Tropical Storm Lee (AL132011) 2-5 September 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Significant Loss Report
NATIONAL FLOOD INSURANCE PROGRAM Bureau and Statistical Agent W-01049 3019-01 MEMORANDUM TO: Write Your Own (WYO) Principal Coordinators and NFIP Servicing Agent FROM: WYO Clearinghouse DATE: July 18, 2001 SUBJECT: Significant Loss Report Enclosed is a listing of significant flooding events that occurred between February 1978 and October 2000. Only those events that had more than 1500 losses are included on the list. These data were compiled for WYO Companies and others to use to remind their customers of the impact of past flooding events. Please use this information in your marketing efforts as you feel it is appropriate. If you have any questions, please contact your WYO Program Coordinator. Enclosure cc: Vendors, IBHS, FIPNC, WYO Standards Committee, WYO Marketing Committee, ARCHIVEDGovernment Technical Representative APRIL 2018 Suggested Routing: Claims, Marketing, Underwriting 7700 HUBBLE DRIVE • LANHAM, MD 20706 • (301) 731-5300 COMPUTER SCIENCES CORPORATION, under contract to the FEDERAL EMERGENCY MANAGEMENT AGENCY, is the Bureau and Statistical Agent for the National Flood Insurance Program NATIONAL FLOOD INSURANCE PROGRAM SIGNIFICANT FLOOD EVENTS REPORT EVENT YEAR # PD LOSSES AMOUNT PD ($) AVG PD LOSS Massachusetts Flood Feb. 1978 Feb-78 2,195 $20,081,479 $9,149 Louisiana Flood May 1978 May-78 7,284 $43,288,709 $5,943 WV, IN, KY, OH Floods Dec 1978 Dec-78 1,879 $11,934,512 $6,352 PA, CT, MA, NJ, NY, RI Floods Jan-79 8,826 $31,487,015 $3,568 Texas Flood April 1979 Apr-79 1,897 $19,817,668 $10,447 Florida Flood April 1979 Apr-79 -
Floods Caused by Tropical Systems: Potomac River at Point of Rocks, MD
Floods Caused by Tropical Systems: Potomac River at Point of Rocks, MD Latitude: 39.274 Period of Record: 1889-Present Longitude: -77.543 Flood Stage: 16 Last Flood: 12/17/2018 Number of Floods: 121 Date of Flood Crest (ft) Streamflow (cfs) Weather Summary 9/1/1911 16.1 106,000 The first tropical cyclone of the 1911 season moved eastward across North Carolina and Virginia. 10/17/1954 21.02 130,000 Hurricane Hazel dumped 6- 10 inches of rain in the western portion of Virginia. 9/20/1945 21.98 139,000 The 1945 Southeast Florida Hurricane brought gusty winds and heavy rains to the Mid-Atlantic region. 8/20/1955 29.08 214,000 Hurricane Diane made landfall 5 days after Hurricane Connie. Hurricane Diane produced several inches of rain with locally heavier amounts of 10 to 20 inches. 9/26/1975 24.35 126,000 The remnants of Hurricane Eloise combined with a cold front and produced very heavy rainfall in the Mid- Atlantic. Washington, D.C. reported 9.08" of rainfall. Total damage for Virginia was estimated to be $17.2 million. 6/23/1972 37.43 347,000 Hurricane Agnes made landfall again over southeastern New York on June 22 and moved westward into Pennsylvania. Rainfall totals from June 20-25 range from 2-3 inches in the Upper Potomac to 18 inches near Shamokin, Pennsylvania. 10/1/1896 27.2 204,000 A hurricane knocked out communication in Richmond. Several buildings were unroofed in Petersburg. In Buena Vista, the fire department rescued people from their homes. -
FEMA FOIA Log – 2018
Mirandra Abrams, Monique any and all records concerning clients. Kindly provide our office with 10/4/2017 Sambursky a complete copy of clients entire file as it pertains as it pertains to Slone Sklarin Inquiry Number (b) (6) ; Voucher Number (b) (6) ; Payee Verveniotis Reference Number (b) (6) in your possession. 2017-FEFO-02138 - Masters, Mark all contract documents related to temporary staffing services 10/5/2017 contracts for emergency call center support for FEMA in the last five 2017-FEFO-02177 (5) years 2017-FEFO-02187 - (b) (6) all files, correspondence, or other records concerning yourself 10/6/2017 Dallas News Benning, Tom 1) All active FEMA contracts for manufactured housing units. 2) All 10/13/2017 active FEMA individual assistance/technical assistance contracts (IATACs). 3) All pre-event contracts for debris removal that are overseen by FEMA Region 6. 4) All pre-event contracts for housing assistance that are overseen by FEMA Region 6. 5) All noncompetitive disaster relief contracts approved by FEMA since August 14, 2017. 6) All non-local disaster relief contracts approved by FEMA since August 14, 2017, including the written justification 2017-FEFO-02214 for choosing a non-local vendor. FCI Keys, Clay a copy of any and all records related to [FEMA's] response to 10/23/2017 SEAGOVILLE hurricane Katrina, including all memoranda, communications and records of any kind and from any source from August 29, 2005 to 2012. (Date Range for Record Search: From 8/29/2005 To 2017-FEFO-02239 12/1/2012) - (b) (6) Any files related to yourself (Date Range for Record Search: From 10/24/2017 2017-FEFO-02240 1/1/2000 To 9/11/2017) - McClain, Don every individual who has requested assistance by FEMA from both 10/31/2017 Hurricane Irma and Harvey. -
Lessons Learned from Hurricane Sandy and Recommendations for Improved Healthcare and Public Health Response and Recovery for Future Catastrophic Events
Lessons Learned from Hurricane Sandy and Recommendations for Improved Healthcare and Public Health Response and Recovery for Future Catastrophic Events Final Report December 22, 2015 Lessons Learned from Hurricane Sandy and Recommendations for Improved Healthcare and Public Health Response and Recovery for Future Catastrophic Events BACKGROUND A “classic late-season…extraordinarily large hurricane,” 1 Sandy was the 18th named tropical cyclone of the 2012 Atlantic hurricane season. It made landfall along the mid-Atlantic coast near Atlantic City, NJ about 6:30 pm on October 29, 2012 as a Category 1 hurricane with 80- mph maximum sustained winds. But due to its extensive breadth (winds above 40 mph (tropical storm force) stretched 900 miles), Sandy’s real damage was done by a calamitous storm surge that merged with a high tide to produce a storm surge, primarily pounding the New Jersey, New York, and Connecticut coastlines (Figure 1). The United States Geological Survey measured water levels on Staten Island, New York at almost eight feet above ground level. Even after the storm moved on, it impacted inland states, including Ohio, West Virginia, and Indiana, with high winds, soaking rains, and even heavy snow in the Appalachians. 2,3 Very High: > 10,000 people exposed to surge High: 500 – 10,000 people exposed to surge OR > $100 million in wind damage OR > 8” rain Moderate: 100 – 500 people exposed to surge OR $10 - $100 million in wind damage OR 4” - 8” rain Low: no surge impacts OR < $10 million in wind damage OR < 4” rain Figure 1. 2 FEMA Hurricane Sandy Impact Analysis The consequences of the storm’s destructive power were significant. -
UB Powerpoint Template
converge.colorado.edu CONVERGE ethical, coordinated, and scientifically rigorous social science, engineering, and interdisciplinary extreme events research Lori Peek Principal Investigator, CONVERGE, SSEER, and ISEEER Director, Natural Hazards Center Professor, Department of Sociology University of Colorado Boulder Session 2: Collecting, Managing, and Archiving Social and Behavioral Science Data Describe opportunities for identifying and coordinating social science researchers so that we can best share information and publish our data as well as data collection protocols using DOIs, repositories, etc. Discuss some of the overarching challenges and concerns with sharing social science data, such as privacy, data management plans and related IRB policies, duplication vs. replication, etc. converge.colorado.edu 4 Things converge.colorado.edu 1. NSF has funded the CONVERGE initiative converge.colorado.edu Why CONVERGE? Why CONVERGE? • identify and coordinate researchers and research teams; • advance hazards and disaster research; • encourage the publication of data and data collection instruments and protocols (DesignSafe Cyberinfrastructure + CONVERGE). • support and accelerate training and mentoring; • fund virtual reconnaissance, field research, and the development of novel research instruments and data collection protocols; • accelerate the development of mobile applications for social science data collection (NHERI RAPID); Why CONVERGE? 2. NSF Supports Extreme Events Research (EER) Networks converge.colorado.edu Why the EER’s? Disciplinary -
Tropical Topics Week 2021 NWS Florida &
5/21/2021 Tornado Recognition, Impacts & Messaging Scott Spratt; NWS Melbourne | Robert Molleda; NWS Miami 1 TC Tornadoes Tornado Recognition, Impacts & Messaging 2 1 5/21/2021 TC Tornadoes Today’s Presentation Topics • Previous Events • Climatology/Favorable Patterns • Worse Case Scenario • Threat/Impact Messaging Hurricane Irma September 10, 2017 EF-1 Tornado 1124 am | Indialantic, FL • Future Improvements 3 TC Tornadoes What is the relative threat? Which tropical cyclone hazard poses the greatest threat? A. Wind B. Storm Surge Flooding C. Heavy Rainfall Flooding D. Tornadoes E. It depends – on the particular storm/hurricane; and on where you are located 4 2 5/21/2021 The TC Tornado Hazard can be Significant A Specific Example – Tropical Storm Gordon (1994) T Barefoot Bay, FL November 16, 1994 Nearly 500 MH damaged Including 62 destroyed Tropical storm center at 1 Fatality; 40 injuries time of tornado T Tornado location 5 TC Tornadoes Threat Recognition, Impacts & Messaging The primary Tropical Cyclone (TC) tornado challenges are. 1) Predicting tornadoes outside the area where people are prepared for hurricane force winds; or prior to the damaging hurricane wind onset. 2) Predicting tornadoes from weaker systems where tornadoes may pose the greatest threat. 3) Minimizing the amount of over-warning. 4) Successfully Messaging #1-3 6 3 5/21/2021 TC Tornadoes Addressing the primary challenges • Threat Assessment • Impact Recognition • Effective Messaging 7 TC Tornado Development Diagnosing the local tornado hazard • Certain weather factors enhance the tornado potential of landfalling or paralleling systems: ✓ Strong low-level wind shear (maximized in right-front quadrant). ✓ Pockets of dry air (enhance instability; isolated cells). -
Richmond, VA Hurricanes
Hurricanes Influencing the Richmond Area Why should residents of the Middle Atlantic states be concerned about hurricanes during the coming hurricane season, which officially begins on June 1 and ends November 30? After all, the big ones don't seem to affect the region anymore. Consider the following: The last Category 2 hurricane to make landfall along the U.S. East Coast, north of Florida, was Isabel in 2003. The last Category 3 was Fran in 1996, and the last Category 4 was Hugo in 1989. Meanwhile, ten Category 2 or stronger storms have made landfall along the Gulf Coast between 2004 and 2008. Hurricane history suggests that the Mid-Atlantic's seeming immunity will change as soon as 2009. Hurricane Alley shifts. Past active hurricane cycles, typically lasting 25 to 30 years, have brought many destructive storms to the region, particularly to shore areas. Never before have so many people and so much property been at risk. Extensive coastal development and a rising sea make for increased vulnerability. A storm like the Great Atlantic Hurricane of 1944, a powerful Category 3, would savage shorelines from North Carolina to New England. History suggests that such an event is due. Hurricane Hazel in 1954 came ashore in North Carolina as a Category 4 to directly slam the Mid-Atlantic region. It swirled hurricane-force winds along an interior track of 700 miles, through the Northeast and into Canada. More than 100 people died. Hazel-type wind events occur about every 50 years. Areas north of Florida are particularly susceptible to wind damage. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Florida Hurricanes and Tropical Storms
FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book. -
Hurricane Dorian Hits Eastern NC by Chris Collins, Meteorologist
National Weather Service, Newport/Morehead City, NC http://weather.gov/Newport —> Bookmark it!! Fall 2019 Edition Hurricane Dorian hits Eastern NC By Chris Collins, Meteorologist Hurricane Dorian was the fourth named storm, second hurricane, and first major hurri- cane of the 2019 Atlantic hurricane season. Dorian formed on August 24, 2019 from a tropical wave in the Central Atlantic and gradually strengthened as it moved toward the Lesser Antilles, becoming a hurricane on August 28. Rapid intensification occurred, and on August 31, Dorian became a Category 4 hurricane. On September 1, Dorian reached Category 5 intensity, with maximum sustained winds of 185 mph, and a minimum central pressure of 910 mb, while making landfall in Elbow Cay, Bahamas. The ridge of high pressure steering Dorian westward collapsed on September 2, causing Dorian to stall just north of Grand Bahama for about a day. It is the strongest known tropical system to impact the Bahamas. On the morning of September 3, Dorian began to move slowly to- wards the north-northwest. Dorian moved over warmer waters, regaining Category 3 in- tensity by midnight on September 5. In the early hours of September 6, Dorian weakened to Category 1 intensity as it picked up speed and turned northeast. Dorian would pick up speed and move northeast along the North Carolina coast September 6, moving just south of the Crystal Coast, clipping Cape Lookout and eventually making landfall at Cape Hat- teras. CONTENTS Hurricane Dorian 1-2 Skywarn Recognition Day 3 Summer Volunteer 2019 4 Saharan Dust 5 July Heat 6 Path of Hurricane Dorian, August 24-September 6, 2019. -
Service Assessment Hurricane Irene, August
Service Assessment Hurricane Irene, August 21–30, 2011 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photographs: Top Left - NOAA GOES 13 visible image of Hurricane Irene taken at 12:32 UTC (8:32 a.m. EDT) on August 27, 2011, as it was moving northward along the east coast. Map of total storm rainfall for Hurricane Irene (NCEP/HPC) overlaid with photos of Hurricane Irene’s impacts. Clockwise from top right: • Damage to bridge over the Pemigewasset River/East Branch in Lincoln, NH (NH DOT) • Trees across road and utility lines in Guilford, CT (CT DEP) • Damage to homes from storm surge at Cosey Beach, East Haven, CT (CT DEP) • Flooding of Delaware River closes Rt. 29 in Trenton, NJ (State of New Jersey, Office of the Governor) • Damage from storm surge on North Carolina’s Outer Banks (USGS) • Damage to home from an EF1 tornado in Lewes, DE (Sussex County, DE EOC) • River flooding on Schoharie Creek near Lexington, NY (USGS) • Flood damage to historic covered bridge and road in Quechee, VT (FEMA) ii Service Assessment Hurricane Irene, August 21–30, 2011 September 2012 National Oceanic and Atmospheric Administration Dr. Jane Lubchenco, Administrator National Weather Service Laura Furgione, Acting Assistant Administrator for Weather Services iii Preface On August 21-29, 2011, Hurricane Irene left a devastating imprint on the Caribbean and U.S. East Coast. The storm took the lives of more than 40 people, caused an estimated $6.5 billion in damages, unleashed major flooding, downed trees and power lines, and forced road closures, evacuations, and major rescue efforts. -
United States Virgin Islands Territorial Hazard Mitigation Plan Final, July 2019
The Federal Emergency Management Agency (FEMA), in implementing the Disaster Mitigation Act of 2000, initiated far-reaching programs and policies that affected the approach to emergency management of every level of government. The legislation reinforces the importance of hazard mitigation planning and assigns specific responsibilities to state governments, which also apply to its territories such as the US Virgin Islands. The underlying purpose of the United States Virgin Islands Territorial Hazard Mitigation Plan is to identify strategies and actions that can be taken before a disaster strikes, and that can significantly reduce human suffering, damage to property, and the long- term economic impact of natural hazards. In September 2017, an unprecedented event occurred were two catastrophic Category 5 hurricanes tore through the US Virgin Islands within 14 days of each other. The storms crippled the Territory, destroying communications, power grid, and other infrastructures. Homes and businesses were demolished beyond repair. As the territory rebuilds, Hazard and Risk Assessments have been analyzed to determine the adequate Mitigative Efforts to prevent similar destruction from happening again with future storms. Capacity building and collaborative community efforts have also been incorporated into the plan update, which would create initiatives where the Territory would be able to be ultimately self-sustainable. States and territories are required to prepare and submit a mitigation plan and then review and update the plan on a five-year planning cycle The Virgin Islands Territorial Emergency Management Agency (VITEMA) has established a Hazard Mitigation Steering Committee to provide oversight and assist in the Plan Update process. See pages 1-8 as examples, which provide an overview.