Comparative Investigation of Fusion Reactions for Space Propulsion Applica- Tions

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Investigation of Fusion Reactions for Space Propulsion Applica- Tions Trans. JSASS Space Tech. Japan Vol. 7, No. ists26, pp. Pb_59-Pb_63, 2009 Comparative Investigation of Fusion Reactions for Space Propulsion Applica- tions By Dejan PETKOW, Georg HERDRICH, Rene LAUFER, Roland GABRIELLI and Oliver ZEILE Institute of Space Systems, Universitaet Stuttgart, Germany (Received May 2nd, 2008) A space propulsion system based on the acceleration of fusion ash is discussed by use of the energy balance equation and a hypothetic ash extraction and acceleration system. The fusion reactions D-T, D-3He, p-11 B and 3He-3He are investi- gated under the condition of thermal generation of high energy ions and equal plasma system conditions in terms of T i/T e relation and plasma beta. External plasma heating is defined by an equal efficiency concerning thermal energy conversion and energy transfer back into the plasma. There is no additional external heating applied to the fusion system. Power losses are based on neutrons, bremsstrahlung, synchrotron radiation and convection. We compare the plasma pressures, volumet- ric power densities, magnetic field strengths, heat waste, exhaust velocities and thrust density levels depending on the tem- perature and the hot ion mode. We show that, based on the fusion products, the exhaust velocity may reach several percent of speed of light in the case of 3He-3He. The temperature driven radiation losses of the 3He-3He reaction puts the purely aneutronic property into perspective. The mass flow rate densities of the considered fusion products are very low leading to very low thrust power densities. Considering the supposed system masses of a fusion based space vessel the thrust density levels are negligible and reach the order of 1 N/m 3 near the optimum in the case of 3He-3He. We conclude that a propulsion system based on the acceleration of fusion products or ash is unfeasible for typical manned missions e.g. to Mars. Key Words: Space Propulsion, Fusion, Aneutronic, Plasma Nomenclature Subscripts F :fusion D :deuterium (-) m :magnetic T :tritium (-) th :thermal p :proton (-) Br :bremsstrahlung 11 :boron-11 (-) B Sy :synchrotron radiation 3He :helium-3 (-) N :neutron 3 P :power density (W/m ) e :electron p :pressure (Pa) i :ion species E :energy (J) j :species counter 2 σ :cross section (barn, m ) k :power source T :temperature (keV) Superscripts :ion temperature (keV) ´ :temperature in K Ti v :velocity (m/s) 1. Introduction kB :Boltzmann constant (J/K) Nuclear fusion is investigated as a future option for M : effective mole mass (kg/mol) eff commercial energy production 1-3) and discussed as a fu- n -3 :particle density (m ) ture option for space propulsion purposes 4-6). The diffi- :Avogadro constant (mol -1) N A culties in realizing a fusion based propulsion system are Q :power factor (-) fundamental as they are in case of terrestrial fusion reac- tors: fusion plasmas burn at extremely high temperatures S :constant (~) and one of the core problems is to achieve these tempera- Z :charge number (-) tures. Other problems concern e.g. the high temperature B :magnetic field (T) resistivity of the reactor material and the generation of c* :constant (1/keV) very high magnetic field strength for the plasma confine- η :energy absorption coefficient for reactor wall(-) ment. :relation of product ion energy to total Besides that, fusion based energy production on Earth ζ fusion energy release (-) demands technologies which are quite different from ϕ :hot ion mode temperature relation (-) those for space applications in terms of complexity, reli- δik :Kronecker symbol (-) ability, redundancy, accessibility, mass, heat and cost as- 7) µ :vacuum permeability (Vs/Am) pects . The first three aspects are strongly connected to 0 each other leading to the statement that the space propul- Copyright© 2009 by the Japan Society for Aeronautical and Space Sciences and ISTS. All rights reserved. Pb_59 Trans. JSASS Space Tech. Japan Vol. 7, No. ists26 (2009) sion system has to be as simple as possible. The D-T reac- size. It is assumed that a hypothetical mechanism exists tion is usually disregarded due to the intense production which perfectly extracts and accelerates the fusion ash of neutrons which heat up the reactor wall. Since moving after its thermalization. Wall erosion effects are ne- parts e.g. for calorimetric energy conversion are to be glected. avoided as far as possible and heat waste can be removed only by large and heavy radiators, heat losses to the wall 2.1. Propellant data have to be minimized. Correspondingly, this leads to the We discuss the four most popular (neutronic as well as common conclusion that aneutronic fusion reactions are aneutronic) fusion propellants: the most promising candidates. However, it is well known 1. D + T 4He + n + 17.6MeV that the aneutronic 3He-3He reaction needs extremely high 2. D + 3He 4He + p + 18.3MeV temperatures for ignition and operation which is accom- 3. p + 11 B 3 4He + 8.7MeV panied by strong radiation losses of just another type 4. 3He + 3He 4He +2p + 12.9MeV (bremsstrahlung) but with the same wall heating effect. As For the sake of simplicity, side reactions as e.g. the a consequence, it is unknown which fusion propellant is D-D reactions are neglected and the fusion plasma is con- more feasible for space propulsion. It is the objective of sidered as homogeneous. The fusion rates base on the re- this work to compare of the four most popular fusion pro- action rate coefficients <σv> which are generally ob- pellants which are usually discussed separately and not on tained by averaging the fusion cross section over an equi- a system level. librium energy distribution. The structure and proceeding of this study is as follows: 1E+01 In section 2 the theoretical basics are briefly introduced. After introducing system based model, the power loss and 1E+00 gain terms are briefly introduced and balanced by apply- 1E+01 1E+02 1E+03 1E+04 1E+05 ing system parameters (efficiencies) which are equal for all propellants. The balance equation leads to an extended 1E-01 burn criterion expressed by the product of ion particle barn / σ σ σ σ density ni times the energy confinement time τE. Results like volumetric power densities, mass flow rate densities, 1E-02 D-T D-He3 exhaust velocities and thrust density levels for different p-11B fuel ashes are discussed in section 3. The key aspects of 3He-3He 1E-03 this investigation are summarized and conclusions are E / keV made in section 4. 11, 12) Fig. 2. Fusion cross section data. 2. Theoretical Considerations Hence, it is important to know the fundamental data – the cross sections, see Fig. 2. The numerically integrated Generally, a space vessel consists of many systems, reaction rate constants are depicted in Fig. 3. subsystems etc. Within the scope of this work we consider fusion plasma, reactor wall, energy conversion, heat trans- port, radiator and energy recirculation as separate subsys- tems or system properties which are connected by power fluxes. The simplified model is depicted in Fig. 1. Fig. 3. Reaction rate constants. 2.1. Energy balance Fig. 1. Simplified model of the fusion propulsion system In order to make a comparison between the discussed The subsystem fusion plasma gains power from the fusion propellants we use the energy balance equation. fusion reactions and from recirculated power but looses Radiative losses are given 8 by: power to the wall. Outside the reactor wall energy con- P S T n n Z 2 version devices are assumed converting heat to electric Br = Br e e ∑( j j ) (1) j power. Unconvertable heat waste is transported to the and radiators. 2 * The fusion reactor in this study is based on a closed PSy = SSy B neTe 1( + c Te ) . (2) magnetic plasma confinement and has no defined shape or The neutron power is defined as: Pb_60 D. PETKOW et al.: Comparative Investigation of Fusion Reactions for Space Propulsion Applications PN = 1( − ζ )PF . (3) strengths for the confinement following Eq. 7. The results Thermal losses are described as follows: are depicted in Fig. 5. The D-T reaction demands the low- est magnetic field strengths (1-10 T) which represents in Pth = Eth /τ E . (4) the area around the optimum point available technology. Neutrons, bremsstrahlung and thermal losses are fully For 3He-3He the magnetic fields are very advanced and in absorbed by the wall as well as 10 % of the synchrotron the range of approximately 300 T. radiation. It is assumed that 30 % of this heat wall load is Figure 6 shows the plasma power density for all propel- converted into electric energy and coupled back into the lants and for different hot ion modes. The D-T plasma has plasma leading to a sort of external heating P . The sec- ext the lowest plasma density (1-10 MW/m 3). The power den- ond gain term is represented by: sity of 3He-3He is four orders of magnitude higher than 3 ni nk that (10-100 GW/m ). PF = ζ < σv > EF (5) 1 + δ ik 1 + δ ik 1E+08 3He- 3He Due to ζ the neutron losses affect only Pext since they 1E+07 cannot be confined by the magnetic field and are therefore 1E+06 p- 11 B D-T not explicitly treated as a loss in the balance equation. D- 3He Introducing the hot ion mode one can substitute the elec- 1E+05 1E+04 tron temperature using the relation Ti/T e = φ. A hot ion / bar th φ=1 mode is characterized by φ > 1 and reduces the losses via p 1E+03 φ=2 15, 16) bremsstrahlung which is a well known effect .
Recommended publications
  • Nuclear Fusion
    Copyright © 2016 by Gerald Black. Published by The Mars Society with permission NUCLEAR FUSION: THE SOLUTION TO THE ENERGY PROBLEM AND TO ADVANCED SPACE PROPULSION Gerald Black Aerospace Engineer (retired, 40+ year career); email: [email protected] Currently Chair of the Ohio Chapter of the Mars Society Presented at Mars Society Annual Convention, Washington DC, September 22, 2016 ABSTRACT Nuclear fusion has long been viewed as a potential solution to the world’s energy needs. However, the government sponsored megaprojects have been floundering. The two multi-billion- dollar flagship programs, the International Tokamak Experimental Reactor (ITER) and the National Ignition Facility (NIF), have both experienced years of delays and a several-fold increase in costs. The ITER tokamak design is so large and complex that, even if this approach succeeds, there is doubt that it would be economical. After years of testing at full power, the NIF facility is still far short of achieving its goal of fusion ignition. But hope is not lost. Several private companies have come up with smaller and simpler approaches that show promise. This talk highlights the progress made by one such private company, namely LPPFusion (formerly called Lawrenceville Plasma Physics). LPPFusion is developing focus fusion technology based on the dense plasma focus device and hydrogen-boron 11 fuel. This approach, if it works, would produce a fusion power generator small enough to fit in a truck. This device would produce no radioactivity, there would be no possibility of a meltdown or other safety issues, and it would be more economical than any other source of electricity.
    [Show full text]
  • Digital Physics: Science, Technology and Applications
    Prof. Kim Molvig April 20, 2006: 22.012 Fusion Seminar (MIT) DDD-T--TT FusionFusion D +T → α + n +17.6 MeV 3.5MeV 14.1MeV • What is GOOD about this reaction? – Highest specific energy of ALL nuclear reactions – Lowest temperature for sizeable reaction rate • What is BAD about this reaction? – NEUTRONS => activation of confining vessel and resultant radioactivity – Neutron energy must be thermally converted (inefficiently) to electricity – Deuterium must be separated from seawater – Tritium must be bred April 20, 2006: 22.012 Fusion Seminar (MIT) ConsiderConsider AnotherAnother NuclearNuclear ReactionReaction p+11B → 3α + 8.7 MeV • What is GOOD about this reaction? – Aneutronic (No neutrons => no radioactivity!) – Direct electrical conversion of output energy (reactants all charged particles) – Fuels ubiquitous in nature • What is BAD about this reaction? – High Temperatures required (why?) – Difficulty of confinement (technology immature relative to Tokamaks) April 20, 2006: 22.012 Fusion Seminar (MIT) DTDT FusionFusion –– VisualVisualVisual PicturePicture Figure by MIT OCW. April 20, 2006: 22.012 Fusion Seminar (MIT) EnergeticsEnergetics ofofof FusionFusion e2 V ≅ ≅ 400 KeV Coul R + R V D T QM “tunneling” required . Ekin r Empirical fit to data 2 −VNuc ≅ −50 MeV −2 A1 = 45.95, A2 = 50200, A3 =1.368×10 , A4 =1.076, A5 = 409 Coefficients for DT (E in KeV, σ in barns) April 20, 2006: 22.012 Fusion Seminar (MIT) TunnelingTunneling FusionFusion CrossCross SectionSection andand ReactivityReactivity Gamow factor . Compare to DT . April 20, 2006: 22.012 Fusion Seminar (MIT) ReactivityReactivity forfor DTDT FuelFuel 8 ] 6 c e s / 3 m c 6 1 - 0 4 1 x [ ) ν σ ( 2 0 0 50 100 150 200 T1 (KeV) April 20, 2006: 22.012 Fusion Seminar (MIT) Figure by MIT OCW.
    [Show full text]
  • Retarding Field Analyzer (RFA) for Use on EAST
    Magnetic Confinement Fusion C. Xiao and STOR-M team Plasma Physics Laboratory University of Saskatchewan Saskatoon, Canada \ Outline Magnetic Confinement scheme Progress in the world Tokamak Research at the University of Saskatchewan 2 CNS-2019 Fusion Session, June 24, 2019 Magnetic Confinement Scheme 3 CNS-2019 Fusion Session, June 24, 2019 Charged particle motion in straight magnetic field A charged particle circulates around the magnetic field lines (e.g., produced in a solenoid) Cross-field motion is restricted within Larmor radius 푚푣 푟 = 퐿 푞퐵 Motion along the field lines is still free End loss to the chamber wall Chamber Wall 4 CNS-2019 Fusion Session, June 24, 2019 Toriodal geometry is the solution However, plasma in simple toroidal field drifts to outboard on the wall 5 CNS-2019 Fusion Session, June 24, 2019 Tokamak Bend solenoid to form closed magnetic field lines circular field line without ends no end-loss. Transformer action produces a huge current in the chamber Generate poloidal field Heats the plasma Tokamak: abbreviation of Russian words for toroidal magnetic chamber 6 CNS-2019 Fusion Session, June 24, 2019 Stellarator • The magnetic field are generated by complicated external coils • No plasma current, no disruptions • Engineering is challenge 7 CNS-2019 Fusion Session, June 24, 2019 Wendelstein 7-X, Greifswald, Germany • Completed in October 2015 • Superconducting coils • High density and high temperature have been achieved 8 CNS-2019 Fusion Session, June 24, 2019 Reversed Field Pinch • Toroidal field reverses direction at the edge • The magnetic field are generated by current in plasma • Toroidal filed and poloidal field are of similar strength.
    [Show full text]
  • NIAC 2011 Phase I Tarditti Aneutronic Fusion Spacecraft Architecture Final Report
    NASA-NIAC 2001 PHASE I RESEARCH GRANT on “Aneutronic Fusion Spacecraft Architecture” Final Research Activity Report (SEPTEMBER 2012) P.I.: Alfonso G. Tarditi1 Collaborators: John H. Scott2, George H. Miley3 1Dept. of Physics, University of Houston – Clear Lake, Houston, TX 2NASA Johnson Space Center, Houston, TX 3University of Illinois-Urbana-Champaign, Urbana, IL Executive Summary - Motivation This study was developed because the recognized need of defining of a new spacecraft architecture suitable for aneutronic fusion and featuring game-changing space travel capabilities. The core of this architecture is the definition of a new kind of fusion-based space propulsion system. This research is not about exploring a new fusion energy concept, it actually assumes the availability of an aneutronic fusion energy reactor. The focus is on providing the best (most efficient) utilization of fusion energy for propulsion purposes. The rationale is that without a proper architecture design even the utilization of a fusion reactor as a prime energy source for spacecraft propulsion is not going to provide the required performances for achieving a substantial change of current space travel capabilities. - Highlights of Research Results This NIAC Phase I study provided led to several findings that provide the foundation for further research leading to a higher TRL: first a quantitative analysis of the intrinsic limitations of a propulsion system that utilizes aneutronic fusion products directly as the exhaust jet for achieving propulsion was carried on. Then, as a natural continuation, a new beam conditioning process for the fusion products was devised to produce an exhaust jet with the required characteristics (both thrust and specific impulse) for the optimal propulsion performances (in essence, an energy-to-thrust direct conversion).
    [Show full text]
  • Fission and Fusion Can Yield Energy
    Nuclear Energy Nuclear energy can also be separated into 2 separate forms: nuclear fission and nuclear fusion. Nuclear fusion is the splitting of large atomic nuclei into smaller elements releasing energy, and nuclear fusion is the joining of two small atomic nuclei into a larger element and in the process releasing energy. The mass of a nucleus is always less than the sum of the individual masses of the protons and neutrons which constitute it. The difference is a measure of the nuclear binding energy which holds the nucleus together (Figure 1). As figures 1 and 2 below show, the energy yield from nuclear fusion is much greater than nuclear fission. Figure 1 2 Nuclear binding energy = ∆mc For the alpha particle ∆m= 0.0304 u which gives a binding energy of 28.3 MeV. (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html ) Fission and fusion can yield energy Figure 2 (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html) Nuclear fission When a neutron is fired at a uranium-235 nucleus, the nucleus captures the neutron. It then splits into two lighter elements and throws off two or three new neutrons (the number of ejected neutrons depends on how the U-235 atom happens to split). The two new atoms then emit gamma radiation as they settle into their new states. (John R. Huizenga, "Nuclear fission", in AccessScience@McGraw-Hill, http://proxy.library.upenn.edu:3725) There are three things about this induced fission process that make it especially interesting: 1) The probability of a U-235 atom capturing a neutron as it passes by is fairly high.
    [Show full text]
  • Fusion Public Meeting Slides-03302021-FINAL
    TitleDeveloping Lorem a Regulatory Ipsum Framework for Fusion Energy Systems March 30, 2021 Agenda Time Topic Speaker(s) 12:30-12:40pm Introduction/Opening Remarks NRC Discussion on NAS Report “Key Goals and Innovations Needed for a U.S. Fusion Jennifer Uhle (NEI) 12:40-1:10pm Pilot Plant” Rich Hawryluk (PPPL) Social License and Ethical Review of Fusion: Methods to Achieve Social Seth Hoedl (PRF) 1:10-1:40pm Acceptance Developers Perspectives on Potential Hazards, Consequences, and Regulatory Frameworks for Commercial Deployment: • Fusion Industry Association - Industry Remarks Andrew Holland (FIA) 1:40-2:40pm • TAE – Regulatory Insights Michl Binderbauer (TAE) • Commonwealth Fusion Systems – Fusion Technology and Radiological Bob Mumgaard (CFS) Hazards 2:40-2:50pm Break 2:50-3:10pm Licensing and Regulating Byproduct Materials by the NRC and Agreement States NRC Discussions of Possible Frameworks for Licensing/Regulating Commercial Fusion • NRC Perspectives – Byproduct Approach NRC/OAS 3:10-4:10pm • NRC Perspectives – Hybrid Approach NRC • Industry Perspectives - Hybrid Approach Sachin Desai (Hogan Lovells) 4:10-4:30pm Next Steps/Questions All Public Meeting Format The Commission recently revised its policy statement on how the agency conducts public meetings (ADAMS No.: ML21050A046). NRC Public Website - Fusion https://www.nrc.gov/reactors/new-reactors/advanced/fusion-energy.html NAS Report “Key Goals and Innovations Needed for a U.S. Fusion Pilot Plant” Bringing Fusion to the U.S. Grid R. J. Hawryluk J. Uhle D. Roop D. Whyte March 30, 2021 Committee Composition Richard J. Brenda L. Garcia-Diaz Gerald L. Kathryn A. Per F. Peterson (NAE) Jeffrey P. Hawryluk (Chair) Savannah River National Kulcinski (NAE) McCarthy (NAE) University of California, Quintenz Princeton Plasma Laboratory University of Oak Ridge National Berkeley/ Kairos Power TechSource, Inc.
    [Show full text]
  • Arxiv:2002.12686V1 [Physics.Pop-Ph] 28 Feb 2020 SOI Sphere of Influence VEV Variable Ejection Velocity
    Achieving the required mobility in the solar system through Direct Fusion Drive Giancarlo Genta1 and Roman Ya. Kezerashvili2;3;4, 1Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy 2Physics Department, New York City College of Technology, The City University of New York, Brooklyn, NY, USA 3The Graduate School and University Center, The City University of New York, New York, NY, USA 4Samara National Research University, Samara, Russian Federation (Dated: March 2, 2020) To develop a spacefaring civilization, humankind must develop technologies which enable safe, affordable and repeatable mobility through the solar system. One such technology is nuclear fusion propulsion which is at present under study mostly as a breakthrough toward the first interstellar probes. The aim of the present paper is to show that fusion drive is even more important in human planetary exploration and constitutes the natural solution to the problem of exploring and colonizing the solar system. Nomenclature Is specific impulse m mass mi initial mass ml mass of payload mp mass of propellant ms structural mass mt mass of the thruster mtank mass of tanks t time td departure time ve ejection velocity F thrust J cost function P power of the jet α specific mass of the generator γ optimization parameter ∆V velocity increment DFD Direct Fusion Drive IMLEO Initial Mass in Low Earth Orbit LEO Low Earth Orbit LMO Low Mars Orbit NEP Nuclear Electric Propulsion NTP Nuclear Thermal Propulsion SEP Solar Electric Propulsion arXiv:2002.12686v1 [physics.pop-ph] 28 Feb 2020 SOI Sphere of Influence VEV Variable Ejection Velocity I.
    [Show full text]
  • Nuclear Fusion Power – an Overview of History, Present and Future
    International Journal of Advanced Network, Monitoring and Controls Volume 04, No.04, 2019 Nuclear Fusion Power – An Overview of History, Present and Future Stewart C. Prager Department of Physics University of Wisconsin – Madison Madison, WI 53706, USA E-mail: [email protected] Summary—Fusion power offers the prospect of an allowing the nuclei to fuse together. Such conditions almost inexhaustible source of energy for future can occur when the temperature increases, causing the generations, but it also presents so far insurmountable ions to move faster and eventually reach speeds high engineering challenges. The fundamental challenge is to enough to bring the ions close enough together. The achieve a rate of heat emitted by a fusion plasma that nuclei can then fuse, causing a release of energy. exceeds the rate of energy injected into the plasma. The main hope is centered on tokamak reactors and II. FUSION TECHNOLOGY stellarators which confine deuterium-tritium plasma In the Sun, massive gravitational forces create the magnetically. right conditions for fusion, but on Earth they are much Keywords-Fusion Energy; Hydrogen Power; Nuclear Fusion harder to achieve. Fusion fuel – different isotopes of hydrogen – must be heated to extreme temperatures of I. INTRODUCTION the order of 50 million degrees Celsius, and must be Today, many countries take part in fusion research kept stable under intense pressure, hence dense enough to some extent, led by the European Union, the USA, and confined for long enough to allow the nuclei to Russia and Japan, with vigorous programs also fuse. The aim of the controlled fusion research underway in China, Brazil, Canada, and Korea.
    [Show full text]
  • Compact Fusion Reactors
    Compact fusion reactors Tomas Lind´en Helsinki Institute of Physics 26.03.2015 Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lockheed Martin and LPP Fusion. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given. CERN Colloquium 26th of March 2015 Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 1 / 37 Contents Contents 1 Introduction 2 Funding of fusion research 3 Basics of fusion 4 The Polywell reactor 5 Lockheed Martin CFR 6 Dense plasma focus 7 MTF 8 Other fusion concepts or companies 9 Summary Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 2 / 37 Introduction Introduction Climate disruption ! ! Pollution ! ! ! Extinctions Ecosystem Transformation Population growth and consumption There is no silver bullet to solve these issues, but energy production is "#$%&'$($#!)*&+%&+,+!*&!! central to many of these issues. -.$&'.$&$&/!0,1.&$'23+! Economically practical fusion power 4$(%!",55*6'!"2+'%1+!$&! could contribute significantly to meet +' '7%!89 !)%&',62! the future increased energy :&(*61.'$*&!(*6!;*<$#2!-.=%6+! production demands in a sustainable way.
    [Show full text]
  • Emerging Concepts Reactor Subgroup Summary J
    LA-UR-99-5178 Emerging Concepts Reactor Subgroup Summary J. Hammer and R. Siemon Emerging Concepts offer unique reactor features, which may lead to a qualitative improvement in cost and maintainability, with associated increased attractiveness to the customer. Table 3 shows some of these unique features grouped by concept: Concept Motivation RFP Low external field; no disruptions Spheromak, FRC Simple geometry; small size; open axial divertor MTF, Flow Pinch Low development cost; compatible with liquid walls Levitated Dipole, Centrifugally confined High β, classical confinement; no current drive Mirrors Low physics risk; linear geometry Electrostatic, IEC, POPS Small unit size; low-cost development; high mass power density; alternate applications Fast Igniter High gain; low recirculating power Table 3: Reactor features of Emerging Concepts. Again, many examples of reactor advantages associated with Emerging Concepts could be given. As one such, there appears at first examination to be a greater accessibility for incorporating liquid walls into many such reactors. This follows from the linear, open geometry of several of the concepts, including FRC, MTF, Flow Pinch, and Mirrors. Organization The reactor subgroup, jointly with the Physics subgroup, heard presentations arranged before the conference on the 11 concepts listed below. These covered a wide range in physical parameter space with radically different reactor embodiments. The reversed field pinch and spheromak talks were held jointly with the Magnetic Confinement sessions. For each concept, a presenter introduced the concept and reviewed progress to date and important physics and reactor issues. The presenter was followed by a reviewer who brought additional insights. Concept Presenter Reviewer RFP S.
    [Show full text]
  • Aneutronic Fusion
    Aneutronic Fusion The most efficient and ecologically safest energy source 1p + 11B → 3*4He + 8.7 MeV Michael Esuabana Agenda • Why Aneutronic • Theory • LPP • TriAlpha • Polywell • Space propulsion Why Aneutronic Fission reactor 1M x more efficient than coal but! • Expensive (Mining, Turbine, Cleanup/Storing) • Large amount of Highly Radioactive byproducts • Proliferation (Thorium doesn’t help either U232) D-T Fusion reactors Tokamak /(Laser not shown) • 3-4 times more efficient than a Fission reactor • Produces high number of Neutrons • Still requires expensive Turbine system. • Storing problem, irradiated from Neutrons. Pros • Lower temperature to ignite 400MK • Higher Cross section ITER Proton + 11Boron Fusion Pros • Has no Neutron emission < 1%, just Helium Ions. • Energy can be directly converted without Turbine • No Storage worry • Still 10:1 input output ratio as D-T fusion reaction. • Cheaper Cons • Higher Temperature required to fuse 1.6BK • Lower cross section than D-T He3 is scarce on earth, must mine in space(moon) Li7 has no advantages to B11, and has lower cross section! Theory • Emittied n is < 1% of total energy emitted from fusion. • Q value is 3.07 MeV amount of energy released from decay C12 • P colliding Boron11 A=11 Z=5 produces radioactive ion C12 A=12 Z=6. • No γ rays, no neutrons. Ideal for • C12’s half life 20 minutes, everday use around populace. decays into stable He4 ions. • Z=6 is large state of electric charge, • With boron at rest, proton easy to convert directly into needs large velocity to fuse. electricity. By cyclotron or reverse Resonance at 675 keV has linear accelerator.
    [Show full text]
  • Extreme Laser Pulses for Possible Development of Boron Fusion Power Reactors for Clean and Lasting Energy
    Extreme laser pulses for possible development of boron fusion power reactors for clean and lasting energy H. Hora*1, S. Eliezer2, G. J. Kirchhoff3, G.Korn4, P. Lalousis5, G. H. Miley6 and S. Moustaizis7 1Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia 2SOREQ Research Centre, Yavne, Israel 3UJG Management GmbH, 85586 Poing, Germany 4 ELI-Beam, Prague, Czech Republic. 5Institute of Electronic Structure and Lasers FORTH, Heraklion, Greece 6Dept. Nuclear, Plasma & Radiol. Engineering, University of Illinois, Urbana IL, USA 7Technical University Crete, Laboratory of Matter Structure and Laser Physics, Chania, Greece *[email protected] ABSTRACT Extreme laser pulses driving non-equilibrium processes in high density plasmas permit an increase of the fusion of hydrogen with the boron isotope 11 by nine orders of magnitude of the energy gains above the classical values. This is the result of initiating the reaction by non-thermal ultrahigh acceleration of plasma blocks by the nonlinear (ponderomotive) force of the laser field in addition to the avalanche reaction that has now been experimentally and theoretically manifested. The design of a very compact fusion power reactor is scheduled to produce then environmentally fully clean and inexhaustive generation of energy at profitably low costs. The reaction within a volume of cubic millimetres during a nanosecond can only be used for controlled power generation. Keywords: boron laser fusion, ultrahigh acceleration, ultrahigh magnetic fields, avalanche HB11 reaction, 1. INTRODUCTION The pollution of the atmosphere with carbon dioxide CO2 was early recognized in a profoundly precise way by Al Gore [1] – when beginning his leadership in this field – with warning into what catastrophe the climate change will go by threatening the whole mankind [2].
    [Show full text]