<<

The Field-Reversed Configuration (FRC) as a Practical Fusion Reactor Core Edward DeWit, Jordan Morelli Department of , Engineering Physics, and Queen’s University, Kingston, ON

CAP Congress June 4, 2019 Outline

Topics to be discussed • The case for fusion • Basic fusion physics • Basic FRC description • Brief history of FRC research • Technical benefits of the FRC • Results from TAE • Edge-biasing experiment • Summary and conclusion

FIG: Conceptual drawing of the field-reversed configuration (FRC)

2 The case for fusion

3 The world needs

Worst case

Global until 2100. Realistic scenario IIASA–WEC Study “Do nothing” “Global Energy Perspectives”

Best case ≈ 2 ×

4 Kikuchi, M., Lackner, K., and Tran, M. Q. (2012). Traditional sources of energy

Fossil are • In limited supply • Polluting • Geographically contested • Archaic

5 Traditional sources of energy (cont’d.)

Solar and wind are • Intermittent • Low density

6 Traditional sources of energy (cont’d.)

Nuclear fission is dangerous • • Meltdown scenarios • Proliferation of

7

Benefits of nuclear fusion • Energy dense • Unlimited, low cost supply • No proliferation issues • No possibility of meltdown • No long-lived radioactive waste • Thermal or options

8 Basic fusion physics

9 Fusion in the -proton chain reaction

4 + 4푝 → 퐻푒 + 2푒 + 2휈푒

10 Fusion fuel

11 Kikuchi, M., Lackner, K., and Tran, M. Q. (2012). Main approaches to fusion on Earth

https://www.iter.org/ https://lasers.llnl.gov/ Magnetic confinement fusion Inertial confinement fusion

12 Maxwell-Boltzmann and nuclear potential

13 Chen, F. F. Introduction to physics and controlled fusion, 3. Springer, (2015). Alternative approaches to fusion

14 Chen, F. F. Introduction to plasma physics and controlled fusion, volume 3. Springer, (2015). Basic FRC description

15 FRC formation and structure

Steps of theta- formation 1. Pre- 2. Field reversal 3. Radial compression and field line connection 4. Axial contraction 5. Equilibrium

FIG: FRC formation in theta-pinch coils

16 Chen, F. F. Introduction to plasma physics and controlled fusion, volume 3. Springer, (2015).

푅 퐴푠푝푒푐푡 푟푎푡푖표 = 푎

FIG: Schematic diagram of a

17 Chen, F. F. Introduction to plasma physics and controlled fusion, volume 3. Springer, (2015). Comparison to and

FIG: Artist rendering of the ITER tokamak FIG: Artist rendering of Wendelstein-7x stellarator

18 Ongena, J., Koch, R., Wolf, R., and Zohm, H. Physics 12, 398 EP – May (2016). Brief history of FRC research

19 Early FRC research era Pioneering experiments

FIG: Early FRC schematic

20 Early FRC research era (cont’d.) Mitigation of the rotational instability

FIG: Elliptical deformation of FRC due to onset of rotational instability 21 Modern FRC research era

22 Modern FRC research era (cont’d.)

23 Technical benefits of the FRC

24 Simple linear geometry

Physics of FRC geometry • Axial • Radial gradient • Azimuthal plasma rotation

퐸 × 퐵 ∇푝 × 퐵 푣 = − 휃෠ ⊥ 퐵2 푞푛퐵2

• Diamagnetic current

푗퐷 = 푛푒 푣퐷푖 − 푣퐷푒

25 Chen, F. F. Introduction to plasma physics and controlled fusion, volume 3. Springer, (2015). Simple magnetic topology Magnetic mirrors

Grad-B drift 1 퐵 × ∇퐵 푣 = ± 푣 푟 ∇퐵 2 ⊥ 퐿 퐵2 26 Chen, F. F. Introduction to plasma physics and controlled fusion, volume 3. Springer, (2015). Simple magnetic topology Curvature drift

Curved field

푚 2 1 2 푅푐 × 퐵 푣푅 + 푣∇퐵 = 푣∥ + 푣⊥ 2 2 푞 2 푅푐 퐵

• Not present in FRCs • Causes reactor damage in • Complex stellarator field coils

27 Chen, F. F. Introduction to plasma physics and controlled fusion, volume 3. Springer, (2015). High plasma pressure FRC magnetic efficiency • Low magnetic field strength, ∼ 1푇 • High

푛푘퐵푇 훽 = 2 ∼ 1 퐵 /2휇0

• Large per unit magnetic field • capable!

푝 + 11퐵 → 3훼

28 Chen, F. F. Introduction to plasma physics and controlled fusion, volume 3. Springer, (2015). Natural Diverter Particle extraction and direct energy conversion Particle extraction and direct energy conversion • Particles follow open magnetic field lines • Electrodes at the diverters can collect charged fusion products • can be generated directly from ionic flow in plasma

29 Chen, F. F. Introduction to plasma physics and controlled fusion, volume 3. Springer, (2015). Translation Gradient magnetic fields

Translation trapping • Translated by magnetic field gradients • Confined by magnetic mirrors • Kinetic to conversion FIG: Magnetic field gradient and mirror coils

FIG: Early translation trapping experiment 30 Results from TAE

31 Tri Alpha Energy C-2U confinement chamber

Operating Parameters External magnetic field – 1 T density – 3 × 1019 – 600 eV Electron temperature – 150 eV 75 ft x 35 ft x 25 ft

32 Binderbauer, et al. Physics of Plasmas 22(5), 056110 (2015). Tri Alpha Energy (cont’d.) FRC formation by collisional merging

33 Binderbauer, et al. Physics of Plasmas 22(5), 056110 (2015). High performance FRC Record FRC confinement

34 Binderbauer, et al. Physics of Plasmas 22(5), 056110 (2015). High performance FRC Correlation with neutral beam

35 Binderbauer, et al. Physics of Plasmas 22(5), 056110 (2015). Role of edge-biasing Fluid drifts

36 Binderbauer, et al. Physics of Plasmas 22(5), 056110 (2015). Role of edge-biasing Mitigation of rotational instability

FIG: Particle trajectory in FRC

FIG: Measurement of line-integrated density

37 Binderbauer, et al. Physics of Plasmas 22(5), 056110 (2015). Edge-biasing experiment

38 Summer research project at Nihon University FAT-CM experiment

39 https://www.cst.nihon-u.ac.jp/research/facilities/lebra_a.html Summer research project at Nihon University (cont’d.) Edge-biasing of an FRC plasma

r Midplane Objectives • Experimentally and theoretically verify the possibility of global and z microscopic stability

Mirror coil • Radial applied by Central coil biasing from the end regions of Gas puff formation chamber -1.0 [m] -0.5 0 • Stabilization by driven toroidal flow FIG: Conceptual drawing of coaxial layered biasing electrodes shear and reduced spin-up

*Learn more about this at the poster session

40 Summary and conclusion

• The FRC is a practical means of harnessing • Simple geometry • Simple magnetic topology • High-beta • Natural • Translatable • Recent advancements have enabled high performance FRCs • Collisional merging • Neutral beam injection • Edge-biasing

41 Acknowledgements

Queen’s University supported this through generous scholarships

Future work will be funded in part by Mitacs and JSPS

42 References

[1] Kolb, A., Dobbie, C., and Griem, H. 3(1), 5 (1959). [2] Armstrong, W., et al. The Physics of Fluids 24(11), 2068{2089 (1981). [3] Tuszewski, M. Nuclear Fusion 28(11), 2033 (1988).6 [4] Steinhauer, L. C. Physics of Plasmas 18(7), 070501 (2011). [5] Ohi, S., et al. Physical review letters 51(12), 1042 (1983). [6] Tuszewski, et al. Physical review letters 108(25), 255008 (2012). [7] Binderbauer, et al. Physics of Plasmas 22(5), 056110 (2015). [8] Hirano, Y., Sekiguchi, J., Matsumoto, T., Asai, et al. Nuclear Fusion 58(1), 016004 (2017). [9] Chen, F. F. Introduction to plasma physics and controlled fusion, volume 3. Springer, (2015). [10] Miyamoto, K. et al. Plasma physics for controlled fusion, volume 92. Springer, (2016). [11] Kikuchi, M., Lackner, K., and Tran, M. Q. (2012).

43