Test Yourself (Quiz 1)

Total Page:16

File Type:pdf, Size:1020Kb

Test Yourself (Quiz 1) Test Yourself (Quiz 1) 1. Explain the significance of the ABC computer. 2. Explain the main features of Agile including scrum and sprints. 3. Explain the significance of the Apple Macintosh. What are Apple’s key innovations? 4. Describe Gene Amdahl’s contributions to IBM and the Amdahl Corporation. 5. Describe the components of the Analytic Engine, and explain their function. 6. Explain why Lady Ada Lovelace is considered the world’s first programmer. 7. Discuss the significance of the Difference Engine. 8. Describe the Turing test. Is it an appropriate test of machine intelligence? 9. Describe Searle’s Chinese room thought experiment, and discuss whether it is an effective rebuttal of machine intelligence. 10. Discuss the significance of Atari in the history of computing. 11. Explain binary numbers and their importance in the computing field. 12. Explain why Shannon’s Master’s thesis is a key milestone in computing. 13. Describe how Boolean logic may be employed in the design of digital circuits. 14. Explain the importance of Boole’s equation x2 = x as a fundamental law of thought. 15. Discuss the similarities and differences between C and C++. 16. Explain cloud computing and distributed computing. 17. What is the CMMI? 18. Explain why Watt Humphrey is known as the father of software quality. 19. Describe Flower’s work on the Colossus computer at Bletchley Park and how the machine was used to crack the Lorenz codes. 20. Describe Grace Murray Hopper’s contribution to the COBOL programming language. 21. What is a compiler? Explain the various parts of a compiler. 22. What is a database? Explain the difference between a hierarchical, network, and relational database. 23. What is a relational database? What is an Oracle database? © Springer Nature Switzerland AG 2018 281 G. O’Regan, The Innovation in Computing Companion, https://doi.org/10.1007/978-3-030-02619-6 Test Yourself (Quiz 2) 1. Explain the significance of DEC’s PDP-11 and VAX 11/780 minicomputers. 2. Explain the significance of the ENIAC and EDVAC computers. 3. Explain how Weizenbaum became a leading critic of AI, and explain his views on the ethics of AI. 4. Explain how electronic mail was invented. 5. Describe the business models employed in e-commerce. 6. What are formal methods and when should they be used? 7. What is GPS? Describe its applications. 8. What is a GUI? 9. Describe the Harvard Mark 1 and explain its significance. 10. Describe how Hollerith’s tabulating machine led to the birth of IBM. 11. What is an integrated circuit and explain its significance? 12. Explain the significance of Moore’s law. 13. What is the Internet and describe its history 14. What is the Iridium system? Why was the original system a commercial failure? 15. Discuss the importance of the Java programming language. 16. Describe Cerf’s contributions to TCP/IP. 17. Explain the significance of LEO computers in the history of computing. 18. What is a microprocessor? 19. Explain why Gary Kildall has been described as the man who could have been Bill Gates. 20. Explain the significance of the Manchester “Baby” computer in the history of computing. 21. What is a mobile phone? Describe the history of the mobile phone. 22. What is a computer mouse? Describe its public demonstration at the “mother of all demos” in 1968. 23. Compare and contrast the achievements of Bill Gates and Steve Jobs. © Springer Nature Switzerland AG 2018 283 G. O’Regan, The Innovation in Computing Companion, https://doi.org/10.1007/978-3-030-02619-6 Test Yourself (Quiz 3) 1. What is a MP3 player? 2. What is MS/DOS? Describe the controversy with respect to the operating sys- tem for the original IBM PC. 3. Describe the main programs in Microsoft Office. 4. What is open-source software? 5. Explain the main parts of object-oriented development. 6. Explain the significance of home and personal computers. 7. Explain the significance of Don Estridge in the history of computing. 8. What errors did IBM make in the introduction of the IBM PC? 9. Describe Asimov’s Laws of Robotics. 10. What is a smartphone? 11. Describe Fagan inspections. How effective are they in building quality into the software? 12. Describe the main software life cycles. 13. What is the significance of the IBM System/360 in the history of computing? 14. What is a transistor? Discuss Shockley’s contributions to the computing field. 15. What is UNIX? 16. Describe the components of the von Neumann architecture, and explain each component. 17. Explain how Tim Berners-Lee invented the World Wide Web at CERN. 18. What is Wikipedia and how does it differ from a standard encyclopedia. 19. What is the World Wide Web? 20. What is Wi-Fi? 21. Discuss the significance of Zuse’s Z3 and Z4 computers. 22. Describe the Plankalkül language, and explain why it took over 50 years for a Plankalkül program to be run. © Springer Nature Switzerland AG 2018 285 G. O’Regan, The Innovation in Computing Companion, https://doi.org/10.1007/978-3-030-02619-6 Glossary ABC Atanasoff-Berry computer ACM Association for Computing Machinery ACS Advanced Computer Systems ADEC Aiken Dahlgren electronic calculator AI Artificial intelligence AMD Advanced Micro Devices AMP Advanced Multimedia Product AMPS Advanced Mobile Phone System ANS Advanced Network Services ANSI American National Standards Institute ARC Augmentation Research Center ARPA Advanced Research Projects Agency ASCC Automatic Sequence Controlled Calculator AT&T American Telephone and Telegraph Company ATM Automated teller machine ATMC ATM controller AXE Automatic Exchange Electric B2B Business to business B2C Business to consumer BASIC Beginners All-purpose Symbolic Instruction Code BCPL Basic Combined Programming Language BDS BeiDou Navigation Satellite System BIOS Basic input/output system BBN Bolt, Beranek, and Newman BTC Bitcoin C64 Commodore 64 CBA IPI CMM-based appraisal internal process Improvement CCD Charge-coupled device CCTV Closed-circuit television © Springer Nature Switzerland AG 2018 287 G. O’Regan, The Innovation in Computing Companion, https://doi.org/10.1007/978-3-030-02619-6 288 Glossary CD Compact disk CDC Control Data Corporation CDMA Code-division multiple access CEO Chief executive officer CERN Conseil Européen pour la Recherche Nucleaire CERT Computer emergency response team CICS Customer Information Control System CMM® Capability Maturity Model CMMI® Capability Maturity Model Integration CMU Carnegie Mellon University COBOL Common Business-Oriented Language CODASYL Conference/Committee on Data Systems Languages CP/M Control Program for Microcomputers CPU Central processing unit CTR Computing-Tabulating-Recording Company DACS De La Rue Automated Cash System DARPA Defense Advanced Research Project Agency DB Database DBA Database administrator DBMS Database management system DCS Digital camera system DDL Data definition language DEC Digital Equipment Corporation DL Data language DML Data manipulation language DNS Domain Name System DoD Department of Defence DOS Disk operating system DRI Digital Research Incorporated DSDM Dynamic systems development method DSP Digital signal processing DVD Digital versatile disk EDSAC Electronic delay storage automatic calculator E DVAC Electronic Discrete Variable Automatic Computer EMCC Eckert-Mauchly Computer Corporation ENIAC Electronic Numerical Integrator and Computer ETH Swiss Federal Institute of Technology, Zurich ETSI European Telecommunications Standards Institute EULA End-user license agreement FDMA Frequency division multiple access FSF Free Software Foundation FTP File Transfer Protocol FOSS Free and open-source software GB Gigabyte GECOS General Electric Comprehensive Operating System Glossary 289 GLONASS Global Navigation Satellite System (Russia) GM General Motors GNSS Global Navigation Satellite System (Europe) GNU GNU’s Not Unix GPL General Public License GPRS General Packet Radio Services GPS Global Positioning System GSM Global System for Mobile Communication GUI Graphical user interface HCI Human-computer interaction HOLWG Higher-Order Language Working Group HMD Head-mounted display HP Hewlett-Packard HTML Hypertext Markup Language HTTP Hypertext Transport Protocol IaaS Infrastructure as a Service IBM International Business Machines IC Integrated circuit ICL International Computers Ltd. IDMS Integrated Database Management System IDS Integrated Data Store IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronic Engineers IMAP Internet Message Application Protocol IMP Interface Message Processor IMS Information management system iOS iPhone operating system IP Internet Protocol IPO Initial public offering ISO International Standards Organization JAD Joint Application Development JCP Java Community Process JDK Java Development Kit JIT Just-in-time JPEG Joint Photographic Experts Group JVM Java virtual machine KLOC Thousand Lines of Code LAN Local area network LCD Liquid-crystal display LED Light-emitting diode LEO Lyons Electronic Office LSI Large-scale integration MADC Manchester Automatic Digital Computer MEO Medium Earth orbit MIDI Musical Instrument Digital Interface 290 Glossary MIPS Million instructions per second MIT Massachusetts Institute of Technology MITS Micro Instrumentation and Telemetry System MP Megapixel MPEG Movie Picture Experts Group MS/DOS Microsoft Disk Operating System MSI Medium-scale integration MTX Mobile telephone exchange NAP Network Access Point NASA National Aeronautics and Space Administration NBS National Bureau of Standards NCP Network Control Protocol NCR National Cash Register NLS oN-Line System
Recommended publications
  • To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?
    Portland State University PDXScholar Young Historians Conference Young Historians Conference 2016 Apr 28th, 9:00 AM - 10:15 AM To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology? Hayley A. LeBlanc Sunset High School Follow this and additional works at: https://pdxscholar.library.pdx.edu/younghistorians Part of the European History Commons, and the History of Science, Technology, and Medicine Commons Let us know how access to this document benefits ou.y LeBlanc, Hayley A., "To What Extent Did British Advancements in Cryptanalysis During World War II Influence the Development of Computer Technology?" (2016). Young Historians Conference. 1. https://pdxscholar.library.pdx.edu/younghistorians/2016/oralpres/1 This Event is brought to you for free and open access. It has been accepted for inclusion in Young Historians Conference by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. To what extent did British advancements in cryptanalysis during World War 2 influence the development of computer technology? Hayley LeBlanc 1936 words 1 Table of Contents Section A: Plan of Investigation…………………………………………………………………..3 Section B: Summary of Evidence………………………………………………………………....4 Section C: Evaluation of Sources…………………………………………………………………6 Section D: Analysis………………………………………………………………………………..7 Section E: Conclusion……………………………………………………………………………10 Section F: List of Sources………………………………………………………………………..11 Appendix A: Explanation of the Enigma Machine……………………………………….……...13 Appendix B: Glossary of Cryptology Terms.…………………………………………………....16 2 Section A: Plan of Investigation This investigation will focus on the advancements made in the field of computing by British codebreakers working on German ciphers during World War 2 (1939­1945).
    [Show full text]
  • Data Processing with Unit Record Equipment in Iceland
    Data Processing with Unit Record Equipment in Iceland Óttar Kjartansson (Retired) Manager of Data Processing Department at Skýrr, Iceland [email protected] Abstract. This paper presents an overview of the usage of unit record equipment and punched cards in Iceland and introduces some of the pioneers. The usage of punched cards as a media in file processing started 1949 and became the dominant machine readable media in Iceland until 1968. After that punched cards were still used as data entry media for a while but went completely out of use in 1982. Keywords: Data processing, unit record, punched card, Iceland. 1 Hagstofa Íslands Hagstofa Íslands (Statistical Bureau of Iceland) initiated the use of 80 column punched cards and unit record equipment in Iceland in the year 1949. The first ma- chinery consisted of tabulating machine of the type IBM 285 (handled numbers only), the associated key punch machines, verifiers, and a card sorter. See Figures 1 and 2. This equipment was primarily used to account for the import and export for Iceland. Skýrr (Skýrsluvélar ríkisins og Reykjavíkurborgar - The Icelandic State and Munici- pal Data Center) was established three years later by an initiative from Hagstofa Íslands, Rafmagnsveita Reykjavíkur (Reykjavík Electric Power Utility), and the Medical Director of Health of Iceland as was described in an earlier article [3]. Fig. 1. IBM 285 Electric Accounting Machine at Hagstofa Íslands year 1949 J. Impagliazzo, T. Järvi, and P. Paju (Eds.): HiNC 2, IFIP AICT 303, pp. 225–229, 2009. © IFIP International Federation for Information Processing 2009 226 Ó. Kjartansson Fig. 2. Early form of the data registration using a punched card.
    [Show full text]
  • How I Learned to Stop Worrying and Love the Bombe: Machine Research and Development and Bletchley Park
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CURVE/open How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park Smith, C Author post-print (accepted) deposited by Coventry University’s Repository Original citation & hyperlink: Smith, C 2014, 'How I learned to stop worrying and love the Bombe: Machine Research and Development and Bletchley Park' History of Science, vol 52, no. 2, pp. 200-222 https://dx.doi.org/10.1177/0073275314529861 DOI 10.1177/0073275314529861 ISSN 0073-2753 ESSN 1753-8564 Publisher: Sage Publications Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it. Mechanising the Information War – Machine Research and Development and Bletchley Park Christopher Smith Abstract The Bombe machine was a key device in the cryptanalysis of the ciphers created by the machine system widely employed by the Axis powers during the Second World War – Enigma.
    [Show full text]
  • Introduction to Database Systems
    CO-560-A Databases and Web Services Instructors: Peter Baumann email: [email protected] office: room 88, Research 1 Databases & Web Services (P. Baumann) 1 Where It All Started Source: Wikipedia . 1890 census on 62,947,714 US population “Big Data” • was announced after only six weeks of processing . Hollerith „tabulating machine and sorter“ . Tabulating Machine Company International Business Machines Corporation Herman Hollerith in 1888 Hollerith card puncher, used by the United States Census Bureau Hollerith punched card Databases & Web Services (P. Baumann) 2 Databases & Web Services (P. Baumann) [image: Intel] 3 What Is „Big Data“? . Internet: the unprecedented . Typical Big Data: information collector • Business Intelligence • 2012: 200m Web servers [Yahoo] • Social networks - Facebook, • estd 50+b static pages [Yahoo] Twitter, GPS, ... • 40 b photos [Facebook] • Life Science: patient data, imagery • 2012: 31b searches/m [Google] • Geo: Satellite imagery, weather . 2025: 463 Exabytes / day data, crowdsourcing, ... Data = the „new gold“, „new oil“ Petrol industry: „more bytes than barrels“ Databases & Web Services (P. Baumann) 4 Today: „Data Deluge“ . „It is estimated that a week„s work at the New York Times contains more information than a person in the 18th Century would encounter in their entire lifetime and the thought is that within 10 years the rate of information doubling will occur every 72 hours.“ -- P. „Bud“ Peterson, U Colorado . “global mobile data traffic 597 petabytes per month in 2011 (8x the size of the entire global Internet in 2000) estimated to grow to 6,254 petabytes per month by 2015” -- Forbes, June 2012 . a typical new car has about 100 million lines of code • -- http://www.wired.com/autopia/2012/12/automotive-os-war/ Databases & Web Services (P.
    [Show full text]
  • Cryptography in a Quantum World
    Cryptography in a Quantum World ⋆ Gilles Brassard 1,2 1 D´epartement d’informatique et de recherche op´erationnelle Universit´ede Montr´eal, C.P. 6128, Succursale Centre-ville Montr´eal (QC), H3C 3J7 Canada 2 Canadian Institute for Advanced Research [email protected] http://www.iro.umontreal.ca/~brassard/en/ Abstract. Although practised as an art and science for ages, cryptog- raphy had to wait until the mid-twentieth century before Claude Shannon gave it a strong mathematical foundation. However, Shannon’s approach was rooted is his own information theory, itself inspired by the classical physics of Newton and Einstein. But our world is ruled by the laws of quantum mechanics. When quantum-mechanical phenomena are taken into account, new vistas open up both for codemakers and codebreakers. Is quantum mechanics a blessing or a curse for the protection of privacy? As we shall see, the jury is still out! Keywords: Cryptography, Quantum mechanics, Quantum computa- tion, Post-quantum cryptography, Quantum communication, Quantum key distribution, Edgar Allan Poe 1 Introduction For thousands of years, cryptography has been an ongoing battle between code- makers and codebreakers [1,2], who are more formally called cryptographers and cryptanalysts. Naturally, good and evil are subjective terms to designate code- makers and codebreakers. As a passionate advocate for the right to privacy, my allegiance is clearly on the side of codemakers. I admit that I laughed hyster- ically when I saw the Zona Vigilada warning that awaits visitors of the Pla¸ca de George Orwell near City Hall in Barcelona [3]. Nevertheless, I recognize that codebreakers at Bletchley Park during the Second World War were definitely on the side of good.
    [Show full text]
  • War Machines: Women's Computing Work and the Underpinnings of the Data-Driven State, 1930-1946
    Programmed Inequality How Britain Discarded Women Technologists and Lost Its Edge in Computing Marie Hicks HD 6135 H53 2017 The Library Mt. St. Vincent Univ. Halifax, N.S. B3M 2J6 The MIT Press Cambridge, Massachusetts London, England 1 War Machines: Women's Computing Work and the Underpinnings of the Data-Driven State, 1930-1946 In recent years, the restoration of Bletchley Park has attracted worldwide attention. The country estate in Milton Keynes, United Kingdom, was the site of the most important codebreaking operations of World War II and home to the first digital, electronic, programmable computer: the Colossus. The British-designed and manufactured Colossus computers, of which there were ten in all by war's end, were critical to the conduct of Allied wartime operations. Unlike their better-known U.S. counter­ part, the ENIAC, the Colossus computers were actually deployed during the war, actively changing its outcome. Kept secret for decades, the full import of the developments at Bletchley has only recently become widely known.1 Yet while popular culture has begun to recognize the importance of Bletchley's wartime operations, misunderstandings persist about the nature of the information work performed there. The 2014 blockbuster The Imitation Game, for instance, cleaves the Colossus computers from the narrative entirely in favor of building a "great man" narrative for a single codebreaker.2 Hidden within the story of Bletchley is a less popular narrative that cannot leverage the appeal of a lone genius and his accomplishments. Thousands of women worked at Bletchley during the war-most in tech­ nical roles.3 Although it is generally accepted that the striking and wide­ ranging roles of the mostly women workers within Bletchley Park give lie to stereotypes about computing as a traditionally masculine field, the contributions of these women have not been analyzed as constitutive of larger trends in the history of computing.
    [Show full text]
  • Herman Hollerith and Early Mechanical/Electrical Tabulator/Sorters
    Herman Hollerith and early mechanical/electrical tabulator/sorters The US Constitution requires that the people of the U.S. be counted every ten years and that the members of the House of Representatives “be apportioned among the States according to their respective numbers”1. (The other house of Congress, the Senate, has two members from each state.) Accordingly, every ten years, a census is taken. By 1880, the census was becoming harder and harder to accomplish. Everything was done on paper. Marks were placed in squares on paper, the marked squares were counted, and of course people made many mistakes. Further, the census was used more and more not just to count people but to get useful data on age, gender, marital status, working status, and so on. There were more and more marks to make and count! Herman Hollerith: the inventor of mechanical/electrical data processing systems Herman Hollerith graduated from the Columbia University School of Mines (in New York City) in 1879 at the age of 19. He knew about the problems with the census and be- gan research into mechanizing part of the counting of the census. In 1882, he taught me- chanical engineering at MIT and conducted his first experiments with punched cards. He was extremely successful, and he soon moved to Washington D.C. and set up a company, The Hollerith Electric Tabulating System. By the middle of the 1880’s, his first punched-card system was working. His company provided the Census Office with the equipment used in processing the 1890 census —62 million punched cards were processed by his machines, cutting two years off the time to complete the census.
    [Show full text]
  • Punched Card - Wikipedia, the Free Encyclopedia Page 1 of 11
    .... _ ALL COMMUNICATIONS IN REFERENCE TO FORESTRY TO BE ADDRESSED TO THE CHIEF FORESTER VICTORIA. B.C. TIlE GO'IEIltDIEIIT Of THE P/IOVJII!;E DfBRItISH CIIJIIIIA DEPARTMENT OF LANDS FOREST BRANCH Yay 16th, 1928. H. J. Coles, Esq., Port Alberni, B.C. Please refer to File No. Management 081406 Dear Sirl- This is to advise that you passed the Licensed Scaler's Examina- tion held by Mr. A. L. Bryant a.t Vancouver, B.C., on May 2nd and 3rd, 1928. Your ~cence No. 811 is enclosed herewith. Xours truly, JM/pb • 1 Enc.l• N° 811 lHE 60VERNMIJIT OF '(f£ PROVINCe OF BRlnsH CIl.UIBIA FOREST ACT AND AMENDMENTS. ~raliug mirturt. FOREST BRANCH, LANDS DEPARTtvt~_NT. r)//) -4 ««e/<i;««<<<</tJ<<<<< < «««<<<<<<<<<<<<<<.<<. 192.K. .. W41n 1n tn (!1rrtify thatC~. /~~J.(~ff/~ -z::.~l::k~ -r1J->·r /7' £I P' . ;j residing at./!&~ L.1~~~-t.- Yi...-£" ~ ~ . ", in the Province of British Columbia, ;;.«~ ~ d-1~ ed ;22 2. / q "'r 8::. b has been examin /07 .••• =Zf'7;m .m.' mm.. .... ... m.................... /~ ..... .... ......... y •••• ««««<<<<<... - «««««< <(.,"F«<· < «. «<.««< of the Board of Examiners for Licensing alers, as provided in the "Forest Act" and amendments, and having creditably passed the said examination is hereby appointed a Licensed Scaler, and ·is duly authorized to perform the duties of a Licensed Scaler, as specified under Part VIII. of the "Forest <~:<~,.(_2.,_,;,::c,.(. «c.,"G~~< .. .. < ••• «« ••• «<•• CHAIRMAN OF BOARD OF EXAMINERS. Punched card - Wikipedia, the free encyclopedia Page 1 of 11 Punched card From Wikipedia, the free encyclopedia A punched card (or punch card or Hollerith card or IBM card) is a piece of stiff paper that contains digital information represented by the presence or absence of holes in predefined positions.
    [Show full text]
  • Code Breaking at Bletchley Park
    Middle School Scholars’ CONTENTS Newsletter A Short History of Bletchley Park by Alex ​ Lent Term 2020 Mapplebeck… p2-3 Alan Turing: A Profile by Sam Ramsey… ​ Code Breaking at p4-6 Bletchley Park’s Role in World War II by ​ Bletchley Park Harry Martin… p6-8 Review: Bletchley Park Museum by ​ Joseph Conway… p9-10 The Women of Bletchley Park by Sammy ​ Jarvis… p10-12 Bill Tutte: The Unsung Codebreaker by ​ Archie Leishman… p12-14 A Very Short Introduction to Bletchley Park by Sam Corbett… p15-16 ​ The Impact of Bletchley Park on Today’s World by Toby Pinnington… p17-18 ​ Introduction A Beginner’s Guide to the Bombe by Luca ​ “A gifted and distinguished boy, whose future Zurek… p19-21 career we shall watch with much interest.” This was the parting remark of Alan Turing’s Headmaster in his last school report. Little The German Equivalent of Bletchley could he have known what Turing would go on Park by Rupert Matthews… 21-22 ​ to achieve alongside the other talented codebreakers of World War II at Bletchley Park. Covering Up Bletchley Park: Operation Our trip with the third year academic scholars Boniface by Philip Kimber… p23-25 this term explored the central role this site ​ near Milton Keynes played in winning a war. 1 intercept stations. During the war, Bletchley A Short History of Bletchley Park Park had many cover names, which included by Alex Mapplebeck “B.P.”, “Station X” and the “Government Communications Headquarters”. The first mention of Bletchley Park in records is in the Domesday Book, where it is part of the Manor of Eaton.
    [Show full text]
  • Who Did What? Engineers Vs Mathematicians Title Page America Vs Europe Ideas Vs Implementations Babbage Lovelace Turing
    Who did what? Engineers vs Mathematicians Title Page America vs Europe Ideas vs Implementations Babbage Lovelace Turing Flowers Atanasoff Berry Zuse Chandler Broadhurst Mauchley & Von Neumann Wilkes Eckert Williams Kilburn SlideSlide 1 1 SlideSlide 2 2 A decade of real progress What remained to be done? A number of different pioneers had during the 1930s and 40s Memory! begun to make significant progress in developing automatic calculators (computers). Thanks (almost entirely) to A.M. Turing there was a complete theoretical understanding of the elements necessary to produce a Atanasoff had pioneered the use of electronics in calculation stored program computer – or Universal Turing Machine. Zuse had mad a number of theoretical breakthroughs Not for the first time, ideas had outstripped technology. Eckert and Mauchley (with JvN) had produced ENIAC and No-one had, by the end of the war, developed a practical store or produced the EDVAC report – spreading the word memory. Newman and Flowers had developed the Colossus It should be noted that not too many people were even working on the problem. SlideSlide 3 3 SlideSlide 4 4 The players Controversy USA: Eckert, Mauchley & von Neumann – EDVAC Fall out over the EDVAC report UK: Maurice Wilkes – EDSAC Takeover of the SSEM project by Williams (Kilburn) UK: Newman – SSEM (what was the role of Colossus?) Discord on the ACE project and the departure of Turing UK: Turing - ACE EDSAC alone was harmonious We will concentrate for a little while on the SSEM – the winner! SlideSlide 5 5 SlideSlide 6 6 1 Newman & technology transfer: Secret Technology Transfer? the claim Donald Michie : Cryptanalyst An enormous amount was transferred in an extremely seminal way to the post war developments of computers in Britain.
    [Show full text]
  • Notes and References Documents Held at the Public Record Office, London, Are Crown Copyright and Are Reproduced by Permission of the Controller Ofhm Stationery Office
    Notes and References Documents held at the Public Record Office, London, are crown copyright and are reproduced by permission of the Controller ofHM Stationery Office. I NTRODUCTION Christopher Andrew and David Dilks I. David Dilks (ed.), The Diaries rifSir Alexander Cadogan O.M. 1938-1945 (Lon­ don , (971) , p. 21. 2. Interview with Professor Hinsley in Part 3 of the BBC Radio 4 documentary series 'T he Profession of Intelligence', written and presented by Christopher Andrew (producer Peter Everett); first broadcast 16 Aug 1981. 3. F. H. Hinsleyet al., British Intelligencein the Second World War (London, 1979-). The first two chapters of volume I contain a useful retrospect on the pre-war development of the intelligence community. Curiously, despite the publication of Professor Hinsley's volumes, the government has decided not to release the official histories commissioned by it on wartime counter-espionage and deception. The forthcoming (non-official) collection of essays edited by Ernest R. May, Knowing One's Enemies: IntelligenceAssessment before the Two World Wars (Princeton) promises to add significantly to our knowledge of the role of intelligence on the eve of the world wars. 4. House of Commons Education, Science and Arts Committee (Session 1982-83) , Public Records: Minutes ofEvidence, pp . 76-7. 5. Chapman Pincher, Their Trade is Treachery (London, 1981). Nigel West, A Matter of Trust: MI51945-72 (London, 1982). Both volumes contain ample evidence of extensive 'inside information'. 6. Nigel West , MI5: British Security Operations /90/-/945 (London, 1981), pp . 41, 49, 58. One of the most interesting studies of British peacetime intelligence which depends on a substantial amount of inside information is Antony Verrier's history of post-war British foreign policy , Through the Looking Glass (London, 1983) .
    [Show full text]
  • Hereby the Screen Stands in For, and Thereby Occludes, the Deeper Workings of the Computer Itself
    John Warnock and an IDI graphical display unit, University of Utah, 1968. Courtesy Salt Lake City Deseret News . 24 doi:10.1162/GREY_a_00233 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/GREY_a_00233 by guest on 27 September 2021 The Random-Access Image: Memory and the History of the Computer Screen JACOB GABOURY A memory is a means for displacing in time various events which depend upon the same information. —J. Presper Eckert Jr. 1 When we speak of graphics, we think of images. Be it the windowed interface of a personal computer, the tactile swipe of icons across a mobile device, or the surreal effects of computer-enhanced film and video games—all are graphics. Understandably, then, computer graphics are most often understood as the images displayed on a computer screen. This pairing of the image and the screen is so natural that we rarely theorize the screen as a medium itself, one with a heterogeneous history that develops in parallel with other visual and computa - tional forms. 2 What then, of the screen? To be sure, the computer screen follows in the tradition of the visual frame that delimits, contains, and produces the image. 3 It is also the skin of the interface that allows us to engage with, augment, and relate to technical things. 4 But the computer screen was also a cathode ray tube (CRT) phosphorescing in response to an electron beam, modified by a grid of randomly accessible memory that stores, maps, and transforms thousands of bits in real time. The screen is not simply an enduring technique or evocative metaphor; it is a hardware object whose transformations have shaped the ma - terial conditions of our visual culture.
    [Show full text]