur Rahman 2014 6 (c) Saifur Rahman Wind Solar Biomass Geothermal Hydro
    [Show full text]
  • Fire Fighter Safety and Emergency Response for Solar Power Systems
    Fire Fighter Safety and Emergency Response for Solar Power Systems Final Report A DHS/Assistance to Firefighter Grants (AFG) Funded Study Prepared by: Casey C. Grant, P.E. Fire Protection Research Foundation The Fire Protection Research Foundation One Batterymarch Park Quincy, MA, USA 02169-7471 Email: [email protected] http://www.nfpa.org/foundation © Copyright Fire Protection Research Foundation May 2010 Revised: October, 2013 (This page left intentionally blank) FOREWORD Today's emergency responders face unexpected challenges as new uses of alternative energy increase. These renewable power sources save on the use of conventional fuels such as petroleum and other fossil fuels, but they also introduce unfamiliar hazards that require new fire fighting strategies and procedures. Among these alternative energy uses are buildings equipped with solar power systems, which can present a variety of significant hazards should a fire occur. This study focuses on structural fire fighting in buildings and structures involving solar power systems utilizing solar panels that generate thermal and/or electrical energy, with a particular focus on solar photovoltaic panels used for electric power generation. The safety of fire fighters and other emergency first responder personnel depends on understanding and properly handling these hazards through adequate training and preparation. The goal of this project has been to assemble and widely disseminate core principle and best practice information for fire fighters, fire ground incident commanders, and other emergency first responders to assist in their decision making process at emergencies involving solar power systems on buildings. Methods used include collecting information and data from a wide range of credible sources, along with a one-day workshop of applicable subject matter experts that have provided their review and evaluation on the topic.
    [Show full text]
  • Alphabet's 2019 CDP Climate Change Report
    Alphabet, Inc. - Climate Change 2019 C0. Introduction C0.1 (C0.1) Give a general description and introduction to your organization. As our founders Larry and Sergey wrote in the original founders' letter, "Google is not a conventional company. We do not intend to become one." That unconventional spirit has been a driving force throughout our history -- inspiring us to do things like rethink the mobile device ecosystem with Android and map the world with Google Maps. As part of that, our founders also explained that you could expect us to make "smaller bets in areas that might seem very speculative or even strange when compared to our current businesses." From the start, the company has always strived to do more, and to do important and meaningful things with the resources we have. Alphabet is a collection of businesses -- the largest of which is Google. It also includes businesses that are generally pretty far afield of our main internet products in areas such as self-driving cars, life sciences, internet access and TV services. We report all non- Google businesses collectively as Other Bets. Our Alphabet structure is about helping each of our businesses prosper through strong leaders and independence. We have always been a company committed to building products that have the potential to improve the lives of millions of people. Our product innovations have made our services widely used, and our brand one of the most recognized in the world. Google's core products and platforms such as Android, Chrome, Gmail, Google Drive, Google Maps, Google Play, Search, and YouTube each have over one billion monthly active users.
    [Show full text]
  • 2011 Indiana Renewable Energy Resources Study
    September 2011 2011 Indiana Renewable Energy Resources Study Prepared for: Indiana Utility Regulatory Commission and Regulatory Flexibility Committee of the Indiana General Assembly Indianapolis, Indiana State Utility Forecasting Group | Energy Center at Discovery Park | Purdue University | West Lafayette, Indiana 2011 INDIANA RENEWABLE ENERGY RESOURCES STUDY State Utility Forecasting Group Energy Center Purdue University West Lafayette, Indiana David Nderitu Tianyun Ji Benjamin Allen Douglas Gotham Paul Preckel Darla Mize Forrest Holland Marco Velastegui Tim Phillips September 2011 2011 Indiana Renewable Energy Resources Study - State Utility Forecasting Group 2011 Indiana Renewable Energy Resources Study - State Utility Forecasting Group Table of Contents List of Figures .................................................................................................................... iii List of Tables ...................................................................................................................... v Acronyms and Abbreviations ............................................................................................ vi Foreword ............................................................................................................................ ix 1. Overview ............................................................................................................... 1 1.1 Trends in renewable energy consumption in the United States ................ 1 1.2 Trends in renewable energy consumption in Indiana
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • Solar Thermal – Concentrated Solar Power
    Potential for Renewable Energy in the San Diego Region August 2005 Appendix E: Solar Thermal – Concentrated Solar Power This appendix was prepared by the National Renewable Energy Laboratory and is included in this report with their permission. The figure and chart numbers have been changed to be consistent with the number system of this report. NREL Report - Concentrating Solar Power (CSP) Central Station Solar Concentrating Solar Power Southern California is potentially the best location in the world for the development of large- scale solar power plants. The Mojave Desert and Imperial Valley have some of the best solar resources in the world. The correlation between electric energy demand and solar output is strong during the summer months when peak power demand occurs. This region is unique for the proximity of such an excellent solar resource to a highly populated residential and commercial region. Furthermore, the extensive AC and DC transmission network running through the region enables solar electric generation to be distributed to major load centers throughout the state. As a result of these factors and state and utility policy, the world’s largest and most successful solar electric power facilities are sited in Southern California and sell power to Southern California Edison (SCE). Concentrating Solar Power Technologies Concentrating solar power (CSP) technologies, sometimes referred to as solar thermal electric technologies, have been developed for power generation applications. Historically, the focus has been on the development of cost-effective solar technologies for large (100 MWe or greater) central power plant applications. The U.S. Department of Energy’s (DOE) Solar R&D program focuses on the development of technologies suitable for meeting the power requirements of utilities in the southwestern United States.
    [Show full text]
  • Rural Electrification in Bolivia Through Solar Powered Stirling Engines
    Rural electrification in Bolivia through solar powered Stirling engines Carlos Gaitan Bachelor of ScienceI Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2014 SE-100 44 STOCKHOLM Bachelor of Science Thesis EGI-2014 Rural electrification in Bolivia through solar powered Stirling engines Carlos Gaitan Approved Examiner Supervisor Catharina Erlich Commissioner Contact person II Abstract This study focuses on the rural areas of Bolivia. The village investigated is assumed to have 70 households and one school. Electrical supply will be covered with the help of solar powered Stirling engines. A Stirling engine is an engine with an external heat source, which could be fuel or biomass for example. The model calculates the electrical demand for two different cases. One low level demand and one high level demand. By studying the total electrical demand of the village, the model can calculate a sizing for the Stirling system. However, for the sizing to be more accurate, more research needs to be done with regards to the demand of the village and the incoming parameters of the model. III Sammanfattning Den här studien fokuserar på landsbygden i Bolivia. En by som antas ha 70 hushåll och en skola är det som ligger till grund för studien. Byn ska försörjas med el med hjälp av soldrivna Stirling motorer. En Stirling motor är en motor som drivs med en extern värmekälla. Denna värmekälla kan vara exempelvis biomassa eller annan bränsle. Modellen som tas fram i projektet beräknar elektricitetsbehovet för byn för två nivåer, ett lågt elbehov och ett högt elbehov. Genom att studera det totala elbehovet över dagen kan modellen beräkna fram en storlek för Stirling systemet.
    [Show full text]
  • RE-Powering America's Land Initiative: Benefits Matrix, July 2017
    RE-Powering America’s Land Initiative: July 2017 Benefits Matrix Through the RE-Powering America’s Land Initiative, the U.S. Environmental RE-Powering America’s Protection Agency (EPA) is encouraging the reuse of formerly contaminated Land Initiative lands, landfills, and mine sites for renewable energy development when such development is aligned with the community’s vision for the site. Using publicly To provide information on renewable energy available information, RE-Powering maintains a list of completed renewable energy on contaminated land projects not currently installations on contaminated sites and landfills. As part of its inventory, RE-Powering appearing in this document, email cleanenergy@ tracks benefits associated with completed sites, such as energy cost savings, epa.gov. To receive updates, newsletters, and other increased revenue, and job creation. information about the RE-Powering program, click the banner below. To date, the RE-Powering Initiative has identified 213 renewable energy installations on 207 contaminated lands, landfills, and mine sites1, with a cumulative installed capacity of just over 1,235 megawatts (MW) in a total of 40 states and territories. Subscribe Although all renewable energy installations on contaminated sites likely have some EPA’s RE-Powering Listserv extrinsic or intrinsic value to the developer or community, the specific benefits realized for any one project are not always touted publicly. EPA launched @EPAland on By researching an array of publicly available documents (including press releases, Twitter to help you learn fact sheets, and case studies), however, RE-Powering has identified self-reported what is being done to protect benefits for 178 of the total 213 renewable energy installations that the Initiative and clean up our land.
    [Show full text]
  • Incorporating Renewables Into the Electric Grid: Expanding Opportunities for Smart Markets and Energy Storage
    INCORPORATING RENEWABLES INTO THE ELECTRIC GRID: EXPANDING OPPORTUNITIES FOR SMART MARKETS AND ENERGY STORAGE June 2016 Contents Executive Summary ....................................................................................................................................... 2 Introduction .................................................................................................................................................. 5 I. Technical and Economic Considerations in Renewable Integration .......................................................... 7 Characteristics of a Grid with High Levels of Variable Energy Resources ................................................. 7 Technical Feasibility and Cost of Integration .......................................................................................... 12 II. Evidence on the Cost of Integrating Variable Renewable Generation ................................................... 15 Current and Historical Ancillary Service Costs ........................................................................................ 15 Model Estimates of the Cost of Renewable Integration ......................................................................... 17 Evidence from Ancillary Service Markets................................................................................................ 18 Effect of variable generation on expected day-ahead regulation mileage......................................... 19 Effect of variable generation on actual regulation mileage ..............................................................
    [Show full text]
  • CSPV Solar Cells and Modules from China
    Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Robert B. Koopman Acting Director of Operations Staff assigned Christopher Cassise, Senior Investigator Andrew David, Industry Analyst Nannette Christ, Economist Samantha Warrington, Economist Charles Yost, Accountant Gracemary Roth-Roffy, Attorney Lemuel Shields, Statistician Jim McClure, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 C O N T E N T S Page Determinations.................................................................. 1 Views of the Commission ......................................................... 3 Separate Views of Commission Charlotte R. Lane ...................................... 31 Part I: Introduction ............................................................ I-1 Background .................................................................. I-1 Organization of report.........................................................
    [Show full text]
  • Department of Energy Loan Guarantee Program: Update on Loan Guarantee Applicants
    Department of Energy Loan Guarantee Program: Update on Loan Guarantee Applicants Passed as part of the Energy Policy Act of 2005, the Department of Energy’s (DOE) Title XVII Loan Guarantee Program has $34 billion in authority to give loan guarantees to innovative technologies.1 The 1705 program also had about $2.4 billion in American Reinvestment and Recovery Act funds to pay for the credit subsidy cost for renewable and energy efficiency projects, but those funds expired on September 30, 2011. So far, the DOE has finalized $15.1 billion worth of loans and committed another $15 billion. Over the life of the program, the DOE loan programs office has received a total of 460 applications as a result of nine solicitations with an median requested loan amount of $141 million—and a high of $12 billion to support the development of a nuclear power plant.2 Below is a list of those applicants which have received conditionally committed or finalized loans based largely on our independent research. There are also companies that are in the process of applying for a loan and companies which have withdrawn or defaulted for financial reasons. Nuclear Power Facilities Current DOE loan guarantee authority for the financing of nuclear projects is set at $18.5 billion with an additional $4 billion now identified for uranium enrichment (see see front-end nuclear cycle below).1 President Obama has requested more. In both his FY2011 and FY2012 budgets, he included an additional $36 billion in loan guarantee authority for nuclear reactors. In late 2009 and early 2010, reports indicated that the final contenders for the first nuclear loan guarantee were: UniStar Nuclear Energy, SCANA Energy, Southern Company, and NRG Energy.
    [Show full text]