Mites of Public Health Importance And

Total Page:16

File Type:pdf, Size:1020Kb

Mites of Public Health Importance And MITES OF PUBLIC HEALTH IMPORTANCE AND THEIR CONTROL TRAINING GUIDE - INSECT CONTROL SERIES Harry D. Pratt U. S. D E P A R T M E N T OF H E A L T H , EDU CA TIO N , A N D W E L F A R E PUBLIC HEALTH SERVICE Communicable Disease Center Atlanta, Georgia Names of commercial mataiifacturers and trade names are provided as example only, and their inclusion does not imply endorsement by the Public Health Service or the U. S. Department of Health, Education, and Welfare; nor does the ex­ clusion of other commercial manufacturers and trade names imply nonendorsement by the Service or Department. The following titles in the Insect Control Series, Public Health Service Publication No.772, have been published. A ll are on sale at the Superintendent of Documents, Washington 25, D .C., at the prices shown: Part I: Introduction to Arthropods of Public Health Importance, 30 cents Part II: Insecticides for the Control of Insects of Public Health Importance, 30 cents Part III: Insecticidal Equipment for the Control of Insects of Public Health Importance, 25 cents Part IV: Sanitation in the Control of Insects and Rodents of Public Health Importance, 35 cents Part V: Flies of Public Health Importance and Their Control, 30 cents Part VII: Fleas of Public Health Importance and Their Control, 30 cents Part VIII: Lice of Public Health Importance and Their Control, 20 cents Part X: Ticks of Public Health Importance and Their Control, 30 cents These additional parts will appear at intervals: Part VI: Mosquitoes of Public Health Importance and Their Control Part XI: Scorpions, Spiders and Other Arthropods of Minor Public Health Importance and Their Control Part XII: Household and Stored-Food Insects of Public Health Importance and Their Control Public Health Service Publication No.772 Insect Control Series: Part IX May 1963 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1963 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C. Price 25 cents CONTENTS IN T R O D U C T IO N ................................................................................................................................................................................ 1 P U B L IC HEALTH IM PORTANCE OF MITES ....................................................................................................................... 1 Scabies and related mange-like d is e a s e s ........................................................................................................................... ...1 Chiggers, scrub typhus, and hemorrhagic fever...................................................................................................................2 The house mouse mite and rickettsial-pox .................................................................... .................................................. ...3 Other diseases transmitted by blood-sucking m ite s ..........................................................................................................3 Common sources of bird, bat, and rodent ectoparasites annoying to man ............................................................ ..4 D e rm a titis....................................................................................................................................................................................... ...5 Invasion of b uildings and annoyance .................................................................................................................................. ...6 Mite infestation of internal organs ......................................................-.............................................................................. ...6 M ites as intermediate hosts of tapew orm s........................................................................................... ............................. ...6 MITE C H A R A C T E R IST IC S AND SYSTEM ATIC POSITION .............................................................................................. 7 Order: Acarina .............................................................................................................................................................................. 7 Suborders — Mesostigmata, 7; Ixodides, 7; Trombidiformes, 7; Sarcoptiformes,7 Mite a n a to m y ................................................................................................................................................................................ 8 Diagram of mite ............................................... ............................................................................................................................ 9 Mite id e n tific a tio n ....................................................................................................................................................................... 10 Illustrated key to some common species of female acarina (mites)......................................................................... 11 P ictorial key to female mites commonly found on dom estic rats in southern U.S............................................... 18 SOME IM PORTANT MITE SPE C IE S ......................................................................................................................................... 19 The house mite, 19; The chicken mite, 19; The tropical rat mite, 19; The tropical fowl mite, 19; The northern fowl mite, 19; The spiny rat mite, 19; Chiggers, 19; The straw itch mite, 20; The follicle mite, 20; The clover mite, 20; The grain and flour mites, 20; Some common mites, 21; The itch mites, 23 CO N T RO L OF MITES AND MITE-BORNE DISEASES ........................................................................................................23 Chemical control of m ite s......................................................................................................................................................... 23 Control of mites by s a nitatio n ................................................................................................................................................ 25 MITE SURVEYS ................................................................................................................................................. !............................. 26 R E F E R E N C E S ................................................................................................................................................................................... 27 0 0 1 0 4 0 5 5 Although mites belong to the Class Arachnida, and are not true insects, they are important vectors of some of the most signifi­ cant arthropod-borne diseases and have been studied intensively by entomologists and public health workers. For this reason this Training Guide on mites has been included in the Insect Control Series. INTRODUCTION Most species of mites are so small that they are such as encephalitis by certain bird mites; barely visible to the naked eye. The adults and (2) rickettsial diseases, such as scrub typhus nymphs usually have four pairs of legs, but the by chiggers in the Pacific area of the Old first stage, or larva, has only three pairs. Many World, rickettsialpox by the house mouse mite species lay eggs, but some others retain the eggs and possibly murine typhus by the tropical within the abdomen and give birth either to six­ rat mite; (3) bacterial diseases, such as legged larvae or eight-legged nymphs or adults. tularemia by the tropical rat mite in the lab­ The life cycle is often short, two to three weeks, oratory or epidemic hemorrhagic septicemia so the mites increase in numbers very quickly under by the snake mite, and (4) filarial disease of favorable conditions. In dwellings they often infest the cotton rat by the tropical rat mite. foods, stuffed furniture, and mattresses, occurring literally by the thousands or millions. Some of the Dermatitis, caused primarily by direct at­ largest infestations in buildings result from the in­ tack of chiggers in the family Trombiculidae, vasions of clover mites, or of bird or rodent mites, bird and rat mites in the family Dermanyssidae, from out-of-doors. A number of mites discussed in straw itch mites in the family Pyemotidae, this chapter are potential carriers of disease^, af­ and by contact with cheese mites in the fecting man or his domestic animals, while others families Acaridae and Glycyphagidae. may cause dermatitis and allergic reactions in men. Annoyance and invasion of buildings, with­ Mites are important to man because they are out causing dermatitis or transmitting any associated with: disease-causing agent, by the clover mite. Scabies or mange-like conditions, produced Infestation of the lungs, intestine, or primarily by mange or itch mites in the fami­ urinary passages, as the lung mites or certain lies Sarcoptidae, Psoroptidae, and Demodi- cheese mites. cidae. Tapeworm infestations of domestic animals, Transmission of disease-causing organisms, as some beetle mites serve as intermediate primarily of four groups: (1) viral diseases, hosts for certain tapeworms. PUBLIC HEALTH IMPORTANCE OF MITES SCABIES AND RELATED MANGE-LIKE Army officially reported 32,871 cases in a total DISEASES strength of about 3,700,000men in Europe andUnited States between April 1,1917 and December 31, 1919 — Scabies is one of the most important'disease almost 1 percent of the total military strength with conditions caused by mites. Scabies, which is also attack rates varying between 3 and 35 per 1000 per known
Recommended publications
  • Introduction to the Arthropods
    Ticks General Tick Biology Life cycle has 4 stages: egg, 6-legged larvae, 8-legged nymph, & adult Must consume blood from a host at every stage to develop – each stage must find a new host Pierces skin and attaches to host with mouthparts Feed on mammals, birds, & lizards Larvae & nymphs prefer smaller hosts Life cycle Hard ticks vs Soft ticks Harm to humans Direct injures 1. Irritation: sting, secondary infection, allergy 2. Tick paralysis: paralysis of the motor nerves --- cannot walk or stand, has difficulty in speaking, swallowing and breathing. Transmission of diseases Three medically important tick species American dog tick Blacklegged tick or deer tick Lone star tick. American Dog Tick: Diseases - Carries Rocky Mountain spotted fever - Can also transmit tularemia - Injected dog tick saliva can cause tick paralysis (tick neurotoxin) - Infected tick attached to host 4 – 6 hours before transmitting disease Blacklegged tick or deer tick - Smaller than other ticks - males 1/16”, females ~3/32” - Both sexes are dark chocolate brown, but rear half of adult female is red or orange - Larval stage is nearly translucent - Engorged adult females are brownish Carries Lyme disease May also carry anaplasmosis & ehrlichiosis Can infect a host with two or more diseases simultaneously Infected tick attached to host 36 – 48 hours before disease transmission Lone star tick Adult female is ~3/16” long, brown with distinct silvery spot on upper scutum Male is ~3/16” long, brown with whitish markings along rear edge. Engorged female is almost
    [Show full text]
  • THE ERIOPHYID MITES of CALIFORNIA (Acarina: Eriophyidae) by H
    BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 2, NO. 1 THE ERIOPHYID MITES OF CALIFORNIA (Acarina: Eriophyidae) BY H. H. KEIFER (California Scare Department of Agriculture) UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1352 BULLETIN OF THE CALIFORNIA INSECT SURVEY Editors: E. 0. Essig, S. B. Freeborn, E. G. Linsley, R. L. Usinger Volume 2, No. 1, pp. 1-128, plates 1-39 Submitted by Editors, May 6, 1952 Issued December 12, 1952 Price $2.00 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND PRINTED BY OFFSET IN THE UNITED STATBS OF AMERICA Contents Page Introduction .......................... 1 Hostlist ........................... 5 Keys to Genera. Species. and higher Groups ...........11 Discussion of Species ..................... 20 Bib 1iography .......................... 62 Host index ........................... 64 List of comn names ...................... 67 Index to mites. Genera. Species. etc .............. 08 Plate symbols ......................... 71 List of plates ......................... 72 Plates ............................. 74 THE ERIOPHYID MITES OF CALIFORNIA Introduction ’IhisBulletin is the result of fifteen years would classify these mites at the present, faces of intermittent exploration of California for the prospect of a growing number of species in the Friophyid mites. hhen the work began in 1937 the large genera, and of broad revisions to come. But principal species recognized were the relatively I believe the average type of Eriophyid to have al- few economic species. ‘Ihis situation not only left ready been pretty well defined, since these mites an opportunity to discover and describe new spe- are widespread, and ancient in origin. cies, it also demanded that as many new Eriophyids As we now know these tiny creatures, they con- as possible be put in print in order to erect a stitute a closed group, structurally pointing to taxonomic framework.
    [Show full text]
  • Gamasid Mites
    NATIONAL RESEARCH TOMSK STATE UNIVERSITY BIOLOGICAL INSTITUTE RUSSIAN ACADEMY OF SCIENCE ZOOLOGICAL INSTITUTE M.V. Orlova, M.K. Stanyukovich, O.L. Orlov GAMASID MITES (MESOSTIGMATA: GAMASINA) PARASITIZING BATS (CHIROPTERA: RHINOLOPHIDAE, VESPERTILIONIDAE, MOLOSSIDAE) OF PALAEARCTIC BOREAL ZONE (RUSSIA AND ADJACENT COUNTRIES) Scientific editor Andrey S. Babenko, Doctor of Science, professor, National Research Tomsk State University Tomsk Publishing House of Tomsk State University 2015 UDK 576.89:599.4 BBK E693.36+E083 Orlova M.V., Stanyukovich M.K., Orlov O.L. Gamasid mites (Mesostigmata: Gamasina) associated with bats (Chiroptera: Vespertilionidae, Rhinolophidae, Molossidae) of boreal Palaearctic zone (Russia and adjacent countries) / Scientific editor A.S. Babenko. – Tomsk : Publishing House of Tomsk State University, 2015. – 150 р. ISBN 978-5-94621-523-7 Bat gamasid mites is a highly specialized ectoparasite group which is of great interest due to strong isolation and other unique features of their hosts (the ability to fly, long distance migration, long-term hibernation). The book summarizes the results of almost 60 years of research and is the most complete summary of data on bat gamasid mites taxonomy, biology, ecol- ogy. It contains the first detailed description of bat wintering experience in sev- eral regions of the boreal Palaearctic. The book is addressed to zoologists, ecologists, experts in environmental protection and biodiversity conservation, students and teachers of biology, vet- erinary science and medicine. UDK 576.89:599.4
    [Show full text]
  • Case Report: Dermanyssus Gallinae in a Patient with Pruritus and Skin Lesions
    Türkiye Parazitoloji Dergisi, 33 (3): 242 - 244, 2009 Türkiye Parazitol Derg. © Türkiye Parazitoloji Derneği © Turkish Society for Parasitology Case Report: Dermanyssus gallinae in a Patient with Pruritus and Skin Lesions Cihangir AKDEMİR1, Erim GÜLCAN2, Pınar TANRITANIR3 Dumlupinar University, School of Medicine 1Department of Parasitology, 2Department of Internal Medicine, Kütahya, 3Yuzuncu Yil University, College of Health, Van, Türkiye SUMMARY: A 40-year old woman patient who presented at the Dumlupınar University Faculty of Medicine Hospital reported intensi- fied itching on her body during evening hours. During her physical examination, puritic dermatitis lesions were found on the patient's shoulders, neck and arms in particular, and systemic examination and labaratory tests were found to be normal. The patient's story showed that similar signs had been seen in other members of the household. They reside on the top floor of a building and pigeons are occasionally seen in the ventilation shaft. Examination of the house was made. The walls of the house, door architraves and finally beds, sheets and blankets and the windows opening to the outside were examined. During the examination, arthropoda smaller than 1 mm were detected. Following preparation of the collected samples, these were found to be Dermanyssus gallinae. Together with this presentation of this event, it is believed cutaneus reactions stemming from birds could be missed and that whether or not of pets or wild birds exist in or around the homes should be investigated. Key Words: Pruritus, itching, dermatitis, skin lesions, Dermanyssus gallinae Olgu Sunumu: Prüritus ve Deri Lezyonlu Bir Hastada Dermanyssus gallinae ÖZET: Dumlupınar Üniversitesi Tıp Fakültesi Hastanesine müracaat eden 40 yaşındaki kadın hasta, vücudunda akşam saatlerinde yo- ğunlaşan kaşıntı şikayetlerini bildirmiştir.
    [Show full text]
  • Ornithonyssus Sylviarum (Acari: Macronyssidae)
    Ciência Rural,Ornithonyssus Santa sylviarumMaria, v.50:7, (Acari: Macronyssidaee20190358, )2020 parasitism among poultry farm workers http://doi.org/10.1590/0103-8478cr20190358 in Minas Gerais state, Brazil. 1 ISSNe 1678-4596 PARASITOLOGY Ornithonyssus sylviarum (Acari: Macronyssidae) parasitism among poultry farm workers in Minas Gerais state, Brazil Cristina Mara Teixeira1 Tiago Mendonça de Oliveira2* Amanda Soriano-Araújo3 Leandro do Carmo Rezende4 Paulo Roberto de Oliveira2† Lucas Maciel Cunha5 Nelson Rodrigo da Silva Martins2 1Ministério da Agricultura Pecuária e Abastecimento (DIPOA), Brasília, DF, Brasil. 2Departamento de Medicina Veterinária Preventiva da Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, MG, Brasil. E-mail: [email protected]. *Corresponding author. †In memoriam. 3Instituto Federal de Minas Gerais (IFMG), Bambuí, MG, Brasil. 4Laboratório Federal de Defesa Agropecuária (LFDA), Pedro Leopoldo, MG, Brasil. 5Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil. ABSTRACT: Ornithonyssus sylviarum is a hematophagous mite present in wild, domestic, and synanthropic birds. However, this mite can affect several vertebrate hosts, including humans, leading to dermatitis, pruritus, allergic reactions, and papular skin lesions. This study evaluated the epidemiological characteristics of O. sylviarum attacks on poultry workers, including data on laying hens, infrastructure and management of hen houses, and reports of attacks by hematophagous mites. In addition, a case of mite attack on a farm worker on a laying farm in the Midwest region in Minas Gerais is presented. It was found that 60.7% farm workers reported attacks by hematophagous mites. Correspondence analysis showed an association between reports of mite attacks in humans with (1) presence of O. sylviarum in the hen house, (2) manual removal of manure by employees, and (3) history of acaricide use.
    [Show full text]
  • Arthropod Parasites in Domestic Animals
    ARTHROPOD PARASITES IN DOMESTIC ANIMALS Abbreviations KINGDOM PHYLUM CLASS ORDER CODE Metazoa Arthropoda Insecta Siphonaptera INS:Sip Mallophaga INS:Mal Anoplura INS:Ano Diptera INS:Dip Arachnida Ixodida ARA:Ixo Mesostigmata ARA:Mes Prostigmata ARA:Pro Astigmata ARA:Ast Crustacea Pentastomata CRU:Pen References Ashford, R.W. & Crewe, W. 2003. The parasites of Homo sapiens: an annotated checklist of the protozoa, helminths and arthropods for which we are home. Taylor & Francis. Taylor, M.A., Coop, R.L. & Wall, R.L. 2007. Veterinary Parasitology. 3rd edition, Blackwell Pub. HOST-PARASITE CHECKLIST Class: MAMMALIA [mammals] Subclass: EUTHERIA [placental mammals] Order: PRIMATES [prosimians and simians] Suborder: SIMIAE [monkeys, apes, man] Family: HOMINIDAE [man] Homo sapiens Linnaeus, 1758 [man] ARA:Ast Sarcoptes bovis, ectoparasite (‘milker’s itch’)(mange mite) ARA:Ast Sarcoptes equi, ectoparasite (‘cavalryman’s itch’)(mange mite) ARA:Ast Sarcoptes scabiei, skin (mange mite) ARA:Ixo Ixodes cornuatus, ectoparasite (scrub tick) ARA:Ixo Ixodes holocyclus, ectoparasite (scrub tick, paralysis tick) ARA:Ixo Ornithodoros gurneyi, ectoparasite (kangaroo tick) ARA:Pro Cheyletiella blakei, ectoparasite (mite) ARA:Pro Cheyletiella parasitivorax, ectoparasite (rabbit fur mite) ARA:Pro Demodex brevis, sebacceous glands (mange mite) ARA:Pro Demodex folliculorum, hair follicles (mange mite) ARA:Pro Trombicula sarcina, ectoparasite (black soil itch mite) INS:Ano Pediculus capitis, ectoparasite (head louse) INS:Ano Pediculus humanus, ectoparasite (body
    [Show full text]
  • George Et Al 1992 Louse Mite Infestations Domestic Animals Nigeria
    Trop. Anita. Hlth Prod. (1992) 24, 121-124 LOUSE AND MITE INFESTATION IN DOMESTIC ANIMALS IN NORTHERN NIGERIA J. B. D. GEORGE, S. OTOBO, J. OGUNLEYEand B. ADEDIMINIYI Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria SUMMARY Records of domestic animals brought to the Veterinary Entomology Laboratory for diagnosis of suspected lice and mite infestation over a 10 year period were analysed. From a total of 794 suspected cases, 137 (17.3%) and247 (31.1%) were positive for lice and mange mites respectively. The most common lice species recorded were Linognathus vituli (66.7%) on cattle, L. ovillus (83.3%) on sheep, Haematopinus suis (100%) on pigs and Menacanthus stramineus (54.5%) on poultry. Other lice species recorded included Haematopinus bovis and Solenopotes capillatus on cattle, Damalinia ovis on sheep, Linognathus stenopsis and Mena- canthus stramineus on goats, Goniocotes sp. on a horse, Linognathus setosus and Menacanthus stramineus on dogs, Goniodes gigas, Lipeurus caponis, Menopon gallinae and Chelopistes meleagrides on poultry. The most common mite species were Demodex folliculorum on cattle (96.9%) and on dogs (80.8%), Sarcoptes scabiei on pigs (100%) and Notoedres cati (80.3%) on rabbits. Other mite species included Psoroptes communis, Cheyletiella parasitivorax, Ornithonyssus gallinae and Dermanyssus gallinae. INTRODUCTION Lice and mite infestations often cause stress and loss of condition (Schillhorn van Veen and Mohammed, 1975; Bamidele and Amakiri, 1978; Idowu and Adetunji, 1981; Okon, 1981). Usually a dermatitis is manifested which is characterised by alopecia and necrotic foci. There is also intense pruritus (especially with mange) which leads to biting and vigorous scratching of affected parts (Lapage, 1968; Sweatman, 1973; Idowu and Adetunji, 1981).
    [Show full text]
  • NDP 39 Hazelnut Big Bud Mite
    NDP ## V# - National Diagnostic Protocol for Phytoptus avellanae National Diagnostic Protocol Phytoptus avellanae Nalepa Hazelnut big bud mite NDP 39 V1 NDP 39 V1 - National Diagnostic Protocol for Phytoptus avellanae © Commonwealth of Australia Ownership of intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth). Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from http://creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from https://creativecommons.org/licenses/by/3.0/au/legalcode. This publication (and any material sourced from it) should be attributed as: Subcommittee on Plant Health Diagnostics (2017). National Diagnostic Protocol for Phytoptus avellanae – NDP39 V1. (Eds. Subcommittee on Plant Health Diagnostics) Author Davies, J; Reviewer Knihinicki, D. ISBN 978-0-9945113-9-3 CC BY 3.0. Cataloguing data Subcommittee on Plant Health Diagnostics (2017). National Diagnostic Protocol for Phytoptus avellanae NDP39 V1. (Eds. Subcommittee on Plant Health
    [Show full text]
  • Evolution of Host Range in the Follicle Mite Demodex Kutzeri
    594 Evolution of host range in the follicle mite Demodex kutzeri MICHAEL F. PALOPOLI*, VAN TRA, KASSEY MATOIN and PHUONG D. MAC Department of Biology, Bowdoin College, Brunswick, ME, USA (Received 10 August 2016; revised 12 October 2016; accepted 25 October 2016; first published online 29 November 2016) SUMMARY The sequences of four mitochondrial genes were determined for Demodex mites isolated from two distantly related species within the family Cervidae, and identified morphologically as belonging to the species Demodex kutzeri. The sequences were used to test the hypothesis that Demodex are strictly host-specific, and hence cospeciate with their hosts: (1) The esti- mated divergence time between mites found on elk vs humans agreed closely with a previous estimate of the time that these host species last shared a common ancestor, suggesting cospeciation of mites and hosts, at least over long evolutionary timescales. (2) The extremely low levels of sequence divergence between the mites found on elk vs mule deer hosts indicated that these mites belong to the same species, which suggests that Demodex are able to move across host species boundaries over shorter timescales. Together, the results are consistent with the model that Demodex mites are not strict host-specialists, but instead lose the ability to move between host lineages gradually. Key words: Demodex, cospeciation, host range, evolution. INTRODUCTION observed to occur more often when the host immune system is compromised (e.g. Ivy et al. Host range is a key element of parasite evolution 1995), suggesting an antagonistic relationship (Combes, 2001). For example, host-generalists between mites and host.
    [Show full text]
  • SNF Mobility Model: ICD-10 HCC Crosswalk, V. 3.0.1
    The mapping below corresponds to NQF #2634 and NQF #2636. HCC # ICD-10 Code ICD-10 Code Category This is a filter ceThis is a filter cellThis is a filter cell 3 A0101 Typhoid meningitis 3 A0221 Salmonella meningitis 3 A066 Amebic brain abscess 3 A170 Tuberculous meningitis 3 A171 Meningeal tuberculoma 3 A1781 Tuberculoma of brain and spinal cord 3 A1782 Tuberculous meningoencephalitis 3 A1783 Tuberculous neuritis 3 A1789 Other tuberculosis of nervous system 3 A179 Tuberculosis of nervous system, unspecified 3 A203 Plague meningitis 3 A2781 Aseptic meningitis in leptospirosis 3 A3211 Listerial meningitis 3 A3212 Listerial meningoencephalitis 3 A34 Obstetrical tetanus 3 A35 Other tetanus 3 A390 Meningococcal meningitis 3 A3981 Meningococcal encephalitis 3 A4281 Actinomycotic meningitis 3 A4282 Actinomycotic encephalitis 3 A5040 Late congenital neurosyphilis, unspecified 3 A5041 Late congenital syphilitic meningitis 3 A5042 Late congenital syphilitic encephalitis 3 A5043 Late congenital syphilitic polyneuropathy 3 A5044 Late congenital syphilitic optic nerve atrophy 3 A5045 Juvenile general paresis 3 A5049 Other late congenital neurosyphilis 3 A5141 Secondary syphilitic meningitis 3 A5210 Symptomatic neurosyphilis, unspecified 3 A5211 Tabes dorsalis 3 A5212 Other cerebrospinal syphilis 3 A5213 Late syphilitic meningitis 3 A5214 Late syphilitic encephalitis 3 A5215 Late syphilitic neuropathy 3 A5216 Charcot's arthropathy (tabetic) 3 A5217 General paresis 3 A5219 Other symptomatic neurosyphilis 3 A522 Asymptomatic neurosyphilis 3 A523 Neurosyphilis,
    [Show full text]
  • Mesostigmata: Dermanyssidae), in Laboratory and Field Trials*
    35-Liebisch et al-AF:35-Liebisch et al-AF 11/25/11 2:52 AM Page 282 Zoosymposia 6: 282–287 (2011) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2011 . Magnolia Press ISSN 1178-9913 (online edition) Efficacy of spinosad against the poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae), in laboratory and field trials* GABRIELE LIEBISCH, RICHARD HACK & GOSSE SMID Laboratorium für klinische Diagnostik ZeckLab, Up’n Kampe 3, D-30938, Germany * In: Moraes, G.J. de & Proctor, H. (eds) Acarology XIII: Proceedings of the International Congress. Zoosymposia, 6, 1–304. Abstract The poultry red mite, Dermanyssus gallinae (De Geer), is the most economically important ectoparasite in poultry houses in many countries around the world. The lack of efficacy of commercial products in its control results from poor application and/or from its resistance to active ingredients. A new insecticide, spinosad, was tested against mobi - le stages of the red mite in laboratory and field populations. Laboratory trials showed increasing efficacy five days (adults) and six days (nymphs) after exposure. Laboratory results were confirmed in a field trial conducted under com - mercial conditions. The trial was conducted in three separate houses on farms with high natural mite populations. The first and second houses were sprayed with concentrations of 2,000 and 4,000 ppm of spinosad (2 and 4 g/L), whereas the third house was used as an untreated control. Spraying was conducted using a sprayer (Stadikopumpe VA AR 252- 200 LE, Dinklage, Germany) with a 200 L reservoir with permanent stirring, a 50 m long flexible tube with a double jet system, and jet size of 0.08 mm.
    [Show full text]
  • PLENARY SESSION ABSTRACTS Theme: IMMUNITY and AUTOIMMUNITY
    PLENARY SESSION ABSTRACTS Theme: IMMUNITY AND AUTOIMMUNITY State-of-the-Art Address Supporting Review What’s new in autoimmune blistering diseases? Epithelial, immune cell and microbial cross- D. F. MURRELL talk in homeostasis and atopic dermatitis Department of Dermatology, St George Hospital, and T. KOBAYASHI UNSW Faculty of Medicine, Sydney, New South Wales, Laboratory for Innate Immune Systems, RIKEN Center Australia for Integrative Medical Sciences (IMS), Yokohama, There are several blistering diseases which occur natu- Japan rally in other species as well as in humans; for example, Skin is a complex and dynamic ecosystem, wherein the pemphigus occurs naturally in dogs and horses and the epithelial cells, immune cells and microbiota engage in inherited blistering disease, epidermolysis bullosa, also active dialogues and maintain barrier integrity and occurs in dogs. Several new validated scoring systems functional immunity. Alterations of the peaceful coexis- to measure the severity of autoimmune blistering dis- tence with the resident microbiota, referred to as dys- ease (AIBD) have been developed which assist in biosis, lead to dysregulation of host immunity. It has demonstrating efficacy of new treatments, such as the been long debated whether the dysbiosis in the skin of Pemphigus Disease Area Index (PDAI) for pemphigus atopic dermatitis is merely a consequence of chronic and Bullous Pemphigoid Disease Area Index (BPDAI) skin inflammation or whether it is actively involved in for pemphigoid. Pemphigus is due to autoantibodies to driving skin inflammation. Microbiome analysis by 16S desmogleins 1 and 3 in human pemphigus foliaceus and rRNA sequencing in humans and dogs with atopic der- vulgaris and desmocollin1 in canine pemphigus foli- matitis showed the shifts in microbial diversity repre- aceus, generated by the late onset activation of the sented by increased proportion of Staphylococcus spp.
    [Show full text]