Service Assessment Hurricane Irene, August

Total Page:16

File Type:pdf, Size:1020Kb

Service Assessment Hurricane Irene, August Service Assessment Hurricane Irene, August 21–30, 2011 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photographs: Top Left - NOAA GOES 13 visible image of Hurricane Irene taken at 12:32 UTC (8:32 a.m. EDT) on August 27, 2011, as it was moving northward along the east coast. Map of total storm rainfall for Hurricane Irene (NCEP/HPC) overlaid with photos of Hurricane Irene’s impacts. Clockwise from top right: • Damage to bridge over the Pemigewasset River/East Branch in Lincoln, NH (NH DOT) • Trees across road and utility lines in Guilford, CT (CT DEP) • Damage to homes from storm surge at Cosey Beach, East Haven, CT (CT DEP) • Flooding of Delaware River closes Rt. 29 in Trenton, NJ (State of New Jersey, Office of the Governor) • Damage from storm surge on North Carolina’s Outer Banks (USGS) • Damage to home from an EF1 tornado in Lewes, DE (Sussex County, DE EOC) • River flooding on Schoharie Creek near Lexington, NY (USGS) • Flood damage to historic covered bridge and road in Quechee, VT (FEMA) ii Service Assessment Hurricane Irene, August 21–30, 2011 September 2012 National Oceanic and Atmospheric Administration Dr. Jane Lubchenco, Administrator National Weather Service Laura Furgione, Acting Assistant Administrator for Weather Services iii Preface On August 21-29, 2011, Hurricane Irene left a devastating imprint on the Caribbean and U.S. East Coast. The storm took the lives of more than 40 people, caused an estimated $6.5 billion in damages, unleashed major flooding, downed trees and power lines, and forced road closures, evacuations, and major rescue efforts. The effects of Hurricane Irene were felt from the U.S. Virgin Islands and Puerto Rico to the Canadian Maritime Provinces, and as far west as the Catskill Mountains of New York. The storm produced widespread, devastating flooding in Vermont, New York, New Jersey, and parts of New Hampshire and damaging storm surge along the coasts of North Carolina and Connecticut. Hurricane Irene left 8 million people without power—some for as long as a week—and resulted in the closure of several major airports, the suspension of Amtrak train service, and the historic closure of the New York City mass transit system. In response to the significant effects of the event, the National Oceanic and Atmospheric Administration formed a service assessment team to document and evaluate the performance and overall effectiveness of National Weather Service products and services, decision support, collaboration and communication, operational procedures, and preparedness activities. The NWS should thoroughly consider implementing the team’s recommendations as they are written; however, the organization may implement alternate solutions to resolve the findings and meet the intent of the service assessment team's recommendations. Alternate solutions may be implemented because they are, for example, more effective, more rapidly deployed, or less costly. The National Weather Service will use the findings and recommendations from this assessment to improve the quality of products and services, enhance awareness, and help guard the Nation against loss of life and property. Kathryn D. Sullivan, Ph.D. Assistant Secretary for Environmental Observation and Prediction Deputy Administrator National Oceanic and Atmospheric Administration September 2012 iv Table of Contents Page Service Assessment Team ………………………………………………………………….….……..... ix Executive Summary ........................................................................................................................ x 1. Introduction ............................................................................................................................... 1 1.1. NWS Mission ................................................................................................................... 1 1.2. Purpose of Assessment ..................................................................................................... 1 1.3. Methodology ..................................................................................................................... 1 1.4. Social Science and Communication Issues ...................................................................... 3 2. Summary of Hydrometeorological Event ................................................................................. 4 2.1. Antecedent Conditions ..................................................................................................... 4 2.2. Track and Intensity ........................................................................................................... 5 2.3. Wind ................................................................................................................................. 6 2.4. Storm Surge ...................................................................................................................... 7 2.5. Rainfall ........................................................................................................................... 10 3. Impacts .................................................................................................................................... 12 3.1. Damage ........................................................................................................................... 12 3.2. Transportation ................................................................................................................. 13 4. Coordination/Collaboration .................................................................................................... 15 4.1. Internal ............................................................................................................................ 15 4.1.1. NWS and Other NOAA Offices ......................................................................... 15 4.1.2. Field Office and NHC ........................................................................................ 16 4.1.3. WFOs and RFCs ................................................................................................. 17 4.1.4. WFOs and Emergency Response Specialists ..................................................... 19 4.1.5. NWS Regional Headquarters with WFOs and RFCs ......................................... 19 4.2. Federal Partners .............................................................................................................. 20 4.2.1. Federal Emergency Management Agency (FEMA) ........................................... 20 4.2.2. USGS and USACE ............................................................................................. 23 4.3. Private Sector Collaboration ........................................................................................... 23 4.4. Foreign Governments ..................................................................................................... 24 4.5. Liaison Challenges ......................................................................................................... 24 4.5.1. The Martin Luther King, Jr. Memorial Dedication Ceremony .......................... 24 4.6. Breakpoints ..................................................................................................................... 27 5. Resource Allocation ................................................................................................................ 29 5.1. Staffing ........................................................................................................................... 29 5.1.1. Prepositioning ..................................................................................................... 29 5.1.2. Scheduling .......................................................................................................... 30 5.1.3. Hiring .................................................................................................................. 31 5.2. Training Issues ................................................................................................................ 32 5.3. Service Backup ............................................................................................................... 35 5.4. Equipment and Technical Support ................................................................................. 37 5.4.1. Workstation Availability .................................................................................... 38 5.4.2. VSAT and OpsNet .............................................................................................. 39 5.5. Facilities ......................................................................................................................... 42 6. Decision Support Services ...................................................................................................... 43 v 6.1. Products .......................................................................................................................... 43 6.1.1. Inland Flood Warnings ....................................................................................... 43 6.1.2. Hurricane Local Statement ................................................................................. 46 6.1.3. Tropical Cyclone Watches and Warnings .......................................................... 47 6.1.4. Storm Surge ........................................................................................................ 50 6.1.5. Wind and Severe Weather .................................................................................
Recommended publications
  • Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear
    1290 MONTHLY WEATHER REVIEW VOLUME 142 Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear ERIC W. UHLHORN NOAA/AOML/Hurricane Research Division, Miami, Florida BRADLEY W. KLOTZ Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida TOMISLAVA VUKICEVIC,PAUL D. REASOR, AND ROBERT F. ROGERS NOAA/AOML/Hurricane Research Division, Miami, Florida (Manuscript received 6 June 2013, in final form 19 November 2013) ABSTRACT Wavenumber-1 wind speed asymmetries in 35 hurricanes are quantified in terms of their amplitude and phase, based on aircraft observations from 128 individual flights between 1998 and 2011. The impacts of motion and 850–200-mb environmental vertical shear are examined separately to estimate the resulting asymmetric structures at the sea surface and standard 700-mb reconnaissance flight level. The surface asymmetry amplitude is on average around 50% smaller than found at flight level, and while the asymmetry amplitude grows in proportion to storm translation speed at the flight level, no significant growth at the surface is observed, contrary to conventional assumption. However, a significant upwind storm-motion- relative phase rotation is found at the surface as translation speed increases, while the flight-level phase remains fairly constant. After removing the estimated impact of storm motion on the asymmetry, a significant residual shear direction-relative asymmetry is found, particularly at the surface, and, on average, is located downshear to the left of shear. Furthermore, the shear-relative phase has a significant downwind rotation as shear magnitude increases, such that the maximum rotates from the downshear to left-of-shear azimuthal location.
    [Show full text]
  • 1- Tropical Cyclone Report Hurricane Isabel 6-19 September 2003 Jack Beven and Hugh Cobb National Hurricane Center Revised 1 Ju
    Tropical Cyclone Report Hurricane Isabel 6-19 September 2003 Jack Beven and Hugh Cobb National Hurricane Center revised 1 July 2004 Updated 9 September 2014 for U.S. damage Hurricane Isabel was a long-lived Cape Verde hurricane that reached Category 5 status on the Saffir-Simpson Hurricane Scale. It made landfall near Drum Inlet on the Outer Banks of North Carolina as a Category 2 hurricane. Isabel is considered to be one of the most significant tropical cyclones to affect portions of northeastern North Carolina and east-central Virginia since Hurricane Hazel in 1954 and the Chesapeake-Potomac Hurricane of 1933. a. Synoptic History Isabel formed from a tropical wave that moved westward from the coast of Africa on 1 September. Over the next several days, the wave moved slowly westward and gradually became better organized. By 0000 UTC 5 September, there was sufficient organized convection for satellite- based Dvorak intensity estimates to begin. Development continued, and it is estimated that a tropical depression formed at 0000 UTC 6 September, with the depression becoming Tropical Storm Isabel six hours later. The “best track” chart of Isabel is given in Fig. 1, with the wind and pressure histories shown in Figs. 2 and 3, respectively. The best track positions and intensities are listed in Table 1. Isabel turned west-northwestward on 7 September and intensified into a hurricane. Strengthening continued for the next two days while Isabel moved between west-northwest and northwest. Isabel turned westward on 10 September and maintained this motion until 13 September on the south side of the Azores-Bermuda High.
    [Show full text]
  • Hurricane Outer Rainband Mesovortices
    Presented at the 24th Conference on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, May 31 2000 EXAMINING THE PRE-LANDFALL ENVIRONMENT OF MESOVORTICES WITHIN A HURRICANE BONNIE (1998) OUTER RAINBAND 1 2 2 1 Scott M. Spratt , Frank D. Marks , Peter P. Dodge , and David W. Sharp 1 NOAA/National Weather Service Forecast Office, Melbourne, FL 2 NOAA/AOML Hurricane Research Division, Miami, FL 1. INTRODUCTION Tropical Cyclone (TC) tornado environments have been studied for many decades through composite analyses of proximity soundings (e.g. Novlan and Gray 1974; McCaul 1986). More recently, airborne and ground-based Doppler radar investigations of TC rainband-embedded mesocyclones have advanced the understanding of tornadic cell lifecycles (Black and Marks 1991; Spratt et al. 1997). This paper will document the first known dropwindsonde deployments immediately adjacent to a family of TC outer rainband mesocyclones, and will examine the thermodynamic and wind profiles retrieved from the marine environment. A companion paper (Dodge et al. 2000) discusses dual-Doppler analyses of these mesovortices. On 26 August 1998, TC Bonnie made landfall as a category two hurricane along the North Carolina coast. Prior to landfall, two National Oceanographic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD) aircraft conducted surveillance missions offshore the Carolina coast. While performing these missions near altitudes of 3.5 and 2.1 km, both aircraft were required to deviate around intense cells within a dominant outer rainband, 165 to 195 km northeast of the TC center. On-board radars detected apparent mini-supercell signatures associated with several of the convective cells along the band.
    [Show full text]
  • Significant Loss Report
    NATIONAL FLOOD INSURANCE PROGRAM Bureau and Statistical Agent W-01049 3019-01 MEMORANDUM TO: Write Your Own (WYO) Principal Coordinators and NFIP Servicing Agent FROM: WYO Clearinghouse DATE: July 18, 2001 SUBJECT: Significant Loss Report Enclosed is a listing of significant flooding events that occurred between February 1978 and October 2000. Only those events that had more than 1500 losses are included on the list. These data were compiled for WYO Companies and others to use to remind their customers of the impact of past flooding events. Please use this information in your marketing efforts as you feel it is appropriate. If you have any questions, please contact your WYO Program Coordinator. Enclosure cc: Vendors, IBHS, FIPNC, WYO Standards Committee, WYO Marketing Committee, ARCHIVEDGovernment Technical Representative APRIL 2018 Suggested Routing: Claims, Marketing, Underwriting 7700 HUBBLE DRIVE • LANHAM, MD 20706 • (301) 731-5300 COMPUTER SCIENCES CORPORATION, under contract to the FEDERAL EMERGENCY MANAGEMENT AGENCY, is the Bureau and Statistical Agent for the National Flood Insurance Program NATIONAL FLOOD INSURANCE PROGRAM SIGNIFICANT FLOOD EVENTS REPORT EVENT YEAR # PD LOSSES AMOUNT PD ($) AVG PD LOSS Massachusetts Flood Feb. 1978 Feb-78 2,195 $20,081,479 $9,149 Louisiana Flood May 1978 May-78 7,284 $43,288,709 $5,943 WV, IN, KY, OH Floods Dec 1978 Dec-78 1,879 $11,934,512 $6,352 PA, CT, MA, NJ, NY, RI Floods Jan-79 8,826 $31,487,015 $3,568 Texas Flood April 1979 Apr-79 1,897 $19,817,668 $10,447 Florida Flood April 1979 Apr-79
    [Show full text]
  • A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding
    AUGUST 2020 Y A N G E T A L . 1663 A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding KUN YANG,VLADIMIR A. PARAMYGIN, AND Y. PETER SHENG Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida (Manuscript received 16 July 2019, in final form 2 March 2020) ABSTRACT A prototype of an efficient and accurate rapid forecasting and mapping system (RFMS) of storm surge is presented. Given a storm advisory from the National Hurricane Center, the RFMS can generate a coastal inundation map on a high-resolution grid in 1 min (reference system Intel Core i7–3770K). The foundation of the RFMS is a storm surge database consisting of high-resolution simulations of 490 optimal storms generated by a robust storm surge modeling system, Curvilinear-Grid Hydrodynamics in 3D (CH3D-SSMS). The RFMS uses an efficient quick kriging interpolation scheme to interpolate the surge response from the storm surge database, which considers tens of thousands of combinations of five landfall parameters of storms: central pressure deficit, radius to maximum wind, forward speed, heading direction, and landfall location. The RFMS is applied to southwest Florida using data from Hurricane Charley in 2004 and Hurricane Irma in 2017, and to the Florida Panhandle using data from Hurricane Michael in 2018 and validated with observed high water mark data. The RFMS results agree well with observation and direct simulation of the high-resolution CH3D- SSMS. The RFMS can be used for real-time forecasting during a hurricane or ‘‘what-if’’ scenarios for miti- gation planning and preparedness training, or to produce a probabilistic flood map.
    [Show full text]
  • Investigation and Prediction of Hurricane Eyewall
    INVESTIGATION AND PREDICTION OF HURRICANE EYEWALL REPLACEMENT CYCLES By Matthew Sitkowski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 4/9/12 The dissertation is approved by the following members of the Final Oral Committee: James P. Kossin, Affiliate Professor, Atmospheric and Oceanic Sciences Daniel J. Vimont, Professor, Atmospheric and Oceanic Sciences Steven A. Ackerman, Professor, Atmospheric and Oceanic Sciences Jonathan E. Martin, Professor, Atmospheric and Oceanic Sciences Gregory J. Tripoli, Professor, Atmospheric and Oceanic Sciences i Abstract Flight-level aircraft data and microwave imagery are analyzed to investigate hurricane secondary eyewall formation and eyewall replacement cycles (ERCs). This work is motivated to provide forecasters with new guidance for predicting and better understanding the impacts of ERCs. A Bayesian probabilistic model that determines the likelihood of secondary eyewall formation and a subsequent ERC is developed. The model is based on environmental and geostationary satellite features. A climatology of secondary eyewall formation is developed; a 13% chance of secondary eyewall formation exists when a hurricane is located over water, and is also utilized by the model. The model has been installed at the National Hurricane Center and has skill in forecasting secondary eyewall formation out to 48 h. Aircraft reconnaissance data from 24 ERCs are examined to develop a climatology of flight-level structure and intensity changes associated with ERCs. Three phases are identified based on the behavior of the maximum intensity of the hurricane: intensification, weakening and reintensification.
    [Show full text]
  • Worldwide Marine Radiofacsimile Broadcast Schedules
    WORLDWIDE MARINE RADIOFACSIMILE BROADCAST SCHEDULES U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC and ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE January 14, 2021 INTRODUCTION Ships....The U.S. Voluntary Observing Ship (VOS) program needs your help! If your ship is not participating in this worthwhile international program, we urge you to join. Remember, the meteorological agencies that do the weather forecasting cannot help you without input from you. ONLY YOU KNOW THE WEATHER AT YOUR POSITION!! Please report the weather at 0000, 0600, 1200, and 1800 UTC as explained in the National Weather Service Observing Handbook No. 1 for Marine Surface Weather Observations. Within 300 nm of a named hurricane, typhoon or tropical storm, or within 200 nm of U.S. or Canadian waters, also report the weather at 0300, 0900, 1500, and 2100 UTC. Your participation is greatly appreciated by all mariners. For assistance, contact a Port Meteorological Officer (PMO), who will come aboard your vessel and provide all the information you need to observe, code and transmit weather observations. This publication is made available via the Internet at: https://weather.gov/marine/media/rfax.pdf The following webpage contains information on the dissemination of U.S. National Weather Service marine products including radiofax, such as frequency and scheduling information as well as links to products. A listing of other recommended webpages may be found in the Appendix. https://weather.gov/marine This PDF file contains links to http pages and FTPMAIL commands. The links may not be compatible with all PDF readers and e-mail systems. The Internet is not part of the National Weather Service's operational data stream and should never be relied upon as a means to obtain the latest forecast and warning data.
    [Show full text]
  • Impact of Hurricane Irene and Tropical Storm Lee on Watershed Hydrology and Biogeochemistry from North Carolina to Maine, USA
    Biogeochemistry https://doi.org/10.1007/s10533-018-0423-4 In the path of the Hurricane: impact of Hurricane Irene and Tropical Storm Lee on watershed hydrology and biogeochemistry from North Carolina to Maine, USA Philippe Vidon . Diana L. Karwan . A. Scott Andres . Shreeram Inamdar . Sujay Kaushal . Jonathan Morrison . John Mullaney . Donald S. Ross . Andrew W. Schroth . James B. Shanley . Byungman Yoon Received: 27 September 2017 / Accepted: 25 January 2018 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract Although many climate predictions sug- all cases, these storms generated unprecedented gest that the frequency and intensity of large storm changes in water quality (concentrations, loads), from events might increase in the coming decades, few tenfold increases in DOC and 100-fold increases in studies document the full impact of such events along POC in Maryland, to 100-fold increases in TSS their path. Here, we synthesize information on the concentrations in Pennsylvania. Overbank flooding impact of Hurricane Irene (formed August 21 2011) and up to 200-year streamflow events were recorded in and Tropical Storm Lee (formed August 30, 2011) on New York and Vermont. In many cases, particulate erosion and sediment transport, lake metabolism, loads (e.g. POC, PP, TSS) occurring during Irene and riparian hydrology and biogeochemistry, and stream Lee represented more than 30% of the annual load. water quality, from North Carolina to Maine. In almost The dominance of particulate exports over solutes during Irene and Lee is consistent with the mobiliza- tion of normally immobile sediment pools, and Responsible Editor: Arthur J. Gold. P.
    [Show full text]
  • Hurricane Irene Menaces Smaller Islands of Bahamas
    Deseret News Church News Print Subscriptions U . S . & W O R L D W O R L D & N AT I O N B U S I N E S S Hurricane Irene menaces smaller islands of Bahamas By Associated Press Aug 24, 2011, 4:56pm MDT This NOAA satellite image taken Wednesday, Aug. 24, 2011 at 1:45 a.m. EDT shows Hurricane Irene, a category 2 storm with winds up to 100 mph and located about 400 miles southeast of Nassau. The storm is expected to persist northwestward, over the Bahamas, remaining east of Florida, and heads towards the Carolina coast. US landfall is likely on Saturday as a category 3 storm over the Carolinas. Meanwhile, a frontal boundary moving through the Great Lakes and Midwest kick up a few more scattered showers and thunderstorms. Some of these storms turn severe with strong winds and hail. Hot temperatures return to the Plains as a ridge builds in behind this trough. | WEATHER UNDERGROUND, AP PHOTO NASSAU, Bahamas — A large and powerful Hurricane Irene was roaring its way Wednesday across the entire Bahamas archipelago, knocking down trees and tearing up roofs and posing the most severe threat to the smallest and least populated islands, ocials said. Bahamian Prime Minister Hubert Ingraham said there have been no major injuries or deaths according to preliminary reports he has been receiving from throughout the widely scattered islands. But he added that they would not know the full extent of damage from the Category 3 storm until it is clear of the country on Friday.
    [Show full text]
  • The Operational Challenges of Forecasting TC Intensity Change in the Presence of Dry Air and Strong Vertical Shear
    The Operational Challenges of Forecasting TC Intensity Change in the Presence of Dry Air and Strong Vertical Shear Jamie R. Rhome,* and Richard D. Knabb NOAA/NWS/NCEP/Tropical Prediction Center/National Hurricane Center, Miami, FL 1. INTRODUCTION to an incomplete specification of the initial moisture conditions, dynamical model forecasts of middle- to Tropical cyclone (TC) intensity changes involve upper-tropospheric humidity often have large errors. complex interactions between many environmental Beyond the problems with observing and forecasting factors, including vertical wind shear and the humidity, TC intensity forecasts become particularly thermodynamic properties of the ambient atmosphere challenging when dry air is accompanied by moderate to and ocean. While the effects of each factor are not strong vertical shear. completely understood, even less is known about the Much of the current understanding on the response effects of these factors working in tandem. Emanuel et of a TC to vertical shear comes from idealized studies. It al. (2004) proposed that “storm intensity in a sheared has been shown that strong vertical shear typically results environment is sensitive to the ambient humidity” and in the convective pattern of the TC becoming cautioned “against considering the various environmental increasingly asymmetric followed by a downshear tilt of influences on storm intensity as operating independently the vortex (Frank and Ritchie 2001, Bender 1997). To from each other.” Along these lines, Dunion and Velden keep the tilted TC vortex quasi-balanced, the (2004) have examined the combined effects of vertical diabatically-driven secondary circulation aligns itself to shear and dry air on TCs during interactions with the produce an asymmetry in vertical motion that favors Saharan Air Layer (SAL).
    [Show full text]
  • NOTICE: This Publication Is Available At
    Department of Commerce • National Oceanic & Atmospheric Administration • National Weather Service NATIONAL WEATHER SERVICE INSTRUCTION 10-807 OCTOBER 5, 2017 Operations and Services Aviation Weather Services, NWSPD 10-8 INTERNATIONAL SERVICE AGREEMENTS NOTICE: This publication is available at: http://www.nws.noaa.gov/directives/. OPR: W/AFS24 (M. Graf) Certified by: W/AFS24 (W. Bauman) Type of Issuance: Routine SUMMARY OF REVISIONS: This directive supersedes NWSI 10-807, “International Service Agreements,” dated May 19, 2009. Changes were made to reflect the NWS Headquarters reorganization effective on April 1, 2015. No content changes were made. Signed 9/21/2017 Andrew D. Stern Date Director Analyze, Forecast, and Support Office NWSI 10-807 OCTOBER 5, 2017 International Service Agreements Table of Contents Page 1. Purpose. ..................................................................................................................................... 2 2. Background. ............................................................................................................................... 2 3. Definition of Unique Terms. ................................................................................................................ 3 4. General ............................................................................................................................................ 3 5. Correspondence with Foreign Meteorological Services. ................................................................. 4 6. Services Provided.
    [Show full text]
  • UB Powerpoint Template
    converge.colorado.edu CONVERGE ethical, coordinated, and scientifically rigorous social science, engineering, and interdisciplinary extreme events research Lori Peek Principal Investigator, CONVERGE, SSEER, and ISEEER Director, Natural Hazards Center Professor, Department of Sociology University of Colorado Boulder Session 2: Collecting, Managing, and Archiving Social and Behavioral Science Data Describe opportunities for identifying and coordinating social science researchers so that we can best share information and publish our data as well as data collection protocols using DOIs, repositories, etc. Discuss some of the overarching challenges and concerns with sharing social science data, such as privacy, data management plans and related IRB policies, duplication vs. replication, etc. converge.colorado.edu 4 Things converge.colorado.edu 1. NSF has funded the CONVERGE initiative converge.colorado.edu Why CONVERGE? Why CONVERGE? • identify and coordinate researchers and research teams; • advance hazards and disaster research; • encourage the publication of data and data collection instruments and protocols (DesignSafe Cyberinfrastructure + CONVERGE). • support and accelerate training and mentoring; • fund virtual reconnaissance, field research, and the development of novel research instruments and data collection protocols; • accelerate the development of mobile applications for social science data collection (NHERI RAPID); Why CONVERGE? 2. NSF Supports Extreme Events Research (EER) Networks converge.colorado.edu Why the EER’s? Disciplinary
    [Show full text]