Vector Calculus and Differential Forms with Applications To

Total Page:16

File Type:pdf, Size:1020Kb

Vector Calculus and Differential Forms with Applications To Vector Calculus and Differential Forms with Applications to Electromagnetism Sean Roberson May 7, 2015 PREFACE This paper is written as a final project for a course in vector analysis, taught at Texas A&M University - San Antonio in the spring of 2015 as an independent study course. Students in mathematics, physics, engineering, and the sciences usually go through a sequence of three calculus courses before go- ing on to differential equations, real analysis, and linear algebra. In the third course, traditionally reserved for multivariable calculus, stu- dents usually learn how to differentiate functions of several variable and integrate over general domains in space. Very rarely, as was my case, will professors have time to cover the important integral theo- rems using vector functions: Green’s Theorem, Stokes’ Theorem, etc. In some universities, such as UCSD and Cornell, honors students are able to take an accelerated calculus sequence using the text Vector Cal- culus, Linear Algebra, and Differential Forms by John Hamal Hubbard and Barbara Burke Hubbard. Here, students learn multivariable cal- culus using linear algebra and real analysis, and then they generalize familiar integral theorems using the language of differential forms. This paper was written over the course of one semester, where the majority of the book was covered. Some details, such as orientation of manifolds, topology, and the foundation of the integral were skipped to save length. The paper should still be readable by a student with at least three semesters of calculus, one course in linear algebra, and one course in real analysis - all at the undergraduate level. Many of the fundamental theorems do not have their proofs, for some would be lengthy or require many details from real analysis. The idea of this paper is to introduce differential forms - an object that allows Maxwell’s equations of electromagnetism to be concisely represented in two lines as opposed to four. The development of this idea takes time, but it is worth it in the long run. -Sean Zachary Roberson 2 ACKNOWLEDGEMENTS Many individuals supported me in writing this paper. First, I would like to acknowledge my professor Donald F. Myers for teaching this class in a way that tapped into my interests and offered me a chal- lenge. He has also provided me with numerous resources that ex- tended my knowledge of mathematics and my methods of problem solving. I would also like to thank Dr. John G. Romo for being able to have this course offered. It served as an excellent extension of my knowledge from real analysis taken the semester before, as well as linear algebra and differential equations. While writing this paper, I have received numerous amounts of sup- port from my coworkers, each of whom are writing tutors. I would like to extend my thanks to Brandi Anderson, Stephanie Gil, Carlos Lopez, Coral Rosario, Teresa Ruiz, Lisa Sanna, and Sheridan Santens for their encouragement in motivating me to finish this project, all while still tending to my responsibilities at work. I also would like to thank Chris Tingwald and Dr. Katherine T. Bridgman for their support as well. Most importantly, I could not have been motivated to finish this paper without the undying support of my family and friends, espe- cially my mother, Denise Ginther, for giving me the motivation to finish college and pursue a degree. Without all your help, I would not have finished this paper, nor would it have been a quality product. 3 1 FUNDAMENTALDIFFERENTIALOPERATORS In vector analysis, it is of interest to examine the rate of flow of var- ious quantities such as heat, electricity, and fluids. The concept of derivative can be extended to vectors in three ways, each using some sort of partial derivative. Each differential operator uses the symbol r to operate on a function of several variables. This symbol is treated as the following vector: 0 ¶ 1 ¶x1 B ¶ C B ¶x2 C B ¶ C r := B ¶x C B 3 C B . C @ . A ¶ ¶xn 1.1 gradient The first differential operator is the gradient, denoted by r f or grad f . The gradient operates on a C1 function f : Rn ! R and returns a vector of first derivatives. For example, if f (x, y, z) = 2x + 3xy − 4yz2, then 0 2 + 3y 1 r f = @3x − 4z2A −8yz There are scalar product and quotient rules for gradients, with grad( f g) = f grad g + g grad f and f g grad f − f grad g grad = , g g2 similar to the product and quotient rules familiar in single variable calculus. 4 1.2 divergence 1.2 divergence The next operator is the divergence, and it returns a sum of partial derivatives of a vector function F : Rn ! Rn. Using the nabla nota- tion, divergence can be denoted by r · F, or as div F. By definition, ¶Fj div F := ∑ . 1≤j≤n ¶xj Since div is a differential operator, there are product and quotient rules for differentiation. The product rule states that for a scalar func- tion f and a vector function G, div( f G) = G · grad f + f div G. Similarly, the quotient rule states G f div G − G · grad f div = . f f 2 Another differential operator can be built from the divergence op- erator. The Laplacian is a differential operator that returns a sum of second derivatives. It it defined as r2 := r · r, or, when acting on a function f , r2 f = div grad f = r · r f ¶2 f = ∑ 2 . 1≤j≤n ¶xj The Laplacian appears in many partial differential equations, such as the wave equation ¶2u = c2r2u, ¶t2 the diffusion equation ¶u = kr2u, ¶t and the Laplace equation r2u = 0. It is important to note that the Laplacian operator acts on spatial variables such as x, y, z and not the time variable t (Strauss, 14). 5 1.3 curl 1.3 curl The last fundamental differential operator exists only in R3. The curl returns a vector of derivatives according to the rule r × F. That is, 0 ¶F3 ¶F2 1 ¶y − ¶z F = B ¶F1 − ¶F3 C curl : @ ¶z ¶x A . ¶F2 ¶F1 ¶x − ¶y The curl of a product of a scalar and vector function is given by curl( f G = f curl G + grad f × G, and the curl of the quotient of a vector function with a scalar func- tion is G f curl G − G × (grad f ) curl = . f f 2 We also have two important results regarding the curl. Theorem 1. Suppose f is differentiable. Then curl grad f = 0. Proof. By definition, 0 ¶2 f ¶2 f 1 ¶y¶z − ¶z¶y B 2 2 C curl grad f = B ¶ f − ¶ f C @ ¶x¶z ¶z¶x A ¶2 f ¶2 f ¶x¶y − ¶y¶x = 0 since mixed partials commute. Theorem 2. Suppose F is a differentiable vector function on R3. Then div curl F = 0. Proof. By definition, 0 ¶F3 − ¶F2 1 T ¶y ¶z F = ¶ ¶ ¶ B ¶F3 − ¶F1 C div curl ¶x ¶y ¶z @ ¶x ¶z A ¶F2 ¶F1 ¶x − ¶y ¶2F ¶2F ¶2F ¶2F ¶2F ¶2F = 3 − 2 + 1 − 3 + 2 − 1 ¶x¶y ¶x¶z ¶y¶z ¶y¶x ¶z¶x ¶z¶y = 0, since, as above, mixed partials commute. 6 1.3 curl There are many other product rules for vector derivatives. Griffiths gives the following three product rules utilizing both the inner and cross products: 1. grad(F · G) = (F × curl G) + (G × curl F) + (F · r)G + (G · r)F 2. div(F × G) = G · curl F − F · curl G 3. curl(F × G) = (G · r)F − (F · r)G + F(div G) − G(div F) 7 2 CLASSICALTHEOREMSANDRESULTS As with any branch of mathematics, vector calculus has its own set of classic results. The theorems here are presented in the order in which they appear in James Stewart’s Calculus: Early Transcendentals. 2.1 fundamental theorem for line integrals The Fundamental Theorem for Line Integrals, also called the Gradi- ent Theorem by David Griffiths gives a way to evaluate special line integrals (p. 29). In order to understand the theorem, we must first define a conservative vector field and a potential function. Definition 1 (Conservative Vector Field, Potential Function). A vector field is conservative if it is the gradient of some differentiable function. That is, F is conservative iff F = grad f . Such a function f is called a potential function for F. Finding these potential functions amounts to solving an exact dif- ferential equation, defined below, along with the definition of an exact differential. Definition 2 (Exact Differential, Exact Differential Equation). Let z = f (x, y) be a differentiable function. The symbol dz denotes the ¶ f ¶ f differential of f , given as ¶x dx + ¶y dy. The expression M dx + N dy ¶ f ¶ f is an exact differential if M = ¶x and N = ¶y - that is, it corresponds to the differential of a function. The associated differential equation M dx + N dy = 0 is exact if the left side is an exact differential. Solving these exact differential equations uses the equality of mixed derivatives. This establishes the following exactness condition; a simi- lar expression will be used in the computations for Green’s Theorem. Theorem 3 (Condition for Exactness). A necessary and sufficient condition for M dx + N dy to an exact differential on some rectangle R is 8 2.1 fundamental theorem for line integrals ¶M ¶N = , ¶y ¶x provided that M and N are differentiable on R. The proof for the necessity is given in Zill, while the proof of the sufficiency outlines the method of solution to an exact differential equation (p.
Recommended publications
  • Lecture 11 Line Integrals of Vector-Valued Functions (Cont'd)
    Lecture 11 Line integrals of vector-valued functions (cont’d) In the previous lecture, we considered the following physical situation: A force, F(x), which is not necessarily constant in space, is acting on a mass m, as the mass moves along a curve C from point P to point Q as shown in the diagram below. z Q P m F(x(t)) x(t) C y x The goal is to compute the total amount of work W done by the force. Clearly the constant force/straight line displacement formula, W = F · d , (1) where F is force and d is the displacement vector, does not apply here. But the fundamental idea, in the “Spirit of Calculus,” is to break up the motion into tiny pieces over which we can use Eq. (1 as an approximation over small pieces of the curve. We then “sum up,” i.e., integrate, over all contributions to obtain W . The total work is the line integral of the vector field F over the curve C: W = F · dx . (2) ZC Here, we summarize the main steps involved in the computation of this line integral: 1. Step 1: Parametrize the curve C We assume that the curve C can be parametrized, i.e., x(t)= g(t) = (x(t),y(t), z(t)), t ∈ [a, b], (3) so that g(a) is point P and g(b) is point Q. From this parametrization we can compute the velocity vector, ′ ′ ′ ′ v(t)= g (t) = (x (t),y (t), z (t)) . (4) 1 2. Step 2: Compute field vector F(g(t)) over curve C F(g(t)) = F(x(t),y(t), z(t)) (5) = (F1(x(t),y(t), z(t), F2(x(t),y(t), z(t), F3(x(t),y(t), z(t))) , t ∈ [a, b] .
    [Show full text]
  • Thermodynamic Potentials and Natural Variables
    Revista Brasileira de Ensino de Física, vol. 42, e20190127 (2020) Articles www.scielo.br/rbef cb DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127 Licença Creative Commons Thermodynamic Potentials and Natural Variables M. Amaku1,2, F. A. B. Coutinho*1, L. N. Oliveira3 1Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil 2Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, São Paulo, SP, Brasil 3Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil Received on May 30, 2019. Revised on September 13, 2018. Accepted on October 4, 2019. Most books on Thermodynamics explain what thermodynamic potentials are and how conveniently they describe the properties of physical systems. Certain books add that, to be useful, the thermodynamic potentials must be expressed in their “natural variables”. Here we show that, given a set of physical variables, an appropriate thermodynamic potential can always be defined, which contains all the thermodynamic information about the system. We adopt various perspectives to discuss this point, which to the best of our knowledge has not been clearly presented in the literature. Keywords: Thermodynamic Potentials, natural variables, Legendre transforms. 1. Introduction same statement cannot be applied to the temperature. In real fluids, even in simple ones, the proportionality Basic concepts are most easily understood when we dis- to T is washed out, and the Internal Energy is more cuss simple systems. Consider an ideal gas in a cylinder. conveniently expressed as a function of the entropy and The cylinder is closed, its walls are conducting, and a volume: U = U(S, V ).
    [Show full text]
  • Notes on Partial Differential Equations John K. Hunter
    Notes on Partial Differential Equations John K. Hunter Department of Mathematics, University of California at Davis Contents Chapter 1. Preliminaries 1 1.1. Euclidean space 1 1.2. Spaces of continuous functions 1 1.3. H¨olderspaces 2 1.4. Lp spaces 3 1.5. Compactness 6 1.6. Averages 7 1.7. Convolutions 7 1.8. Derivatives and multi-index notation 8 1.9. Mollifiers 10 1.10. Boundaries of open sets 12 1.11. Change of variables 16 1.12. Divergence theorem 16 Chapter 2. Laplace's equation 19 2.1. Mean value theorem 20 2.2. Derivative estimates and analyticity 23 2.3. Maximum principle 26 2.4. Harnack's inequality 31 2.5. Green's identities 32 2.6. Fundamental solution 33 2.7. The Newtonian potential 34 2.8. Singular integral operators 43 Chapter 3. Sobolev spaces 47 3.1. Weak derivatives 47 3.2. Examples 47 3.3. Distributions 50 3.4. Properties of weak derivatives 53 3.5. Sobolev spaces 56 3.6. Approximation of Sobolev functions 57 3.7. Sobolev embedding: p < n 57 3.8. Sobolev embedding: p > n 66 3.9. Boundary values of Sobolev functions 69 3.10. Compactness results 71 3.11. Sobolev functions on Ω ⊂ Rn 73 3.A. Lipschitz functions 75 3.B. Absolutely continuous functions 76 3.C. Functions of bounded variation 78 3.D. Borel measures on R 80 v vi CONTENTS 3.E. Radon measures on R 82 3.F. Lebesgue-Stieltjes measures 83 3.G. Integration 84 3.H. Summary 86 Chapter 4.
    [Show full text]
  • MULTIVARIABLE CALCULUS (MATH 212 ) COMMON TOPIC LIST (Approved by the Occidental College Math Department on August 28, 2009)
    MULTIVARIABLE CALCULUS (MATH 212 ) COMMON TOPIC LIST (Approved by the Occidental College Math Department on August 28, 2009) Required Topics • Multivariable functions • 3-D space o Distance o Equations of Spheres o Graphing Planes Spheres Miscellaneous function graphs Sections and level curves (contour diagrams) Level surfaces • Planes o Equations of planes, in different forms o Equation of plane from three points o Linear approximation and tangent planes • Partial Derivatives o Compute using the definition of partial derivative o Compute using differentiation rules o Interpret o Approximate, given contour diagram, table of values, or sketch of sections o Signs from real-world description o Compute a gradient vector • Vectors o Arithmetic on vectors, pictorially and by components o Dot product compute using components v v v v v ⋅ w = v w cosθ v v v v u ⋅ v = 0⇔ u ⊥ v (for nonzero vectors) o Cross product Direction and length compute using components and determinant • Directional derivatives o estimate from contour diagram o compute using the lim definition t→0 v v o v compute using fu = ∇f ⋅ u ( u a unit vector) • Gradient v o v geometry (3 facts, and understand how they follow from fu = ∇f ⋅ u ) Gradient points in direction of fastest increase Length of gradient is the directional derivative in that direction Gradient is perpendicular to level set o given contour diagram, draw a gradient vector • Chain rules • Higher-order partials o compute o mixed partials are equal (under certain conditions) • Optimization o Locate and
    [Show full text]
  • Engineering Analysis 2 : Multivariate Functions
    Multivariate functions Partial Differentiation Higher Order Partial Derivatives Total Differentiation Line Integrals Surface Integrals Engineering Analysis 2 : Multivariate functions P. Rees, O. Kryvchenkova and P.D. Ledger, [email protected] College of Engineering, Swansea University, UK PDL (CoE) SS 2017 1/ 67 Multivariate functions Partial Differentiation Higher Order Partial Derivatives Total Differentiation Line Integrals Surface Integrals Outline 1 Multivariate functions 2 Partial Differentiation 3 Higher Order Partial Derivatives 4 Total Differentiation 5 Line Integrals 6 Surface Integrals PDL (CoE) SS 2017 2/ 67 Multivariate functions Partial Differentiation Higher Order Partial Derivatives Total Differentiation Line Integrals Surface Integrals Introduction Recall from EG189: analysis of a function of single variable: Differentiation d f (x) d x Expresses the rate of change of a function f with respect to x. Integration Z f (x) d x Reverses the operation of differentiation and can used to work out areas under curves, and as we have just seen to solve ODEs. We’ve seen in vectors we often need to deal with physical fields, that depend on more than one variable. We may be interested in rates of change to each coordinate (e.g. x; y; z), time t, but sometimes also other physical fields as well. PDL (CoE) SS 2017 3/ 67 Multivariate functions Partial Differentiation Higher Order Partial Derivatives Total Differentiation Line Integrals Surface Integrals Introduction (Continue ...) Example 1: the area A of a rectangular plate of width x and breadth y can be calculated A = xy The variables x and y are independent of each other. In this case, the dependent variable A is a function of the two independent variables x and y as A = f (x; y) or A ≡ A(x; y) PDL (CoE) SS 2017 4/ 67 Multivariate functions Partial Differentiation Higher Order Partial Derivatives Total Differentiation Line Integrals Surface Integrals Introduction (Continue ...) Example 2: the volume of a rectangular plate is given by V = xyz where the thickness of the plate is in z-direction.
    [Show full text]
  • Line, Surface and Volume Integrals
    Line, Surface and Volume Integrals 1 Line integrals Z Z Z Á dr; a ¢ dr; a £ dr (1) C C C (Á is a scalar ¯eld and a is a vector ¯eld) We divide the path C joining the points A and B into N small line elements ¢rp, p = 1;:::;N. If (xp; yp; zp) is any point on the line element ¢rp, then the second type of line integral in Eq. (1) is de¯ned as Z XN a ¢ dr = lim a(xp; yp; zp) ¢ rp N!1 C p=1 where it is assumed that all j¢rpj ! 0 as N ! 1. 2 Evaluating line integrals The ¯rst type of line integral in Eq. (1) can be written as Z Z Z Á dr = i Á(x; y; z) dx + j Á(x; y; z) dy C CZ C +k Á(x; y; z) dz C The three integrals on the RHS are ordinary scalar integrals. The second and third line integrals in Eq. (1) can also be reduced to a set of scalar integrals by writing the vector ¯eld a in terms of its Cartesian components as a = axi + ayj + azk. Thus, Z Z a ¢ dr = (axi + ayj + azk) ¢ (dxi + dyj + dzk) C ZC = (axdx + aydy + azdz) ZC Z Z = axdx + aydy + azdz C C C 3 Some useful properties about line integrals: 1. Reversing the path of integration changes the sign of the integral. That is, Z B Z A a ¢ dr = ¡ a ¢ dr A B 2. If the path of integration is subdivided into smaller segments, then the sum of the separate line integrals along each segment is equal to the line integral along the whole path.
    [Show full text]
  • Laplacians in Geometric Analysis
    LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1.
    [Show full text]
  • 1.2 Topological Tensor Calculus
    PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space.
    [Show full text]
  • Lecture 9: Partial Derivatives
    Math S21a: Multivariable calculus Oliver Knill, Summer 2016 Lecture 9: Partial derivatives ∂ If f(x,y) is a function of two variables, then ∂x f(x,y) is defined as the derivative of the function g(x) = f(x,y) with respect to x, where y is considered a constant. It is called the partial derivative of f with respect to x. The partial derivative with respect to y is defined in the same way. ∂ We use the short hand notation fx(x,y) = ∂x f(x,y). For iterated derivatives, the notation is ∂ ∂ similar: for example fxy = ∂x ∂y f. The meaning of fx(x0,y0) is the slope of the graph sliced at (x0,y0) in the x direction. The second derivative fxx is a measure of concavity in that direction. The meaning of fxy is the rate of change of the slope if you change the slicing. The notation for partial derivatives ∂xf,∂yf was introduced by Carl Gustav Jacobi. Before, Josef Lagrange had used the term ”partial differences”. Partial derivatives fx and fy measure the rate of change of the function in the x or y directions. For functions of more variables, the partial derivatives are defined in a similar way. 4 2 2 4 3 2 2 2 1 For f(x,y)= x 6x y + y , we have fx(x,y)=4x 12xy ,fxx = 12x 12y ,fy(x,y)= − − − 12x2y +4y3,f = 12x2 +12y2 and see that f + f = 0. A function which satisfies this − yy − xx yy equation is also called harmonic. The equation fxx + fyy = 0 is an example of a partial differential equation: it is an equation for an unknown function f(x,y) which involves partial derivatives with respect to more than one variables.
    [Show full text]
  • Chapter 8 Change of Variables, Parametrizations, Surface Integrals
    Chapter 8 Change of Variables, Parametrizations, Surface Integrals x0. The transformation formula In evaluating any integral, if the integral depends on an auxiliary function of the variables involved, it is often a good idea to change variables and try to simplify the integral. The formula which allows one to pass from the original integral to the new one is called the transformation formula (or change of variables formula). It should be noted that certain conditions need to be met before one can achieve this, and we begin by reviewing the one variable situation. Let D be an open interval, say (a; b); in R , and let ' : D! R be a 1-1 , C1 mapping (function) such that '0 6= 0 on D: Put D¤ = '(D): By the hypothesis on '; it's either increasing or decreasing everywhere on D: In the former case D¤ = ('(a);'(b)); and in the latter case, D¤ = ('(b);'(a)): Now suppose we have to evaluate the integral Zb I = f('(u))'0(u) du; a for a nice function f: Now put x = '(u); so that dx = '0(u) du: This change of variable allows us to express the integral as Z'(b) Z I = f(x) dx = sgn('0) f(x) dx; '(a) D¤ where sgn('0) denotes the sign of '0 on D: We then get the transformation formula Z Z f('(u))j'0(u)j du = f(x) dx D D¤ This generalizes to higher dimensions as follows: Theorem Let D be a bounded open set in Rn;' : D! Rn a C1, 1-1 mapping whose Jacobian determinant det(D') is everywhere non-vanishing on D; D¤ = '(D); and f an integrable function on D¤: Then we have the transformation formula Z Z Z Z ¢ ¢ ¢ f('(u))j det D'(u)j du1::: dun = ¢ ¢ ¢ f(x) dx1::: dxn: D D¤ 1 Of course, when n = 1; det D'(u) is simply '0(u); and we recover the old formula.
    [Show full text]
  • Math Background for Thermodynamics ∑
    MATH BACKGROUND FOR THERMODYNAMICS A. Partial Derivatives and Total Differentials Partial Derivatives Given a function f(x1,x2,...,xm) of m independent variables, the partial derivative ∂ f of f with respect to x , holding the other m-1 independent variables constant, , is defined by i ∂ xi xj≠i ∂ f fx( , x ,..., x+ ∆ x ,..., x )− fx ( , x ,..., x ,..., x ) = 12ii m 12 i m ∂ lim ∆ xi x →∆ 0 xi xj≠i i nRT Example: If p(n,V,T) = , V ∂ p RT ∂ p nRT ∂ p nR = = − = ∂ n V ∂V 2 ∂T V VT,, nTV nV , Total Differentials Given a function f(x1,x2,...,xm) of m independent variables, the total differential of f, df, is defined by m ∂ f df = ∑ dx ∂ i i=1 xi xji≠ ∂ f ∂ f ∂ f = dx + dx + ... + dx , ∂ 1 ∂ 2 ∂ m x1 x2 xm xx2131,...,mm xxx , ,..., xx ,..., m-1 where dxi is an infinitesimally small but arbitrary change in the variable xi. nRT Example: For p(n,V,T) = , V ∂ p ∂ p ∂ p dp = dn + dV + dT ∂ n ∂ V ∂ T VT,,, nT nV RT nRT nR = dn − dV + dT V V 2 V B. Some Useful Properties of Partial Derivatives 1. The order of differentiation in mixed second derivatives is immaterial; e.g., for a function f(x,y), ∂ ∂ f ∂ ∂ f ∂ 22f ∂ f = or = ∂ y ∂ xx ∂ ∂ y ∂∂yx ∂∂xy y x x y 2 in the commonly used short-hand notation. (This relation can be shown to follow from the definition of partial derivatives.) 2. Given a function f(x,y): ∂ y 1 a. = etc. ∂ f ∂ f x ∂ y x ∂ f ∂ y ∂ x b.
    [Show full text]
  • A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
    A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx.
    [Show full text]