Appendix a Differential Forms and Operators on Manifolds

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a Differential Forms and Operators on Manifolds Appendix A Differential Forms and Operators on Manifolds In this appendix, we introduce differential forms on manifolds so that the integration on manifolds can be treated in a more general framework. The operators on manifolds can be also discussed using differential forms. The material in this appendix can be used as a supplement of Chapter 2. A.1 Differential Forms on Manifolds Let M be a k-manifold and u =[u1, ··· ,uk] be a coordinate system on M.A differential form of degree 1 in terms of the coordinates u has the expression k i α = aidu =(du)a, i=1 1 k 1 where du =[du , ··· , du ]anda =[a1, ··· ,ak] ∈ C . The differential form is independent of the chosen coordinates. For instance, assume that v = [v1, ··· ,vk] is another coordinate system and α in terms of the coordinates v has the expression n i α = bidv =(dv)b, i=1 i n 1 ∂v ∂v 1 ··· ∈ where b =[b , ,bk] C .Write = j .By ∂u ∂u i,j=1 T ∂v dv =du , ∂u we have T ∂v dvb =du b, ∂u 340 Appendix A Differential Forms and Operators on Manifolds and by T ∂v a = b, ∂u we have (du)a =(dv)b. From differential forms of degree 1, we inductively define exterior differential forms of higher degree using wedge product, which obeys usual associate law, distributive law, as well as the following laws: dui ∧ dui =0, dui ∧ duj = −duj ∧ dui, a ∧ dui =dui ∧ a = adui, where a ∈ R is a scalar. It is clear that on a k-dimensional manifold, all forms of degree greater than k vanish, and a form of degree k in terms of the coordinates u has the expression 1 k 1 ω = a12···kdu ∧···∧du ,a12···k ∈ C . (A.1) To move differential forms from one manifold to another, we introduce the inverse image (also called pullback) of a function f.LetM1 and M2 be two manifolds, with the coordinate systems u and v respectively. Let μ ∈ r C (r 1) be a mapping from M2 into M1, μ(y)=x, y ∈ M2.Letg be the parameterization of M2: y = g(v). We have u =(μ ◦ g)(v). r Hence, u is a C function of v.Letf be a function on M1. Then there is a function h on M2 such that h(y)=f(μ(y)) y ∈ M2. We denote the function h by μ∗f and call it the inverse image of f (by μ). Clearly, the inverse image has the following properties: 1. μ∗(f + g)=μ∗f + μ∗g; ∗ ∗ ∗ 1 2. μ (fg)=(, μ f)(μ g), f ∈ C ; i 3. if df = i aidu ,then ∗ ∗ ∗ i d(μ f)= (μ ai)d(μ u ). i We now define the inverse image of a differential form as follows. Definition A..1. Let ω be a differential form of degree j: ω = fdun1 ∧···∧dunj . Then the inverse image of the differential form ω (by μ) is defined by μ∗ω =(μ∗f)d (μ∗un1 ) ∧···∧d(μ∗unj ) . A.2 Integral over Manifold 341 The properties of inverse image for functions therefore also hold for differen- tial forms. Besides, by Definition A.1, the following properties hold. supp(μ∗ω) ⊂ μ(supp(ω)) and ∗ ∗ ∗ ∗ ∗ μ dω =d(μ ω),μ(ω1 ∧ ω2)=μ ω1 ∧ μ ω2. A.2 Integral over Manifold Let M be a compact k-manifold having a single coordinate system (M,u) and ω be a k-form on M given in (A.1). Let D = u(M) ⊂ Rk. Then the integral of ω over M is defined by 1 k ω = a12···kdu ∧···∧du . M D We often simply denote ω by ω if no confusion arises. Notice that if M the support of a12···k is a subset of D,thenwehave 1 k 1 k a12···kdu ∧···∧du = a12···kdu ∧···∧du . D Rk To extend the definition of the integral over a manifold, which does not have a global coordinate system, we introduce the partition of unity and the orientation of a manifold. Definition A..2. Assume that {Ui} is an open covering of a manifold M. A countable set of functions {φj} is called a partition of unity of M with respect to the open covering {Ui} if it satisfies the following conditions: ∞ 1. φj ∈ C has, compact support contained in one of the Ui; 2. φj 0and j φj =1; 3. each p ∈ M is covered by only a finite number of supp(φj ). It is known that each manifold has a partition of unity. We shall use partition of unity to study orientation of manifolds. Orien- tation is an important topological property of a manifold. Some manifolds are oriented, others are not. For example, in R3 the M¨obius strip is a non- oriented 2-dimensional manifold, while the sphere S2 is an oriented one. To define the orientation of a manifold, we introduce the orientation of a vector space. Definition A..3. Let E = {e1, ··· , en} and B = {b1, ··· , bn} be two bases of the space Rn.LetA be a matrix, which represents the linear transformation from B to E such that ei = Abi,i=1, 2, ··· ,n. 342 Appendix A Differential Forms and Operators on Manifolds We say that E and B have the same orientation if det(A) > 0, and that they have the opposite orientations if det(A) < 0. Therefore, for each n ∈ Z+, Rn has exactly two orientations, in which the orientation determined by the canonical o.n. basis is called the right-hand orientation, and the other is called the left-hand orientation. The closed k-dimensional half-space is defined by k k H = {[x1, ··· ,xk] ∈ R : xk 0}. (A.2) Definition A..4. A connected k-dimensional manifold M (k 1) is said to be oriented if, for each point in M, there is a neighborhood W ⊂ M and a k k diffeomorphism h from W to R or H such that for each x ∈ W ,dhx maps the given orientation of the tangent space TxM to the right-hand orientation of Rk. By the definition, if M is a connected oriented manifold, there is a differential { } ∈ ∩ structure (Wi,hi) such that at each p hi(Wi) hj(Wj ), the linear trans- ◦ −1 Rk → Rk ◦ −1 formation d(hi hj )p : , satisfies det d(hi hj )p > 0foreach p. We give two examples below to demonstrate the concept of orientation. Example A..1. Let U =[−π, π] × (−1, 1). M¨obius strip M2 is given by the parametric equation g : U → R3: u u u T g(u, v)= 2+v sin cos u, 2+v sin cos u, v cos . (A.3) 2 2 2 However, g is not a diffeomorphism from U to g(U) ⊂ R3 since it is not one-to-one (on the line u = π). To get an atlas on M2, we define u u u T g˜(u, v)= −2+v cos cos u, −2+v cos cos u, v sin , 2 2 2 (A.4) and set U o =(−π, π) × (−1, 1). Then {(g(U o),g−1), (˜g(U o), g˜−1)} is a differ- entiable structure on M2 with g(U o) ∪ g˜(U o)=M2. Note that the following lines T L1 = {[2, 0,t] : −1 <t<1}, T L2 = {[t, 0, 0] ; −3 <t<−1}, do not reside on g(U o) ∩ g˜(U o). We compute the determinant det(d(˜g−1 ◦ g)) on different arcs in U o: −1 1(u, v) ∈ (0, π) × (−1, 1) det(d(˜g ◦ g)) = . −1(u, v) ∈ (−π, 0) × (−1, 1) The opposite signs show that the M¨obius strip M2 is not oriented. Example A..2. The spherical surface S2 defined in Example 2.1 is oriented. 2 Recall that {(W1,h1), (W2,h2)} is an atlas on S . The transformation from A.2 Integral over Manifold 343 h2 =(˜u, v˜)toh1 =(u, v) is given in (2.25). The Jacobian of the transforma- tion is negative everywhere, for we have 1 det(df(˜ ˜))=− < 0. u,v (˜u2 +˜v2)2 2 Hence, S is oriented. Since det(df(˜u,v˜)) < 0, in order to obtain the same orientation over both W1 and W2, we can replace h2 by −h2. The definition of integrable functions on a manifold M needs the concept of zero-measure set on manifold. To avoid being involved in the measure theory, we define the integration over a manifold for continuous functions only. Definition A..5. Let M be a connected and oriented k-dimensional man- ifold, and Φ = {φj}j∈Γ be a partition of unity of M so that the support of each φj ∈ Φ is contained in the domain of a coordinate system. Let ω be a continuous differential form of degree k on M. The integral of ω over M is defined as ω = φj ω, j∈Γ provided the series converges. 1 If M is compact, then a partition of unity of M is a finite set. Hence, ω over a compacted manifold always exists. It is clear that the integral is independent of the chosen partition. As an application, we introduce the volume formula of a manifold (M,g), where g is a parameterization of M. We define the volume differentiation of (M,g)bythek-form dV = |Gg| du, where Gg is the Riemannian metric generated by g. Then the volume of M is V (M)= 1. M The integral on an oriented manifold has the following properties. Theorem A..1. Assume that M is k-dimensional oriented manifold.
Recommended publications
  • Arxiv:1507.07356V2 [Math.AP]
    TEN EQUIVALENT DEFINITIONS OF THE FRACTIONAL LAPLACE OPERATOR MATEUSZ KWAŚNICKI Abstract. This article discusses several definitions of the fractional Laplace operator ( ∆)α/2 (α (0, 2)) in Rd (d 1), also known as the Riesz fractional derivative − ∈ ≥ operator, as an operator on Lebesgue spaces L p (p [1, )), on the space C0 of ∈ ∞ continuous functions vanishing at infinity and on the space Cbu of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner’s subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain. 1. Introduction We consider the fractional Laplace operator L = ( ∆)α/2 in Rd, with α (0, 2) and d 1, 2, ... Numerous definitions of L can be found− in− literature: as a Fourier∈ multiplier with∈{ symbol} ξ α, as a fractional power in the sense of Bochner or Balakrishnan, as the inverse of the−| Riesz| potential operator, as a singular integral operator, as an operator associated to an appropriate Dirichlet form, as an infinitesimal generator of an appropriate semigroup of contractions, or as the Dirichlet-to-Neumann operator for an appropriate harmonic extension problem. Equivalence of these definitions for sufficiently smooth functions is well-known and easy. The purpose of this article is to prove that, whenever meaningful, all these definitions are equivalent in the Lebesgue space L p for p [1, ), ∈ ∞ in the space C0 of continuous functions vanishing at infinity, and in the space Cbu of bounded uniformly continuous functions.
    [Show full text]
  • Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
    BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein.
    [Show full text]
  • Laplacians in Geometric Analysis
    LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1.
    [Show full text]
  • 1.2 Topological Tensor Calculus
    PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space.
    [Show full text]
  • The Birth of Hyperbolic Geometry Carl Friederich Gauss
    The Birth of Hyperbolic Geometry Carl Friederich Gauss • There is some evidence to suggest that Gauss began studying the problem of the fifth postulate as early as 1789, when he was 12. We know in letters that he had done substantial work of the course of many years: Carl Friederich Gauss • “On the supposition that Euclidean geometry is not valid, it is easy to show that similar figures do not exist; in that case, the angles of an equilateral triangle vary with the side in which I see no absurdity at all. The angle is a function of the side and the sides are functions of the angle, a function which, of course, at the same time involves a constant length. It seems somewhat of a paradox to say that a constant length could be given a priori as it were, but in this again I see nothing inconsistent. Indeed it would be desirable that Euclidean geometry were not valid, for then we should possess a general a priori standard of measure.“ – Letter to Gerling, 1816 Carl Friederich Gauss • "I am convinced more and more that the necessary truth of our geometry cannot be demonstrated, at least not by the human intellect to the human understanding. Perhaps in another world, we may gain other insights into the nature of space which at present are unattainable to us. Until then we must consider geometry as of equal rank not with arithmetic, which is purely a priori, but with mechanics.“ –Letter to Olbers, 1817 Carl Friederich Gauss • " There is no doubt that it can be rigorously established that the sum of the angles of a rectilinear triangle cannot exceed 180°.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Curl, Divergence and Laplacian
    Curl, Divergence and Laplacian What to know: 1. The definition of curl and it two properties, that is, theorem 1, and be able to predict qualitatively how the curl of a vector field behaves from a picture. 2. The definition of divergence and it two properties, that is, if div F~ 6= 0 then F~ can't be written as the curl of another field, and be able to tell a vector field of clearly nonzero,positive or negative divergence from the picture. 3. Know the definition of the Laplace operator 4. Know what kind of objects those operator take as input and what they give as output. The curl operator Let's look at two plots of vector fields: Figure 1: The vector field Figure 2: The vector field h−y; x; 0i: h1; 1; 0i We can observe that the second one looks like it is rotating around the z axis. We'd like to be able to predict this kind of behavior without having to look at a picture. We also promised to find a criterion that checks whether a vector field is conservative in R3. Both of those goals are accomplished using a tool called the curl operator, even though neither of those two properties is exactly obvious from the definition we'll give. Definition 1. Let F~ = hP; Q; Ri be a vector field in R3, where P , Q and R are continuously differentiable. We define the curl operator: @R @Q @P @R @Q @P curl F~ = − ~i + − ~j + − ~k: (1) @y @z @z @x @x @y Remarks: 1.
    [Show full text]
  • Riemann's Contribution to Differential Geometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) l-18 RIEMANN'S CONTRIBUTION TO DIFFERENTIAL GEOMETRY BY ESTHER PORTNOY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801 SUMMARIES In order to make a reasonable assessment of the significance of Riemann's role in the history of dif- ferential geometry, not unduly influenced by his rep- utation as a great mathematician, we must examine the contents of his geometric writings and consider the response of other mathematicians in the years immedi- ately following their publication. Pour juger adkquatement le role de Riemann dans le developpement de la geometric differentielle sans etre influence outre mesure par sa reputation de trks grand mathematicien, nous devons &udier le contenu de ses travaux en geometric et prendre en consideration les reactions des autres mathematiciens au tours de trois an&es qui suivirent leur publication. Urn Riemann's Einfluss auf die Entwicklung der Differentialgeometrie richtig einzuschZtzen, ohne sich von seinem Ruf als bedeutender Mathematiker iiberm;issig beeindrucken zu lassen, ist es notwendig den Inhalt seiner geometrischen Schriften und die Haltung zeitgen&sischer Mathematiker unmittelbar nach ihrer Verijffentlichung zu untersuchen. On June 10, 1854, Georg Friedrich Bernhard Riemann read his probationary lecture, "iber die Hypothesen welche der Geometrie zu Grunde liegen," before the Philosophical Faculty at Gdttingen ill. His biographer, Dedekind [1892, 5491, reported that Riemann had worked hard to make the lecture understandable to nonmathematicians in the audience, and that the result was a masterpiece of presentation, in which the ideas were set forth clearly without the aid of analytic techniques.
    [Show full text]
  • Differential Forms Diff Geom II, WS 2015/16
    J.M. Sullivan, TU Berlin B: Differential Forms Diff Geom II, WS 2015/16 B. DIFFERENTIAL FORMS instance, if S has k elements this gives a k-dimensional vector space with S as basis. We have already seen one-forms (covector fields) on a Given vector spaces V and W, let F be the free vector space over the set V × W. (This consists of formal sums manifold. In general, a k-form is a field of alternating k- P linear forms on the tangent spaces of a manifold. Forms ai(vi, wi) but ignores all the structure we have on the set are the natural objects for integration: a k-form can be in- V × W.) Now let R ⊂ F be the linear subspace spanned by tegrated over an oriented k-submanifold. We start with ten- all elements of the form: sor products and the exterior algebra of multivectors. (v + v0, w) − (v, w) − (v0, w), (v, w + w0) − (v, w) − (v, w0), (av, w) − a(v, w), (v, aw) − a(v, w). B1. Tensor products These correspond of course to the bilinearity conditions Recall that, if V, W and X are vector spaces, then a map we started with. The quotient vector space F/R will be the b: V × W → X is called bilinear if tensor product V ⊗ W. We have started with all possible v ⊗ w as generators and thrown in just enough relations to b(v + v0, w) = b(v, w) + b(v0, w), make the map (v, w) 7→ v ⊗ w be bilinear. b(v, w + w0) = b(v, w) + b(v, w0), The tensor product is commutative: there is a natural linear isomorphism V⊗W → W⊗V such that v⊗w 7→ w⊗v.
    [Show full text]
  • Vector Calculus and Differential Forms with Applications To
    Vector Calculus and Differential Forms with Applications to Electromagnetism Sean Roberson May 7, 2015 PREFACE This paper is written as a final project for a course in vector analysis, taught at Texas A&M University - San Antonio in the spring of 2015 as an independent study course. Students in mathematics, physics, engineering, and the sciences usually go through a sequence of three calculus courses before go- ing on to differential equations, real analysis, and linear algebra. In the third course, traditionally reserved for multivariable calculus, stu- dents usually learn how to differentiate functions of several variable and integrate over general domains in space. Very rarely, as was my case, will professors have time to cover the important integral theo- rems using vector functions: Green’s Theorem, Stokes’ Theorem, etc. In some universities, such as UCSD and Cornell, honors students are able to take an accelerated calculus sequence using the text Vector Cal- culus, Linear Algebra, and Differential Forms by John Hamal Hubbard and Barbara Burke Hubbard. Here, students learn multivariable cal- culus using linear algebra and real analysis, and then they generalize familiar integral theorems using the language of differential forms. This paper was written over the course of one semester, where the majority of the book was covered. Some details, such as orientation of manifolds, topology, and the foundation of the integral were skipped to save length. The paper should still be readable by a student with at least three semesters of calculus, one course in linear algebra, and one course in real analysis - all at the undergraduate level.
    [Show full text]
  • 6.10 the Generalized Stokes's Theorem
    6.10 The generalized Stokes’s theorem 645 6.9.2 In the text we proved Proposition 6.9.7 in the special case where the mapping f is linear. Prove the general statement, where f is only assumed to be of class C1. n m 1 6.9.3 Let U R be open, f : U R of class C , and ξ a vector field on m ⊂ → R . a. Show that (f ∗Wξ)(x)=W . Exercise 6.9.3: The matrix [Df(x)]!ξ(x) adj(A) of part c is the adjoint ma- b. Let m = n. Show that if [Df(x)] is invertible, then trix of A. The equation in part b (f ∗Φ )(x) = det[Df(x)]Φ 1 . is unsatisfactory: it does not say ξ [Df(x)]− ξ(x) how to represent (f ∗Φ )(x) as the ξ c. Let m = n, let A be a square matrix, and let A be the matrix obtained flux of a vector field when the n n [j,i] × from A by erasing the jth row and the ith column. Let adj(A) be the matrix matrix [Df(x)] is not invertible. i+j whose (i, j)th entry is (adj(A))i,j =( 1) det A . Show that Part c deals with this situation. − [j,i] A(adj(A)) = (det A)I and f ∗Φξ(x)=Φadj([Df(x)])ξ(x) 6.10 The generalized Stokes’s theorem We worked hard to define the exterior derivative and to define orientation of manifolds and of boundaries. Now we are going to reap some rewards for our labor: a higher-dimensional analogue of the fundamental theorem of calculus, Stokes’s theorem.
    [Show full text]
  • Part IA — Vector Calculus
    Part IA | Vector Calculus Based on lectures by B. Allanach Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. 3 Curves in R 3 Parameterised curves and arc length, tangents and normals to curves in R , the radius of curvature. [1] 2 3 Integration in R and R Line integrals. Surface and volume integrals: definitions, examples using Cartesian, cylindrical and spherical coordinates; change of variables. [4] Vector operators Directional derivatives. The gradient of a real-valued function: definition; interpretation as normal to level surfaces; examples including the use of cylindrical, spherical *and general orthogonal curvilinear* coordinates. Divergence, curl and r2 in Cartesian coordinates, examples; formulae for these oper- ators (statement only) in cylindrical, spherical *and general orthogonal curvilinear* coordinates. Solenoidal fields, irrotational fields and conservative fields; scalar potentials. Vector derivative identities. [5] Integration theorems Divergence theorem, Green's theorem, Stokes's theorem, Green's second theorem: statements; informal proofs; examples; application to fluid dynamics, and to electro- magnetism including statement of Maxwell's equations. [5] Laplace's equation 2 3 Laplace's equation in R and R : uniqueness theorem and maximum principle. Solution of Poisson's equation by Gauss's method (for spherical and cylindrical symmetry) and as an integral. [4] 3 Cartesian tensors in R Tensor transformation laws, addition, multiplication, contraction, with emphasis on tensors of second rank. Isotropic second and third rank tensors.
    [Show full text]