Laplacians in Geometric Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Mathematical Derivation of the General Relativistic Schwarzschild
A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components ................. -
Selected Papers on Teleparallelism Ii
SELECTED PAPERS ON TELEPARALLELISM Edited and translated by D. H. Delphenich Table of contents Page Introduction ……………………………………………………………………… 1 1. The unification of gravitation and electromagnetism 1 2. The geometry of parallelizable manifold 7 3. The field equations 20 4. The topology of parallelizability 24 5. Teleparallelism and the Dirac equation 28 6. Singular teleparallelism 29 References ……………………………………………………………………….. 33 Translations and time line 1928: A. Einstein, “Riemannian geometry, while maintaining the notion of teleparallelism ,” Sitzber. Preuss. Akad. Wiss. 17 (1928), 217- 221………………………………………………………………………………. 35 (Received on June 7) A. Einstein, “A new possibility for a unified field theory of gravitation and electromagnetism” Sitzber. Preuss. Akad. Wiss. 17 (1928), 224-227………… 42 (Received on June 14) R. Weitzenböck, “Differential invariants in EINSTEIN’s theory of teleparallelism,” Sitzber. Preuss. Akad. Wiss. 17 (1928), 466-474……………… 46 (Received on Oct 18) 1929: E. Bortolotti , “ Stars of congruences and absolute parallelism: Geometric basis for a recent theory of Einstein ,” Rend. Reale Acc. dei Lincei 9 (1929), 530- 538...…………………………………………………………………………….. 56 R. Zaycoff, “On the foundations of a new field theory of A. Einstein,” Zeit. Phys. 53 (1929), 719-728…………………………………………………............ 64 (Received on January 13) Hans Reichenbach, “On the classification of the new Einstein Ansatz on gravitation and electricity,” Zeit. Phys. 53 (1929), 683-689…………………….. 76 (Received on January 22) Selected papers on teleparallelism ii A. Einstein, “On unified field theory,” Sitzber. Preuss. Akad. Wiss. 18 (1929), 2-7……………………………………………………………………………….. 82 (Received on Jan 30) R. Zaycoff, “On the foundations of a new field theory of A. Einstein; (Second part),” Zeit. Phys. 54 (1929), 590-593…………………………………………… 89 (Received on March 4) R. -
1.2 Topological Tensor Calculus
PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space. -
Kähler Manifolds, Ricci Curvature, and Hyperkähler Metrics
K¨ahlermanifolds, Ricci curvature, and hyperk¨ahler metrics Jeff A. Viaclovsky June 25-29, 2018 Contents 1 Lecture 1 3 1.1 The operators @ and @ ..........................4 1.2 Hermitian and K¨ahlermetrics . .5 2 Lecture 2 7 2.1 Complex tensor notation . .7 2.2 The musical isomorphisms . .8 2.3 Trace . 10 2.4 Determinant . 11 3 Lecture 3 11 3.1 Christoffel symbols of a K¨ahler metric . 11 3.2 Curvature of a Riemannian metric . 12 3.3 Curvature of a K¨ahlermetric . 14 3.4 The Ricci form . 15 4 Lecture 4 17 4.1 Line bundles and divisors . 17 4.2 Hermitian metrics on line bundles . 18 5 Lecture 5 21 5.1 Positivity of a line bundle . 21 5.2 The Laplacian on a K¨ahlermanifold . 22 5.3 Vanishing theorems . 25 6 Lecture 6 25 6.1 K¨ahlerclass and @@-Lemma . 25 6.2 Yau's Theorem . 27 6.3 The @ operator on holomorphic vector bundles . 29 1 7 Lecture 7 30 7.1 Holomorphic vector fields . 30 7.2 Serre duality . 32 8 Lecture 8 34 8.1 Kodaira vanishing theorem . 34 8.2 Complex projective space . 36 8.3 Line bundles on complex projective space . 37 8.4 Adjunction formula . 38 8.5 del Pezzo surfaces . 38 9 Lecture 9 40 9.1 Hirzebruch Signature Theorem . 40 9.2 Representations of U(2) . 42 9.3 Examples . 44 2 1 Lecture 1 We will assume a basic familiarity with complex manifolds, and only do a brief review today. Let M be a manifold of real dimension 2n, and an endomorphism J : TM ! TM satisfying J 2 = −Id. -
Curvature Tensors in a 4D Riemann–Cartan Space: Irreducible Decompositions and Superenergy
Curvature tensors in a 4D Riemann–Cartan space: Irreducible decompositions and superenergy Jens Boos and Friedrich W. Hehl [email protected] [email protected]"oeln.de University of Alberta University of Cologne & University of Missouri (uesday, %ugust 29, 17:0. Geometric Foundations of /ravity in (artu Institute of 0hysics, University of (artu) Estonia Geometric Foundations of /ravity Geometric Foundations of /auge Theory Geometric Foundations of /auge Theory ↔ Gravity The ingredients o$ gauge theory: the e2ample o$ electrodynamics ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: redundancy conserved e2ternal current 5 ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: Complex spinor 6eld: redundancy invariance conserved e2ternal current 5 conserved #7,8 current ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: Complex spinor 6eld: redundancy invariance conserved e2ternal current 5 conserved #7,8 current Complete, gauge-theoretical description: 9 local #7,) invariance ,3,. The ingredients o$ gauge theory: the e2ample o$ electrodynamics 0henomenological Ma24ell: iers Complex spinor 6eld: rce carr ry of fo mic theo rrent rosco rnal cu m pic en exte att desc gredundancyiv er; N ript oet ion o conserved e2ternal current 5 invariance her f curr conserved #7,8 current e n t s Complete, gauge-theoretical description: gauge theory = complete description of matter and 9 local #7,) invariance how it interacts via gauge bosons ,3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincaré gauge theory *3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincaré gauge theory *3,. Curvature tensors electrodynamics :ang–Mills theory /eneral Relativity 0oincar; gauge theory *3,. -
HARMONIC MAPS Contents 1. Introduction 2 1.1. Notational
HARMONIC MAPS ANDREW SANDERS Contents 1. Introduction 2 1.1. Notational conventions 2 2. Calculus on vector bundles 2 3. Basic properties of harmonic maps 7 3.1. First variation formula 7 References 10 1 2 ANDREW SANDERS 1. Introduction 1.1. Notational conventions. By a smooth manifold M we mean a second- countable Hausdorff topological space with a smooth maximal atlas. We denote the tangent bundle of M by TM and the cotangent bundle of M by T ∗M: 2. Calculus on vector bundles Given a pair of manifolds M; N and a smooth map f : M ! N; it is advantageous to consider the differential df : TM ! TN as a section df 2 Ω0(M; T ∗M ⊗ f ∗TN) ' Ω1(M; f ∗TN): There is a general for- malism for studying the calculus of differential forms with values in vector bundles equipped with a connection. This formalism allows a fairly efficient, and more coordinate-free, treatment of many calculations in the theory of harmonic maps. While this approach is somewhat abstract and obfuscates the analytic content of many expressions, it takes full advantage of the algebraic symmetries available and therefore simplifies many expressions. We will develop some of this theory now and use it freely throughout the text. The following exposition will closely fol- low [Xin96]. Let M be a smooth manifold and π : E ! M a real vector bundle on M or rank r: Throughout, we denote the space of smooth sections of E by Ω0(M; E): More generally, the space of differential p-forms with values in E is given by Ωp(M; E) := Ω0(M; ΛpT ∗M ⊗ E): Definition 2.1. -
General Relativity Fall 2019 Lecture 11: the Riemann Tensor
General Relativity Fall 2019 Lecture 11: The Riemann tensor Yacine Ali-Ha¨ımoud October 8th 2019 The Riemann tensor quantifies the curvature of spacetime, as we will see in this lecture and the next. RIEMANN TENSOR: BASIC PROPERTIES α γ Definition { Given any vector field V , r[αrβ]V is a tensor field. Let us compute its components in some coordinate system: σ σ λ σ σ λ r[µrν]V = @[µ(rν]V ) − Γ[µν]rλV + Γλ[µrν]V σ σ λ σ λ λ ρ = @[µ(@ν]V + Γν]λV ) + Γλ[µ @ν]V + Γν]ρV 1 = @ Γσ + Γσ Γρ V λ ≡ Rσ V λ; (1) [µ ν]λ ρ[µ ν]λ 2 λµν where all partial derivatives of V µ cancel out after antisymmetrization. σ Since the left-hand side is a tensor field and V is a vector field, we conclude that R λµν is a tensor field as well { this is the tensor division theorem, which I encourage you to think about on your own. You can also check that explicitly from the transformation law of Christoffel symbols. This is the Riemann tensor, which measures the non-commutation of second derivatives of vector fields { remember that second derivatives of scalar fields do commute, by assumption. It is completely determined by the metric, and is linear in its second derivatives. Expression in LICS { In a LICS the Christoffel symbols vanish but not their derivatives. Let us compute the latter: 1 1 @ Γσ = @ gσδ (@ g + @ g − @ g ) = ησδ (@ @ g + @ @ g − @ @ g ) ; (2) µ νλ 2 µ ν λδ λ νδ δ νλ 2 µ ν λδ µ λ νδ µ δ νλ since the first derivatives of the metric components (thus of its inverse as well) vanish in a LICS. -
Solving the Geodesic Equation
Solving the Geodesic Equation Jeremy Atkins December 12, 2018 Abstract We find the general form of the geodesic equation and discuss the closed form relation to find Christoffel symbols. We then show how to use metric independence to find Killing vector fields, which allow us to solve the geodesic equation when there are helpful symmetries. We also discuss a more general way to find Killing vector fields, and some of their properties as a Lie algebra. 1 The Variational Method We will exploit the following variational principle to characterize motion in general relativity: The world line of a free test particle between two timelike separated points extremizes the proper time between them. where a test particle is one that is not a significant source of spacetime cur- vature, and a free particles is one that is only under the influence of curved spacetime. Similarly to classical Lagrangian mechanics, we can use this to de- duce the equations of motion for a metric. The proper time along a timeline worldline between point A and point B for the metric gµν is given by Z B Z B µ ν 1=2 τAB = dτ = (−gµν (x)dx dx ) (1) A A using the Einstein summation notation, and µ, ν = 0; 1; 2; 3. We can parame- terize the four coordinates with the parameter σ where σ = 0 at A and σ = 1 at B. This gives us the following equation for the proper time: Z 1 dxµ dxν 1=2 τAB = dσ −gµν (x) (2) 0 dσ dσ We can treat the integrand as a Lagrangian, dxµ dxν 1=2 L = −gµν (x) (3) dσ dσ and it's clear that the world lines extremizing proper time are those that satisfy the Euler-Lagrange equation: @L d @L − = 0 (4) @xµ dσ @(dxµ/dσ) 1 These four equations together give the equation for the worldline extremizing the proper time. -
Differential Forms Diff Geom II, WS 2015/16
J.M. Sullivan, TU Berlin B: Differential Forms Diff Geom II, WS 2015/16 B. DIFFERENTIAL FORMS instance, if S has k elements this gives a k-dimensional vector space with S as basis. We have already seen one-forms (covector fields) on a Given vector spaces V and W, let F be the free vector space over the set V × W. (This consists of formal sums manifold. In general, a k-form is a field of alternating k- P linear forms on the tangent spaces of a manifold. Forms ai(vi, wi) but ignores all the structure we have on the set are the natural objects for integration: a k-form can be in- V × W.) Now let R ⊂ F be the linear subspace spanned by tegrated over an oriented k-submanifold. We start with ten- all elements of the form: sor products and the exterior algebra of multivectors. (v + v0, w) − (v, w) − (v0, w), (v, w + w0) − (v, w) − (v, w0), (av, w) − a(v, w), (v, aw) − a(v, w). B1. Tensor products These correspond of course to the bilinearity conditions Recall that, if V, W and X are vector spaces, then a map we started with. The quotient vector space F/R will be the b: V × W → X is called bilinear if tensor product V ⊗ W. We have started with all possible v ⊗ w as generators and thrown in just enough relations to b(v + v0, w) = b(v, w) + b(v0, w), make the map (v, w) 7→ v ⊗ w be bilinear. b(v, w + w0) = b(v, w) + b(v, w0), The tensor product is commutative: there is a natural linear isomorphism V⊗W → W⊗V such that v⊗w 7→ w⊗v. -
Deformed Weitzenböck Connections, Teleparallel Gravity and Double
Deformed Weitzenböck Connections and Double Field Theory Victor A. Penas1 1 G. Física CAB-CNEA and CONICET, Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche, Argentina [email protected] ABSTRACT We revisit the generalized connection of Double Field Theory. We implement a procedure that allow us to re-write the Double Field Theory equations of motion in terms of geometric quantities (like generalized torsion and non-metricity tensors) based on other connections rather than the usual generalized Levi-Civita connection and the generalized Riemann curvature. We define a generalized contorsion tensor and obtain, as a particular case, the Teleparallel equivalent of Double Field Theory. To do this, we first need to revisit generic connections in standard geometry written in terms of first-order derivatives of the vielbein in order to obtain equivalent theories to Einstein Gravity (like for instance the Teleparallel gravity case). The results are then easily extrapolated to DFT. arXiv:1807.01144v2 [hep-th] 20 Mar 2019 Contents 1 Introduction 1 2 Connections in General Relativity 4 2.1 Equationsforcoefficients. ........ 6 2.2 Metric-Compatiblecase . ....... 7 2.3 Non-metricitycase ............................... ...... 9 2.4 Gauge redundancy and deformed Weitzenböck connections .............. 9 2.5 EquationsofMotion ............................... ..... 11 2.5.1 Weitzenböckcase............................... ... 11 2.5.2 Genericcase ................................... 12 3 Connections in Double Field Theory 15 3.1 Tensors Q and Q¯ ...................................... 17 3.2 Components from (1) ................................... 17 3.3 Components from T e−2d .................................. 18 3.4 Thefullconnection...............................∇ ...... 19 3.5 GeneralizedRiemanntensor. ........ 20 3.6 EquationsofMotion ............................... ..... 23 3.7 Determination of undetermined parts of the Connection . ............... 25 3.8 TeleparallelDoubleFieldTheory . -
Vector Calculus and Differential Forms with Applications To
Vector Calculus and Differential Forms with Applications to Electromagnetism Sean Roberson May 7, 2015 PREFACE This paper is written as a final project for a course in vector analysis, taught at Texas A&M University - San Antonio in the spring of 2015 as an independent study course. Students in mathematics, physics, engineering, and the sciences usually go through a sequence of three calculus courses before go- ing on to differential equations, real analysis, and linear algebra. In the third course, traditionally reserved for multivariable calculus, stu- dents usually learn how to differentiate functions of several variable and integrate over general domains in space. Very rarely, as was my case, will professors have time to cover the important integral theo- rems using vector functions: Green’s Theorem, Stokes’ Theorem, etc. In some universities, such as UCSD and Cornell, honors students are able to take an accelerated calculus sequence using the text Vector Cal- culus, Linear Algebra, and Differential Forms by John Hamal Hubbard and Barbara Burke Hubbard. Here, students learn multivariable cal- culus using linear algebra and real analysis, and then they generalize familiar integral theorems using the language of differential forms. This paper was written over the course of one semester, where the majority of the book was covered. Some details, such as orientation of manifolds, topology, and the foundation of the integral were skipped to save length. The paper should still be readable by a student with at least three semesters of calculus, one course in linear algebra, and one course in real analysis - all at the undergraduate level. -
6.10 the Generalized Stokes's Theorem
6.10 The generalized Stokes’s theorem 645 6.9.2 In the text we proved Proposition 6.9.7 in the special case where the mapping f is linear. Prove the general statement, where f is only assumed to be of class C1. n m 1 6.9.3 Let U R be open, f : U R of class C , and ξ a vector field on m ⊂ → R . a. Show that (f ∗Wξ)(x)=W . Exercise 6.9.3: The matrix [Df(x)]!ξ(x) adj(A) of part c is the adjoint ma- b. Let m = n. Show that if [Df(x)] is invertible, then trix of A. The equation in part b (f ∗Φ )(x) = det[Df(x)]Φ 1 . is unsatisfactory: it does not say ξ [Df(x)]− ξ(x) how to represent (f ∗Φ )(x) as the ξ c. Let m = n, let A be a square matrix, and let A be the matrix obtained flux of a vector field when the n n [j,i] × from A by erasing the jth row and the ith column. Let adj(A) be the matrix matrix [Df(x)] is not invertible. i+j whose (i, j)th entry is (adj(A))i,j =( 1) det A . Show that Part c deals with this situation. − [j,i] A(adj(A)) = (det A)I and f ∗Φξ(x)=Φadj([Df(x)])ξ(x) 6.10 The generalized Stokes’s theorem We worked hard to define the exterior derivative and to define orientation of manifolds and of boundaries. Now we are going to reap some rewards for our labor: a higher-dimensional analogue of the fundamental theorem of calculus, Stokes’s theorem.