FAO Fisheries & Aquaculture

Total Page:16

File Type:pdf, Size:1020Kb

FAO Fisheries & Aquaculture Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Species Fact Sheets Thunnus tonggol (Bleeker, 1851) Black and white drawing: (click for more) Synonyms Thunnus rarus Kishinouye, 1915 Neothunnus rarus Kishinouye, 1923 Kishinoella rara Jordan & Hubbs, 1925 Neothunnus tonggol Jordan & Evermann, 1926 FAO Names En - Longtail tuna, Fr - Thon mignon, Sp - Atún tongol. 3Alpha Code: LOT Taxonomic Code: 1750102603 Scientific Name with Original Description Thynnus tonggol Bleeker, 1851a, Natur.Tidschr.Ned.Ind., 1:356-357 (Batavia Sea). Diagnostic Features A small species, deepest near middle of first dorsal fin base. Gillrakers few, 19 to 27 on first arch. Second dorsal fin higher than first dorsal; pectoral fins short to moderately long, 22 to 31% of fork length in smaller specimens (under 60 cm fork length) and 16 to 22% in larger individuals; ventral surface of liver not striated. Swimbladder absent or rudimentary. Vertebrae 18 precaudal plus 21 caudal. Colour: lower sides and belly silvery white with colourless elongate oval spots arranged in horizontally oriented rows; dorsal, pectoral and pelvic fins blackish, tip of second dorsal and anal fins washed with yellow; anal fin silvery; dorsal and anal liver finlets yellow with greyish margins; caudal fin blackish, with streaks of yellowish green. Geographical Distribution FAO Fisheries and Aquaculture Department Launch the Aquatic Species Distribution map viewer Indo-West Pacific Ocean from Japan south through the Philippines to Papua New Guinea, New Britain, the northern three quarters of Australia (Twofold Bay, New South Wales to Freemantle, Western Australia) west through the East Indies to both coasts of India, southern Arabian Peninsula, the Red Sea and the Somalia coast. Habitat and Biology An epipelagic, predominantly neriticspecies avoiding very turbid waters and areas with reduced salinity such as estuaries. Longtail tuna may form schools of varying size.Being an opportunistic feeder, its diet includes many species of crustaceans, cephalopods and fishes, at varying percentages. Size Maximum fork length is about 130 cm. In the Indian Ocean, common fork lengths range between 40 and 70 cm (Silas & Pillai, 1982). The all-tackle angling record is a 35.9 kg fish of 136 cm fork length taken at Montagne Island, New South Wales, Australia, in 1982. Interest to Fisheries This species is known to be fished off Japan (but is very rare), the Philippines, Australia, Papua New Guinea, Indonesia, and India, but catch statistics were only reported for Australia and Papua New Guinea, ranging between only 9 and 59 t per year in the period from 1975 to 1980. In 1981, catches of 350 t were for the first time reported by the United Arab Emirates bringing the total to 368 t in this year (FAO, 1983). This is doubtlessly a still gross underestimate of the actual landings of this species. Fishing gear comprise trolls, driftnets, and longlines. The total catch reported for this species to FAO for 1999 was 103 851 t. The countries with the largest catches were Thailand (46 361 t) and Iran (Islamic Rep. of) (23 465 t). FAO Fisheries and Aquaculture Department Global Capture Production for species (tonnes) Source: FAO FishStat 400k 300k 200k 100k 0k 1950 1960 1970 1980 1990 2000 2010 Thunnus tonggol Local Names AUSTRALIA : Northern bluefin tuna . JAPAN : Koshinaga . former USSR : Dlinnokhvostyj tunets . Remarks Juveniles of this species, bluefin tuna, yellowfin tuna and bigeye tuna are very similar. Some of the records from Japanese waters may therefore be ascribed to misidentification. Source of Information FAO Species Catalogue. Vol. 2. Scombrids of the world. An annotated and illustrated catalogue of Tunas, Mackerels, Bonitos and related species known to date.Collette, B.B. & C.E. Nauen 1983.. FAO Fish. Synop., (125)Vol.2:137 p. Bibliography Fischer & Whitehead, eds 1974 (Species identification Sheets, Eastern Indian Ocean/Western Central Pacific) Jones, 1936 (Indian Ocean) Serventy, 1956a (Australia) FAO Fisheries and Aquaculture Department.
Recommended publications
  • Proximate and Genetic Analysis of Blackfin Tuna
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PROXIMATE AND GENETIC ANALYSIS OF BLACKFIN TUNA (T. atlanticus). Yuridia M. Núñez-Mata1, Jesse R. Ríos Rodríguez 1, Adriana L. Perales-Torres 1, Xochitl F. De la Rosa-Reyna2, Jesús A. Vázquez-Rodríguez 3, Nadia A. Fernández-Santos2, Humberto Martínez Montoya 1 * 1 Unidad Académica Multidisciplinaria Reynosa Aztlán – Universidad Autónoma de Tamaulipas. Reynosa, Tamaulipas. 2 Centro de Biotecnología Genómica – Instituto Politécnico Nacional. Reynosa, Tamaulipas. 3 Centro de Investigación en Salud Pública y Nutrición – Universidad Autónoma de Nuevo León. Monterrey, Nuevo León. *Correspondence: [email protected] ORCID: 0000-0003-3228-0054 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The tuna meat is a nutritious food that possesses high content of protein, its low content of saturated fatty acids makes it a high demand food in the world. The Thunnus genus is composed of eight species, albacore (T. alalunga), bigeye (T. obesus), long tail tuna (T. tonggol), yellowfin tuna (T. albacares), pacific bluefin tuna (T. orientalis), bluefin tuna (T. maccoyii), Atlantic bluefin tuna ( T. thynnus) and blackfin tuna (T. atlanticus). The blackfin tuna (BFT) (Thunnus atlanticus) represent the smallest species within the Thunnus genus.
    [Show full text]
  • Longtail Tuna (Thunnus Tonggol)
    I & I NSW WILD FISHERIES RESEARCH PROGRAM Longtail Tuna (Thunnus tonggol) EXPLOITATION STATUS UNDEFINED A coastal tuna species for which the recreational fishery is probably more significant than the commercial fishery. There are few useful data with which to establish status. SCIENTIFIC NAME STANDARD NAME COMMENT Previously, but incorrectly called northern Thunnus tonggol longtail tuna bluefin tuna. Thunnus tonggol Image © Bernard Yau Background The longtail tuna reaches maturity at lengths of around 60-70 cm, and spawning takes place The longtail tuna (Thunnus tonggol) inhabits during the summer months. The main diet of continental shelf and ocean waters in warm the longtail tuna consists of small pelagic and temperate and tropical regions of the Indo-west demersal fish, but also includes crustaceans and Pacific. It is a common species in Queensland cephalopods. waters but during the summer it can be found as far south as Twofold Bay in southern NSW. Because of their rapid acceleration, longtail Previously called ‘northern bluefin tuna’ in tuna are highly regarded as sports fish but Australia, the longtail tuna is a relatively small, their very dark flesh gives them a low market slender species that grows to a weight of acceptance. Since about 2000 the NSW 36 kg and length of 136 cm; it is more commercial catch has been less than 2 t per commonly 80-90 cm and 10-15 kg. In year, with most taken by the Ocean Trap and comparison, the true ‘northern bluefin’ (Thunnus Line Fishery and very small amounts reported orientalis) can exceed 500 kg in weight and by the Ocean Hauling and Estuary General reach almost 300 cm in length.
    [Show full text]
  • A Global Valuation of Tuna an Update February 2020 (Final)
    Netting Billions: a global valuation of tuna an update February 2020 (Final) ii Report Information This report has been prepared with the financial support of The Pew Charitable Trusts. The views expressed in this study are purely those of the authors. The content of this report may not be reproduced, or even part thereof, without explicit reference to the source. Citation: Macfadyen, G., Huntington, T., Defaux, V., Llewellin, P., and James, P., 2019. Netting Billions: a global valuation of tuna (an update). Report produced by Poseidon Aquatic Resources Management Ltd. Client: The Pew Charitable Trusts Version: Final Report ref: 1456-REG/R/02/A Date issued: 7 February 2020 Acknowledgements: Our thanks to the following consultants who assisted with data collection for this study: Richard Banks, Sachiko Tsuji, Charles Greenwald, Heiko Seilert, Gilles Hosch, Alicia Sanmamed, Anna Madriles, Gwendal le Fol, Tomasz Kulikowski, and Benoit Caillart. 7 February 2020 iii CONTENTS 1. BACKGROUND AND INTRODUCTION ................................................................... 1 2. STUDY METHODOLOGY ......................................................................................... 3 3. TUNA LANDINGS ..................................................................................................... 5 3.1 METHODOLOGICAL ISSUES ....................................................................................... 5 3.2 RESULTS ...............................................................................................................
    [Show full text]
  • Thunnus Alalunga (Bonnaterre, 1788)
    click for previous page SCOMBR Thun 1 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY: SCOMBRIDAE FISHING AREA 51 (W. Indian Ocean) Thunnus alalunga (Bonnaterre, 1788) OTHER SCIENTIFIC NAMES STILL IN USE: Germo alalunga (Bonnaterre, 1788) Thunnus germo (Lacèpede, 1800) VERNACULAR NAMES: FAO: En – Albacore Fr – Germon Sp – Atún blanco (=Albacora) NATIONAL: DISTINCTIVE CHARACTERS: A large species with an elongate, fusiform body, deepest at a more pelvic fin posterior point than in other tunas (at, or only slightly anterior to, second dorsal fin rather than near middle of first dorsal fin base). Eyes rather large; gillrakers 25 to 31 on first arch. Two dorsal fins separated only by a narrow interspace, the second clearly lower than the first and followed by 7 to 9 finlets; pectoral fins remarkably long, usually 30% of fork length or longer, reaching well beyond origin of second dorsal fin (usually up to second dorsal finlet); 2 flaps (interpelvic process) between pelvic fins; anal fin followed by 7 or 8 finlets. Small scales on body; corselet of larger scales developed but not very distinct. Caudal peduncle very slender, bearing on each side a strong interpelvic lateral keel between 2 smaller keels. Liver striated on ventral surface. process Swimbladder present. Colour: back metallic dark blue, lower sides and belly whitish; a faint lateral iridescent blue band runs along sides in live fish; first dorsal fin deep yellow, second dorsal and anal fins light yellow, anal finlets dark; posterior margin of caudal fin white. DISTINGUISHING CHARACTERS OF SIMILAR SPECIES OCCURRING IN THE AREA: All other species of Thunnus: pectoral fins shorter, never reaching beyond posterior end of second dorsal fin base in adults (however, young specimens of T.
    [Show full text]
  • SYNOPSIS on the BIOLOGY of YELLOWFIN TUNA Thunnus (Neothunnus) Albacares (Bonnaterre)1788(PACIFIC OCEAN)
    Species Synopsis No. 16 FAO Fisheries Biology Synopsis No, 59 FIb/S59 (Distribution restricted) SAST - Tuna SYNOPSIS ON THE BIOLOGY OF YELLOWFIN TUNA Thunnus (Neothunnus) albacares (Bonnaterre)1788(PACIFIC OCEAN) Exposé synoptique sur la biologie du thon à nageoires jaunes Thunnus (Neothimnus) albacares (Bonnaterre)1788(Océan Pacifique) Sinopsis sobre la. biología dei atítn de aleta amarilla Thunnus (Neothunnus) aibacares (Bonnaterre) 1788 (Ocano Pacífico) Prepared by MILNER B, SCHAEFER, GORDON C,, BROADHEAD and CRAIG J, ORANGE Inter -American Tropical Tuna Commission La Jolla, California, U, S,, A, ISHERIES DIVISION, BIOLOGY BRANCH tOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS R,ome, 1963 538 FIb/S59 Tuna 1:1 i IDENTITY Body plump, wholly covered with scales, which differ in size and form in different parts i. iTaxonomy of the body.Corselet well deveioped but its boundary is not distinct.Tle lateral line has a 1. 1. 1Definition peculiar curve above the pectorals.Teeth rather feeble.Single series of small conical /Fo11owing Berg (1940) modified according to teeth in both jaws.They are sharp and curve Fraser-Brunner (1950)J inward.Villiform teeth on the vomers palatines and pterygoids.Many dentigerous calcareous Phylum VERTEBRATA plates are found on the palate.The denticles on Subphylum Craniata these plates are quite similar to those found on Superclass Gnathostomata the vomer, palatines and pterygoids. Thus the Series Pisces roof of the mouth-cavity is quite rough, contrary Class Teleostomi to the nearly smooth roof in the Katsuwonidae. Subclass Actinopterygii Three lobes of the liver subequal.Intestine Order Perciformes rather long, with three folds.Pyloric tubes Suborder Scombroidei developed only on the posterior convex side of Family Scombridae the duodenum.
    [Show full text]
  • (Family Scombridae) in the Philippine Waters
    The Philippine Journal of Fisheries 27(2): 23-29 July-December 2020 DOI: 10.31398/tpjf/27.2.2019-0010 SHORT COMMUNICATION Abundance, Distribution, and Diversity of Tuna Larvae (Family Scombridae) in the Philippine waters Laureana T. Nepomuceno1*, Rhoda S. Bacordo², Darlyn Grace Y. Camu¹, Rafael V. Ramiscal³ 1Bureau of Fisheries and Aquatic Resources-Vessel Operation Center, Diliman, Quezon City ²Bureau of Fisheries and Aquatic Resources Region XI-Panabo, Davao del Norte ³Bureau of Fisheries and Aquatic Resources-Capture Fisheries Division, Diliman, Quezon City ABSTRACT The Philippines is a significant producer of tunas globally but has experienced a decline in tuna production in recent years. Thus, efforts to explore and assess new fishing grounds were conducted by the Bureau of Fisheries and Aquatic Resources (BFAR) through M/V DA-BFAR. Assessment of the spawning and nursery grounds of tunas in the country’s EEZ was also undertaken to properly manage and conserve tuna stocks. The said assessment commenced in 2006 and is continuing up to the present. All the data from 2006- 2018 were compiled, including the data from collaborative studies with the University of the Philippines-Marine Science Institute and Southeast Asian Fisheries Development Center to create an overall profile of Scombridae’s abundance and distribution larvae in Philippine waters. The study results showed that family Scombridae is most abundant in the Philippine waters along Batanes-Polillo and areas off Eastern Luzon. Species diversity in Philippine waters was considerably high, with about six to eight dominant species. The most dominant species was Thunnus albacares, followed by Thunnus obesus, Auxis spp., Katsuwonus pelamis, unidentified Scombrid larvae, Rastrelliger spp., Thunnus alalunga, and Thunnus tonggol.
    [Show full text]
  • The Italian Annotated Bibliography on Small Tunas
    SCRS/2020/061 Collect. Vol. Sci. Pap. ICCAT, 77(9): 34-84 (2020) THE ITALIAN ANNOTATED BIBLIOGRAPHY ON SMALL TUNAS C. Piccinetti1, P. Addis2, A. Di Natale3, F. Garibaldi4, F. Tinti5 SUMMARY The Italian scientists have a long tradition of studies and research on many large pelagic species including, among others, the small tunas. The various small tuna species are important for the Italian fishery since many centuries, mostly from a socio-economical point of view. Some non- indigenous species are now present in the ICCAT Convention area. This is the first attempt to list together the many papers published so far by Italian scientists, concerning the biology of these species, the fisheries and many other scientific and cultural issues. The aim of this paper is to provide an annotated bibliography, with specific key words, even if it is surely incomplete, because of the many papers published over the years. This bibliography, which includes 309 annotated citations, was set together to serve the scientists and to help them in finding some rare references that might be useful for their work. RÉSUMÉ Les scientifiques italiens ont une longue tradition d'études et de recherches sur de nombreuses de espèces de grands pélagiques y compris, entre autres, les espèces de thonidés mineurs. Les différentes espèces de thonidés mineurs sont importantes pour la pêche italienne depuis de nombreux siècles, principalement d'un point de vue socio-économique. Certaines espèces non autochtones sont maintenant présentes dans la zone de la Convention de l’ICCAT. Il s'agit de la première tentative de répertorier les nombreux articles publiés à ce jour par des scientifiques italiens concernant la biologie de ces espèces, les pêcheries et de nombreuses autres questions scientifiques et culturelles.
    [Show full text]
  • Effects of Net Depth Reduction to Bigeye Tuna (Thunnus Obesus) Catch
    Effects of Net Depth Reduction to Bigeye Tuna (Thunnus obesus) Catch Item Type article Authors Dela Cruz, William S.; Demo-os, Marlo B.; Tanangonan, Isidro C.; Ramiscal, Rafael V. DOI 10.31398/tpjf/26.2.2018-0008 Download date 29/09/2021 11:13:59 Link to Item http://hdl.handle.net/1834/41173 The Philippine Journal of Fisheries 26(2): 66-71 July - December 2019 DOI: 10.31398/tpjf/26.2.2018-0008 FULL PAPER Effects of net depth reduction to Bigeye tuna (Thunnus obesus) catch William S. Dela Cruz1*, Marlo B. Demo-os2, Isidro C. Tanangonan2 and Rafael V. Ramiscal3 1Vessel Operations Center 2National Marine Fisheries Development Center 3Capture Fisheries Division Bureau of Fisheries and Aquatic Resource (BFAR) PCA Bldg., Elliptical Road, Quezon City, Philippines ABSTRACT Analysis on the catch of Bigeye tuna (Thunnus obesus) from purse seine and ring nets of various net depths was conducted to assess the effect of reducing net depth as a compatible measure the Philippines has implemented and reducing the catch of Bigeye in its internal waters and the Exclusive Economic Zone (EEZ). The study was based on observer reports from ring net and purse seine fishing vessels operating in internal waters and EEZ as well as from group seine operations in the high seas pocket 1. Nets were classed by depth to determine and compare variations on the catch of Bigeye, catch rates and relative proportion, species composition, and fishing grounds. Results indicated that the catch of Bigeye is correlated with the depth of net, with a significantly higher catch of Bigeye in deeper nets.
    [Show full text]
  • Before the Secretary of Commerce Petition to List the Pacific Bluefin Tuna
    Credit: aes256 [CC BY 2.1 jp] via Wikimedia Commons Before the Secretary of Commerce Petition to List the Pacific Bluefin Tuna (Thunnus orientalis) as Endangered Under the Endangered Species Act June 20, 2016 6/20/2016 EXECUTIVE SUMMARY Petitioners formally request that the Secretary of Commerce, through the National Marine Fisheries Service (NMFS), list the Pacific bluefin tuna (Thunnus orientalis) as endangered or in the alternative list the species as threatened, under the federal Endangered Species Act (ESA), 16 U.S.C. §§ 1531 – 1544. Pacific bluefin tuna are severely overfished, and overfishing continues, making extinction a very real risk. According to the 2016 stock assessment by the International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific Ocean (ISC), decades of overfishing have left the population at just 2.6% of its unfished size. Recent fishing rates (2011-2013) were up to three times higher than commonly used reference points for overfishing. The population’s severe decline, in combination with inadequate regulatory mechanisms to end overfishing or reverse the decline, has pushed Pacific bluefin tuna to the edge of extinction. Pacific bluefin tuna are important apex predators in the marine ecosystem and must be conserved. They are one of three bluefin tuna species. These three species are renowned for their large size, unique physiology and biomechanics, and capacity to swim across ocean basins. They are slow-growing, long-lived, endothermic fish. The Pacific bluefin migrates tens of thousands of miles across the largest ocean to feed and spawn, ranging from waters north of Japan to New Zealand in the western Pacific and off California and Mexico in the eastern Pacific.
    [Show full text]
  • 8.2 the Significance of Ocean Deoxygenation for Open Ocean Tunas and Billfishes Shirley Leung,K
    8.2 The significance of ocean deoxygenation for open ocean tunas and billfishes Shirley Leung,K. A. S. Mislan, Barbara Muhling and Richard Brill 8.2 The significance of ocean deoxygenation for open ocean tunas and billfishes Shirley Leung1,*, K. A. S. Mislan1,2, Barbara Muhling3,4 and Richard Brill5 1 School of Oceanography, University of Washington, USA. Email : [email protected] 2 eScience Institute, University of Washington, USA 3 University of California Santa Cruz, Santa Cruz, CA, USA 4 National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA 5 Virginia Institute of Marine Science, Gloucester Point, VA, USA Summary • Tunas and billfishes should be especially sensitive to low ambient oxygen conditions given their high metabolic rates as well as the large differences between their resting and maximum metabolic rates. Although there are many behavioural similarities among the different species, there are also clear and demonstrable differences in growth rates, maximum adult size, physiological abilities, low-oxygen tolerances, and preferred environmental conditions. • Climate change is projected to alter oxygen concentrations throughout the open ocean, with most regions undergoing decreases due to a slowdown in ocean ventilation and a decline in surface oxygen solubility. Between 200 and 700 m depth (a vertical range including depths to which tunas and billfishes commonly descend to forage), the greatest and most certain decreases in oxygen concentrations are projected to occur in the North Pacific and much of the Southern Ocean, while the smallest and least certain changes are projected to occur within the tropical Pacific Ocean.
    [Show full text]
  • Blackfin Tuna Thunnus Atlanticus and Little Tunny Euthynnus Alletteratus
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 12-12-2014 Reproductive parameters of two coastal pelagic fishes off southeast Florida: Blackfin unT a Thunnus atlanticus and Little unnT y Euthynnus alletteratus Sonia Ahrabi-Nejad Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Sonia Ahrabi-Nejad. 2014. Reproductive parameters of two coastal pelagic fishes off southeast Florida: Blackfin Tuna Thunnus atlanticus and Little Tunny Euthynnus alletteratus. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (25) https://nsuworks.nova.edu/occ_stuetd/25. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. NOVA SOUTHEASTERN UNIVERSITY OCEANOGRAPHIC CENTER Reproductive parameters of two coastal pelagic fishes off southeast Florida: Blackfin Tuna Thunnus atlanticus and Little Tunny Euthynnus alletteratus. By Sonia Ahrabi-Nejad Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University
    [Show full text]
  • (Thunnus Albacares) at the Northern Extent of Its Range
    Marine Biology (1997) 130: 119±132 Ó Springer-Verlag 1997 B. A. Block á J. E. Keen á B. Castillo á H. Dewar E. V. Freund á D. J. Marcinek á R. W. Brill á C. Farwell Environmental preferences of yellow®n tuna (Thunnus albacares ) at the northern extent of its range Received: 14 February 1997 / Accepted: 14 April 1997 Abstract We used acoustic telemetry to examine the low®n tuna traveled at speeds ranging from 0.46 to small-scale movement patterns of yellow®n tuna 0.90 m s)1 (0.9 to 1.8 knots h)1) and frequently exhib- (Thunnus albacares) in the California Bight at the ited an oscillatory diving pattern previously suggested to northern extent of their range. Oceanographic pro®les of be a possible strategy for conserving energy during temperature, oxygen, currents and ¯uorometry were swimming. used to determine the relationship between movements and environmental features. Three yellow®n tuna (8 to 16 kg) were tracked for 2 to 3 d. All three ®sh spent the Introduction majority of their time above the thermocline (18 to 45 m in depth) in water temperatures >17.5 °C. In the Cali- Tunas are unique among teleosts because of their ability fornia Bight, yellow®n tuna have a limited vertical dis- to elevate the temperature of their aerobic locomotor tribution due to the restriction imposed by temperature. muscle above that of the ambient water temperature The three ®sh made periodic short dives below the therm- (Carey et al. 1971; Graham 1975). Tuna endothermy ocline (60 to 80 m), encountering cooler temperatures results from a suite of specializations which increase heat (>11 °C).
    [Show full text]