Mutation of the ATP-Gated P2X2 Receptor Leads to Progressive Hearing Loss and Increased Susceptibility to Noise

Total Page:16

File Type:pdf, Size:1020Kb

Mutation of the ATP-Gated P2X2 Receptor Leads to Progressive Hearing Loss and Increased Susceptibility to Noise Mutation of the ATP-gated P2X2 receptor leads to progressive hearing loss and increased susceptibility to noise Denise Yana, Yan Zhub, Tom Walshc, Dinghua Xied, Huijun Yuane, Asli Sirmacif, Taro Fujikawag, Ann Chi Yan Wongh, Tze L. Lohh, Lilin Dua,M’hamed Gratia,g, Srdjan M. Vlajkovici, Susan Blantonf, Allen F. Ryanj, Zheng-Yi Chenk, Peter R. Thornei, Bechara Kacharg, Mustafa Tekinf, Hong-Bo Zhaob, Gary D. Housleyh, Mary-Claire Kingc,1, and Xue Z. Liua,d,f,1 aDepartment of Otolaryngology, University of Miami School of Medicine, Miami, FL 33136; bDepartment of Otolaryngology, University of Kentucky Medical Center, Lexington, KY 40536; cDepartment of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195; dDepartment of Otolaryngology and Head-Neck Surgery, Second Xiangya Hospital of Central South University, Changsha 410011, China; eInstitute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China; fDepartment of Human Genetics, University of Miami School of Medicine, Miami, FL 33136; gLaboratory of Cell Structure and Dynamics, Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892; hTranslational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; iDepartment of Physiology and Centre for Brain Research, School of Medical Sciences and Section of Audiology, School of Population Health, University of Auckland, Auckland, New Zealand; jDepartments of Otolaryngology and Neurosciences, University of California at San Diego, La Jolla, CA 92093; and kEaton-Peabody Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 Contributed by Mary-Claire King, December 20, 2012 (sent for review November 28, 2012) Age-related hearing loss and noise-induced hearing loss are major assembles as a trimer to form a channel gated by extracellular causes of human morbidity. Here we used genetics and functional ATP. P2X2 receptors mediate a variety of cellular responses, in- studies to show that a shared cause of these disorders may be loss of cluding excitatory postsynaptic responses in sensory neurons (10, function of the ATP-gated P2X2 receptor (ligand-gated ion channel, 11). In the inner ear, P2X2 receptors are thought to regulate GENETICS purinergic receptor 2) that is expressed in sensory and supporting sound transduction and auditory neurotransmission (12–14), outer hair cell electromotility (15, 16), inner ear gap junctions cells of the cochlea. Genomic analysis of dominantly inherited, pro- + gressive sensorineural hearing loss DFNA41 in a six-generation kin- (17), and K recycling (17, 18). We explored the effect of the dred revealed a rare heterozygous allele, P2RX2 c.178G > T (p.V60L), inherited mutation in P2RX2 on function of the P2X2 receptors at chr12:133,196,029, which cosegregated with fully penetrant hear- and the consequences of loss of function of these ATP-gated ing loss in the index family, and also appeared in a second family channels on progressive and noise-induced hearing loss. with the same phenotype. The mutation was absent from more than Results 7,000 controls. P2RX2 p.V60L abolishes two hallmark features of Discovery of P2RX2 as Responsible for Progressive Hearing Loss P2X2 receptors: ATP-evoked inward current response and ATP-stim- DFNA41. DFNA41 is an autosomal dominant, progressive, senso- ulated macropore permeability, measured as loss of ATP-activated fi FM1-43 fluorescence labeling. Coexpression of mutant and WT rineural hearing loss de ned in a six-generation kindred living in Sichuan, China (19). Audiologic evaluation of family members P2X2 receptor subunits significantly reduced ATP-activated mem- brane permeability. P2RX2-null mice developed severe progressive revealed bilateral and symmetrical sensorineural hearing loss, with age at onset ranging from 12 y to 20 y, generally accompanied by hearing loss, and their early exposure to continuous moderate noise high-frequency tinnitus. Hearing loss was progressive and ulti- led to high-frequency hearing loss as young adults. Similarly, among mately involved all frequencies. The gene responsible for hearing family members heterozygous for P2RX2 p.V60L, noise exposure loss in the family was localized by linkage analysis to the region exacerbated high-frequency hearing loss in young adulthood. Our between D12S1609 and 12qter (19), but Sanger sequencing of eight results suggest that P2X2 function is required for life-long normal genes in this interval did not identify the responsible gene (20). hearing and for protection from exposure to noise. The DFNA41 linkage interval corresponds to the 4.80-MB ge- nomic region chr12:129,051,849–133,851,895 (hg19) and includes channel | deafness | genomics | presbycusis at least 34 genes. To identify the gene responsible for hearing loss in the family, we captured and sequenced all 427 coding exons, earing loss is a socially and economically important cause of noncoding exons, and documented regulatory regions in the linked Hhuman morbidity, affecting 538 million people worldwide, interval from genomic DNA of three affected family members. including 36 million people in the United States (1, 2). Hearing Using a pipeline for variant discovery from massively parallel loss is often related to inherited genetic lesions, with 60 of the sequences (21), we identified all variants in the targeted region. In critical genes identified and more than 100 others mapped the 4.80-MB region, the three affected individuals shared 216 (http://hereditaryhearingloss.org). The identification of genes variants, of which 206 were common polymorphisms also present in for inherited forms of hearing loss that progress with age is par- ticularly important for understanding age-related hearing loss, or presbycusis, which affects more than 40% of people over age 65 y Author contributions: D.Y., T.W., M.G., B.K., M.T., H.-B.Z., G.D.H., M.-C.K., and X.Z.L. de- (3). Age-related hearing loss is influenced both by genetics and by signed research; D.Y., Y.Z., T.W., A.S., T.F., A.C.Y.W., T.L.L., L.D., M.G., S.M.V., S.B., H.-B.Z., environmental factors, including exposure to noise in the work- G.D.H., M.-C.K., and X.Z.L. performed research; D.X., H.Y., A.F.R., Z.-Y.C., B.K., H.-B.Z., – G.D.H., and X.Z.L. contributed new reagents/analytic tools; D.Y., Y.Z., T.W., A.S., T.F., place, in the environment, or recreationally (4 7). Noise-induced A.C.Y.W., T.L.L., L.D., M.G., S.M.V., S.B., P.R.T., M.T., H.-B.Z., G.D.H., M.-C.K., and X.Z.L. hearing loss is also influenced by genetic factors (8, 9), although analyzed data; and M.G., S.M.V., P.R.T., B.K., M.T., H.-B.Z., G.D.H., M.-C.K., and X.Z.L. causal genes have not heretofore been identified. An important wrote the paper. focus of current hearing research is on the biological mechanisms The authors declare no conflict of interest. underlying age-related and noise-induced hearing loss. 1To whom correspondence should be addressed. E-mail: [email protected] or Here we report the identification of a mutation in the P2RX2 [email protected]. gene as the cause of dominantly inherited, progressive hearing This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. loss in two families. P2RX2 encodes the P2X2 receptor, which 1073/pnas.1222285110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1222285110 PNAS Early Edition | 1of6 Downloaded by guest on October 2, 2021 multiple other family members and unrelated persons. The 10 rare of China than the DFNA41 family. The two families were not aware variants included 5 intronic variants, 3 intergenic variants, 1 syn- of any relationship between them. All affected individuals in the onymous coding sequence change, and 1 nonsynonymous change. second family had bilateral moderate to severe progressive senso- Only the nonsynonymous change altered a conserved nucleotide rineural hearing loss with onset in the second decade, similar to site: chr12:133,196,029 G > T (hg19), corresponding to P2RX2 affected members of the original DFNA41 family. A computed c.178G > T (p.V60L NM_174873). This variant was confirmed tomography scan of one affected family member revealed normal by Sanger sequencing (Fig. 1A). The residue is conserved as temporal bones. Middle ear status was normal, and clinical exami- valine in all sequenced vertebrates, from zebrafish to mammals nations revealed no other abnormalities. The mutation was absent (Fig. 1B). The mutation has been predicted to affect protein from 7,000 controls, including 4,300 persons of European ancestry, function (22). 2,200 persons of African-American ancestry (evs.gs.washington.edu/ In the family defining DFNA41, P2RX2 c.178G > T (p.V60L) EVS/), and 500 persons of Chinese ancestry. Thus, the P2RX2 cosegregated perfectly with hearing loss, with an LOD score of 13.3, c.178G > T allele has an estimated frequency of <0.001 in the corresponding to odds of 1013:1 in favor of linkage (Fig. 1C). Pen- Chinese population and of <0.0001 in a mixed-ancestry population. etrance of the phenotype among heterozygous mutation carriers Among the DFNA41 family members heterozygous for P2RX2 was 100%. Sequencing of the entire P2RX2 coding sequence in 65 p.V60L, hearing loss progressed with age. Hearing loss was first other families with autosomal dominant nonsyndromic sensori- detected in the second decade of life and was severe (60–70 dB) neural hearing loss yielded one other family, also Chinese, carrying by age 20 y, with little further progression thereafter (Fig. 1E). P2RX2 c.178G > T (Fig. 1D). This family lives in a different region Some family members exhibited elevated thresholds at one or Fig.
Recommended publications
  • Cells Δγ Lineage Choice and Shapes Peripheral Purinergic P2X7
    Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral δγ Cells This information is current as Michela Frascoli, Jessica Marcandalli, Ursula Schenk and of October 2, 2021. Fabio Grassi J Immunol 2012; 189:174-180; Prepublished online 30 May 2012; doi: 10.4049/jimmunol.1101582 http://www.jimmunol.org/content/189/1/174 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/05/30/jimmunol.110158 Material 2.DC1 http://www.jimmunol.org/ References This article cites 31 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/1/174.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral gd Cells Michela Frascoli,* Jessica Marcandalli,* Ursula Schenk,*,1 and Fabio Grassi*,† TCR signal strength instructs ab versus gd lineage decision in immature T cells.
    [Show full text]
  • Sara Catarina Timóteo Dos Santos Domingues Identificação De
    Universidade de Aveiro Secção Autónoma de Ciências da Saúde 201 2 Sara Catarina Timóteo Identificação de Complexos Proteicos na Doença de dos Santos Domingues Alzheimer Identification of Protein Complexes in Alzheimer’s Disease Universida de de Aveiro Secção Autónoma de Ciências da Saúde 20 12 Sara Catarina Timóteo Identificação de Complexos Proteicos na Doença de dos Santos Domingues Alzheimer Identification of Protein Complexes in Alzheimer’s Disease Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Ciências Biomédicas, realizada sob a orientação científica da Prof. Doutora Odete Abreu Beirão da Cruz e Silva, Professora Auxiliar com Agregação da Secção Autónoma de Ciências da Saúde da Universidade de Aveiro. Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio (Bolsa de Doutoramento SFRH/ BD/ 21559/ 2005 ). o júri presidente Doutor Artur da Rosa Pires Professor Catedrático da Universidade de Aveiro Doutor Uwe Konietzko Investigador Sénior da Universidade de Zurique Doutor José António Henriques de Conde Belo Professor Associado com Agregação da Universidade do Algarve Doutora Patrícia Espinheira de Sá Maciel Professora Associada da Escola de Ciências da Saúde da Universidade do Minho Doutora Odete Abreu Beirão da Cruz e Silva Professora Auxiliar com Agregação da Universidade de Aveiro Doutora Margarida Sâncio da Cruz Fardilha Professora Auxiliar Convidada da Universidade de Aveiro agradecimentos I would like to express my gratitude to FCT, for the financial support. To the Centre for Cell Biology and to the Biology and Health Sciences Departments from the University of Aveiro, for providing the necessary conditions.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • Transcriptomes and Neurotransmitter Profiles of Classes of Gustatory And
    ARTICLE DOI: 10.1038/s41467-017-01095-1 OPEN Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion Gennady Dvoryanchikov 1, Damian Hernandez1, Jennifer K. Roebber 2, David L. Hill3, Stephen D. Roper 1,2,4 & Nirupa Chaudhari 1,2,4 Taste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna. Here, we report single cell RNA sequencing of geniculate ganglion neurons. Using unbiased transcriptome analyses, we show a pronounced separation between two major clusters which, by anterograde labeling, correspond to gus- tatory and somatosensory neurons. Among the gustatory neurons, three subclusters are present, each with its own complement of transcription factors and neurotransmitter response profiles. The smallest subcluster expresses both gustatory- and mechanosensory- related genes, suggesting a novel type of sensory neuron. We identify several markers to help dissect the functional distinctions among gustatory neurons and address questions regarding target interactions and taste coding. 1 Department of Physiology & Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 2 Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 3 Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA. 4 Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. Gennady Dvoryanchikov and Damian Hernandez contributed equally to the work.
    [Show full text]
  • P2X2 (P2RX2) (NM 170682) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP700191 P2X2 (P2RX2) (NM_170682) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human purinergic receptor P2X, ligand-gated ion channel, 2 (P2RX2), G353R mutant of transcript variant 1, 20 ug Species: Human Expression Host: HEK293 Tag: C-Myc/DDK Predicted MW: 51.6 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_733782 Locus ID: 22953 UniProt ID: Q9UBL9, Q32MC3 RefSeq Size: 1830 Cytogenetics: 12q24.33 RefSeq ORF: 1413 Synonyms: DFNA41; P2X2 Summary: The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel. Binding to ATP mediates synaptic transmission between neurons and from neurons to smooth muscle. Multiple transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Aug 2013] Protein Families: Druggable Genome, Ion Channels: ATP Receptors, Transmembrane Protein Pathways: Calcium signaling pathway, Neuroactive ligand-receptor interaction This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 P2X2 (P2RX2) (NM_170682) Human Recombinant Protein – TP700191 Product images: This product is to be used for laboratory only.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Non-Synonymous Single Nucleotide Polymorphisms in the P2X
    Int. J. Mol. Sci. 2014, 15, 13344-13371; doi:10.3390/ijms150813344 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Non-Synonymous Single Nucleotide Polymorphisms in the P2X Receptor Genes: Association with Diseases, Impact on Receptor Functions and Potential Use as Diagnosis Biomarkers Emily A. Caseley 1,†, Stephen P. Muench 1, Sebastien Roger 2, Hong-Ju Mao 3, Stephen A. Baldwin 1 and Lin-Hua Jiang 1,4,†,* 1 School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; E-Mails: [email protected] (E.A.C.); [email protected] (S.P.M.); [email protected] (S.A.B.) 2 Inserm U1069, University of Tours, Tours 37032, France; E-Mail: [email protected] 3 State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China; E-Mail: [email protected] 4 Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-0-113-343-4231. Received: 6 June 2014; in revised form: 10 July 2014 / Accepted: 14 July 2014 / Published: 30 July 2014 Abstract: P2X receptors are Ca2+-permeable cationic channels in the cell membranes, where they play an important role in mediating a diversity of physiological and pathophysiological functions of extracellular ATP. Mammalian cells express seven P2X receptor genes. Single nucleotide polymorphisms (SNPs) are widespread in the P2RX genes encoding the human P2X receptors, particularly the human P2X7 receptor.
    [Show full text]
  • P2RX2 Antibody Cat
    P2RX2 Antibody Cat. No.: 28-261 P2RX2 Antibody Antibody used in WB on Human Jurkat 0.6 ug/ml. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human Antibody produced in rabbits immunized with a synthetic peptide corresponding a region IMMUNOGEN: of human P2RX2. TESTED APPLICATIONS: ELISA, IHC, WB P2RX2 antibody can be used for detection of P2RX2 by ELISA at 1:312500. P2RX2 antibody APPLICATIONS: can be used for detection of P2RX2 by western blot at 0.6 μg/mL, and HRP conjugated secondary antibody should be diluted 1:50,000 - 100,000. POSITIVE CONTROL: 1) Cat. No. 1205 - Jurkat Cell Lysate PREDICTED MOLECULAR 42 kDa, 44 kDa, 49 kDa, 52 kDa, 55 kDa, 45 kDa WEIGHT: October 2, 2021 1 https://www.prosci-inc.com/p2rx2-antibody-28-261.html Properties PURIFICATION: Antibody is purified by protein A chromatography method. CLONALITY: Polyclonal CONJUGATE: Unconjugated PHYSICAL STATE: Liquid Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% BUFFER: sucrose. CONCENTRATION: batch dependent For short periods of storage (days) store at 4˚C. For longer periods of storage, store STORAGE CONDITIONS: P2RX2 antibody at -20˚C. As with any antibody avoid repeat freeze-thaw cycles. Additional Info OFFICIAL SYMBOL: P2RX2 ALTERNATE NAMES: P2RX2, P2X2, DFNA41 ACCESSION NO.: NP_777361 PROTEIN GI NO.: 28416921 GENE ID: 22953 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References P2RX2 belongs to the family of purinoceptors for ATP. This receptor functions as a ligand- gated ion channel. Binding to ATP mediates synaptic transmission between neurons and BACKGROUND: from neurons to smooth muscle.
    [Show full text]
  • Anti-P2X2 Antibody (ARG43042)
    Product datasheet [email protected] ARG43042 Package: 50 μg anti-P2X2 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes P2X2 Tested Reactivity Hu Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name P2X2 Antigen Species Human Immunogen Recombinant protein corresponding to D139-L471 of Human P2X2. Conjugation Un-conjugated Alternate Names DFNA41; ATP receptor; P2X2; P2X purinoceptor 2; Purinergic receptor Application Instructions Application table Application Dilution IHC-P 1:200 - 1:1000 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 52 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.2% Na2HPO4, 0.9% NaCl, 0.05% Sodium azide and 5% BSA. Preservative 0.05% Sodium azide Stabilizer 5% BSA Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol P2RX2 Gene Full Name purinergic receptor P2X, ligand gated ion channel, 2 Background The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel. Binding to ATP mediates synaptic transmission between neurons and from neurons to smooth muscle.
    [Show full text]
  • Sensory Neuronal P2RX4 Receptors Controls BDNF Signaling In
    www.nature.com/scientificreports OPEN Sensory neuronal P2RX4 receptors controls BDNF signaling in infammatory pain Received: 12 April 2017 Sarah Lalisse1,2,3, Jennifer Hua1,2,3, Manon Lenoir1,2,3, Nathalie Linck1,2,3, Accepted: 27 December 2017 François Rassendren 1,2,3 & Lauriane Ulmann1,2,3 Published: xx xx xxxx Chronic infammatory and neuropathic pains are major public health concerns. Potential therapeutic targets include the ATP-gated purinergic receptors (P2RX) that contribute to these pathological types of pain in several diferent cell types. The purinergic receptors P2RX2 and P2RX3 are expressed by a specifc subset of dorsal root ganglion neurons and directly shape pain processing by primary aferents. In contrast the P2RX4 and P2RX7 are mostly expressed in myeloid cells, where activation of these receptors triggers the release of various pro-infammatory molecules. Here, we demonstrate that P2RX4 also controls calcium infux in mouse dorsal root ganglion neurons. P2RX4 is up-regulated in pain-processing neurons during long lasting peripheral infammation and it co-localizes with Brain- Derived Neurotrophic Factor (BDNF). In the dorsal horn of the spinal cord, BDNF-dependent signaling pathways, phosphorylation of Erk1/2 and of the GluN1 subunit as well as the down regulation of the co-transporter KCC2, which are triggered by peripheral infammation are impaired in P2RX4-defcient mice. Our results suggest that P2RX4, expressed by sensory neurons, controls neuronal BDNF release that contributes to hyper-excitability during chronic infammatory pain and establish P2RX4 in sensory neurons as a new potential therapeutic target to treat hyperexcitability during chronic infammatory pain. Pain is a sensory modality that is encoded by specialized nociceptive neurons in the dorsal root ganglion (DRG).
    [Show full text]
  • JNEUROSCI.1426-20.2020.Full.Pdf
    Research Articles: Cellular/Molecular Unique molecular characteristics of visceral afferents arising from different levels of the neuraxis: location of afferent somata predicts function and stimulus detection modalities https://doi.org/10.1523/JNEUROSCI.1426-20.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.1426-20.2020 Received: 2 June 2020 Revised: 30 July 2020 Accepted: 7 August 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 Unique molecular characteristics of visceral afferents arising from different levels of the 2 neuraxis: location of afferent somata predicts function and stimulus detection modalities 3 Running Title: Unique molecular profile of visceral afferents 4 Kimberly A. Meerschaert1,2, Peter C. Adelman 3, Robert L. Friedman 1,2, Kathryn M. Albers 1,2, H. 5 R. Koerber 1,2 and Brian M. Davis 1,2,# 6 1 Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, 7 Pennsylvania; 2 Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, 8 Pennsylvania; 3 Afiniti, Washington D.C. 9 #For correspondence: Brian M. Davis, University of Pittsburgh, Department of Neurobiology, 10 200 Lothrop Street, Pittsburgh, PA 15216, [email protected], Ph: 412-648-9745 11 Number of pages: 36 12 Number of figures and tables: 7 Figs., 3 Tables 13 Number of words for Abstract - 250, Significance Statement- 101; Introduction – 647, and 14 Discussion - 1489 15 All authors have no conflict of interest.
    [Show full text]
  • The Purinergic Receptor P2rx3 Is Required for Spiral Ganglion Neuron Branch Refinement During Development
    Research Article: New Research | Development The Purinergic Receptor P2rx3 is Required for Spiral Ganglion Neuron Branch Refinement During Development https://doi.org/10.1523/ENEURO.0179-20.2020 Cite as: eNeuro 2020; 10.1523/ENEURO.0179-20.2020 Received: 6 May 2020 Revised: 3 July 2020 Accepted: 8 July 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Title: The Purinergic Receptor P2rx3 is Required for Spiral Ganglion Neuron Branch Refinement During 2 Development 3 4 Abbreviated Title: P2rx3 in Spiral Ganglion Neuron Branch Refinement 5 6 Authors: Zhirong Wang, Johnny S. Jung, Talya C. Inbar, Katherine M. Rangoussis, Christian Faaborg- 7 Andersen, and Thomas M. Coate 8 9 Affiliations: Georgetown University Department of Biology, Washington, DC, USA, 20007. 10 11 Author Contributions: ZW and TMC designed research; ZW, JSJ, TCI, CF-A and TMC performed 12 research; ZW, JSJ, TCI, KMR and TMC analyzed data; ZW and TMC wrote the paper. 13 14 Corresponding Author: Thomas M. Coate. Email: [email protected] 15 16 Number of Figures: 10 17 18 Number of Tables: 2 19 20 Number of Multimedia: none 21 22 Number of Words: Abstract, 250; Significance Statement, 117; Introduction, 619; Discussion, 2206.
    [Show full text]