Dl-3-N-Butylphthalide Attenuates Mouse Behavioral Deficits to Chronic

Total Page:16

File Type:pdf, Size:1020Kb

Dl-3-N-Butylphthalide Attenuates Mouse Behavioral Deficits to Chronic Wang et al. Translational Psychiatry (2020) 10:49 https://doi.org/10.1038/s41398-020-0731-z Translational Psychiatry ARTICLE Open Access Dl-3-n-butylphthalide attenuates mouse behavioral deficits to chronic social defeat stress by regulating energy metabolism via AKT/CREB signaling pathway Wei Wang1,2,3,TingWang1,2,4, Shunjie Bai1,2,5, Zhi Chen1,2, Xunzhong Qi1,2 andPengXie1,2,3,4,6,7 Abstract Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Dl-3-n-butylphthalide (NBP) is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The aim of this study was to investigate the effect of NBP in a chronic social defeat stress model of depression and its underlying molecular mechanisms. Here, we examined depression-related behavior and performed a targeted metabolomics analysis. Real-time quantitative polymerase chain reaction and western blotting were used to examine key genes and proteins involved in energy metabolism and the AKT/cAMP response element-binding protein (CREB) signaling pathway. Our results reveal NBP attenuates stress-induced social deficits, anxiety-like behavior and despair 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; behavior, and alters metabolite levels of glycolysis and tricarboxylic acid (TCA) cycle components. NBP affected gene expression of key enzymes of the TCA cycle, as well as protein expression of p-AKT and p-CREB. Our findings provide the first evidence showing that NBP can attenuate stress-induced behavioral deficits by modulating energy metabolism by regulating activation of the AKT/CREB signaling pathway. Introduction takes weeks to produce a measurable benefit. Further, Major depressive disorder (MDD) is an increasingly some drugs produce significant side-effects including common psychiatric disorder that globally affects > 300 fatigue, weight gain, nausea, headache, and sexual dys- – million people of all ages, and is also one of the leading function3 5. Hence, the search for new treatments of causes of disability worldwide1,2. Pharmacotherapy is the MDD has always been a focus in biomedical research, primary choice for medical management of MDD. Classes with investigation of alternative treatments urgently nee- of first-line antidepressant medications have been ded to reduce the heavy burden of MDD on patients and approved to reduce depressive symptoms, but it often society. Increasing evidence suggests the involvement of energy metabolism pathways in MDD. We have previously Correspondence: Peng Xie ([email protected]) shown dysfunction in energy metabolism in most brain 1NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, regions and plasma in a rodent model of chronic mild – China stress6 9. Corroboratively, our recent study demonstrated 2 Institute of Neuroscience and the Collaborative Innovation Center for Brain the disruption of glucose energy metabolism in naturally Science, Chongqing Medical University, Chongqing, China Full list of author information is available at the end of the article occurring depression in cynomolgus monkeys and These authors contributed equally: Wei Wang, Ting Wang, Shunjie Bai © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a linktotheCreativeCommons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Wang et al. Translational Psychiatry (2020) 10:49 Page 2 of 14 patients with MDD10. At present, energy metabolism increases its binding to CREB-binding protein (CBP) and abnormalities in depression mainly include: (1) dysfunc- enhances CREB-mediated transcription of genes that are tion of nutrient utilization in glycolysis/gluconeogen- critical for survival36. CREB is a nuclear transcription esis11,12; (2) mitochondrial damage in constituents of the factor that has an important role in direct transcriptional – tricarboxylic acid (TCA) cycle9,13 16; and (3) functional activation of gluconeogenic genes. Thus, our study damage in the mitochondrial respiratory chain17,18. investigated whether the effect of NBP administration on Minimizing perturbations in energy metabolism may energy metabolism was regulated by the AKT/CREB sig- prevent development of depression, although anti- naling pathway. depressants with the relevant properties are not yet Our primary aim was to determine whether NBP clinically available. Thus, targeting energy metabolism administration can modulate or prevent stress-induced pathways may be important for identifying novel behavioral deficits, and in addition, investigate candidate antidepressant drugs. signaling pathways to determine the potential mechanism Dl-3-n-butylphthalide (NBP) represents a family of in the hippocampus (HP) and prefrontal cortex (PFC). compounds initially isolated from the seeds of Apium Our study may lead to identification of potential ther- graveolens Linn (celery), which are approved for the apeutic targets for MDD and be important to anti- treatment of acute ischemic stroke. Previous studies have depressant drug studies. shown that NBP improves stroke outcome by protecting mitochondrial function and improving energy metabo- Materials and methods – lism19 21. NBP exerts improvements on cerebral energy Animals metabolism by protecting the integrity of mitochondrial Healthy male C57BL/6 J mice (aged 7–8 weeks and structure22, increasing activity of mitochondrial complex weighing 20–23 g, N = 40) and male CD1 mice (aged enzymes23, improving activity of mitochondrial ATPase24, 18–20 weeks and weighing 35–40 g, N = 90) were pur- and maintaining stability of cell membrane potential25. chased from the Experimental Animal Centre of Moreover, recent studies have shown that by promoting Chongqing Medical University (Chongqing, China). energy metabolism, NBP may be effective in treating During the entire study, the mice were maintained in a neurological disorders beyond the management of stroke. temperature and humidity controlled room (21–22°C, NBP exhibits protective effects against mitochondrial 55 ± 5%) under a 12 h light/dark cycle with access to food damage by inhibiting amyloid β (Aβ)-induced mitochon- and water freely. The study were approved by the Ethics drial dysfunction, whereas Aβ induces active caspase-3, Committee of Chongqing Medical University. caspase-9, and cytochrome c expression in Alzheimer’s disease26. NBP ameliorates SH-SY5Y cell survival against Drug treatment rotenone, and improves mitochondrial membrane All mice were randomly divided into control with pla- potential reductions and reactive oxygen species genera- cebo group (CON + PLA group) and CSDS with placebo tion and apoptosis in Parkinson’s disease27. MDD is the group (CSDS + PLA group) and CSDS with NBP group most frequent psychiatric disorder involving mitochon- (CSDS + NBP group) after 1 week of adaptive feeding. drial dysfunction and altered energy metabolism28, yet no The CON + PLA group (N = 12) and CSDS + PLA group studies investigating whether NBP exerts antidepressant (N = 15) were treated with soybean oil, and the CSDS + effects have been reported. Accordingly, we administered NBP group (N = 13) was treated with NBP (60 mg/kg, NBP to mice subjected to chronic social defeat stress diluted in soybean oil)37. Mice received intragastric (CSDS), a well-validated model of depression, to investi- administration daily in a volume of 200 μl between 14:00 gate the antidepressant effects of NBP. PM and 14:30 PM for 24 days. Many studies have focused on signaling pathways involved in regulation of energy metabolism. One of the CSDS most studied mediators of these pathways is AKT (also An established CSDS protocol was used to induce – known as protein kinase B)29 31. AKT is a serine/threo- depressive-like behavior in mice38,39. The CSDS procedure – nine kinase and signaling molecule of cell growth and in the study was performed as previously reported40 42. differentiation, which acts as a central node of many The protocol is beginning with the selection of aggressive signaling pathways. AKT may regulate glucose metabo- CD1. Forty-one CD1 mice with appropriate character- lism by trafficking cellular uptake of glucose and altering istics as described below were selected from 90 CD1. gene expression32 and the mitochondrial membrane gra- There are two criteria for screening the aggressive beha- – dient33 35. AKT is a phosphoprotein that is capable of vior of CD1 mice as below: first, CD1 mice must have
Recommended publications
  • Cells Δγ Lineage Choice and Shapes Peripheral Purinergic P2X7
    Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral δγ Cells This information is current as Michela Frascoli, Jessica Marcandalli, Ursula Schenk and of October 2, 2021. Fabio Grassi J Immunol 2012; 189:174-180; Prepublished online 30 May 2012; doi: 10.4049/jimmunol.1101582 http://www.jimmunol.org/content/189/1/174 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/05/30/jimmunol.110158 Material 2.DC1 http://www.jimmunol.org/ References This article cites 31 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/1/174.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral gd Cells Michela Frascoli,* Jessica Marcandalli,* Ursula Schenk,*,1 and Fabio Grassi*,† TCR signal strength instructs ab versus gd lineage decision in immature T cells.
    [Show full text]
  • Sara Catarina Timóteo Dos Santos Domingues Identificação De
    Universidade de Aveiro Secção Autónoma de Ciências da Saúde 201 2 Sara Catarina Timóteo Identificação de Complexos Proteicos na Doença de dos Santos Domingues Alzheimer Identification of Protein Complexes in Alzheimer’s Disease Universida de de Aveiro Secção Autónoma de Ciências da Saúde 20 12 Sara Catarina Timóteo Identificação de Complexos Proteicos na Doença de dos Santos Domingues Alzheimer Identification of Protein Complexes in Alzheimer’s Disease Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Ciências Biomédicas, realizada sob a orientação científica da Prof. Doutora Odete Abreu Beirão da Cruz e Silva, Professora Auxiliar com Agregação da Secção Autónoma de Ciências da Saúde da Universidade de Aveiro. Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio (Bolsa de Doutoramento SFRH/ BD/ 21559/ 2005 ). o júri presidente Doutor Artur da Rosa Pires Professor Catedrático da Universidade de Aveiro Doutor Uwe Konietzko Investigador Sénior da Universidade de Zurique Doutor José António Henriques de Conde Belo Professor Associado com Agregação da Universidade do Algarve Doutora Patrícia Espinheira de Sá Maciel Professora Associada da Escola de Ciências da Saúde da Universidade do Minho Doutora Odete Abreu Beirão da Cruz e Silva Professora Auxiliar com Agregação da Universidade de Aveiro Doutora Margarida Sâncio da Cruz Fardilha Professora Auxiliar Convidada da Universidade de Aveiro agradecimentos I would like to express my gratitude to FCT, for the financial support. To the Centre for Cell Biology and to the Biology and Health Sciences Departments from the University of Aveiro, for providing the necessary conditions.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • 13809 P2X7 Receptor (E1E8T) Rabbit Mab
    Revision 1 C 0 2 - t P2X7 Receptor (E1E8T) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] 9 Support: 877-678-TECH (8324) 0 8 Web: [email protected] 3 www.cellsignal.com 1 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, IP H Endogenous 78 Rabbit IgG Q99572 5027 Product Usage Information 2. Valera, S. et al. (1994) Nature 371, 516-9. 3. North, R.A. and Surprenant, A. (2000) Annu Rev Pharmacol Toxicol 40, 563-80. Application Dilution 4. Skaper, S.D. et al. (2010) FASEB J 24, 337-45. 5. Bernardino, L. et al. (2008) J Neurochem 106, 271-80. Western Blotting 1:1000 6. Volonté, C. et al. (2003) Curr Drug Targets CNS Neurol Disord 2, 403-12. Immunoprecipitation 1:50 7. Chessell, I.P. et al. (2005) Pain 114, 386-96. 8. Dell'Antonio, G. et al. (2002) Neurosci Lett 327, 87-90. 9. Barden, N. et al. (2006) Am J Med Genet B Neuropsychiatr Genet 141B, 374-82. Storage 10. Lucae, S. et al. (2006) Hum Mol Genet 15, 2438-45. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity P2X7 Receptor (E1E8T) Rabbit mAb recognizes endogenous levels of total P2X7 receptor protein. Species Reactivity: Human Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Leu462 of human P2X7 receptor protein.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • Transcriptomes and Neurotransmitter Profiles of Classes of Gustatory And
    ARTICLE DOI: 10.1038/s41467-017-01095-1 OPEN Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion Gennady Dvoryanchikov 1, Damian Hernandez1, Jennifer K. Roebber 2, David L. Hill3, Stephen D. Roper 1,2,4 & Nirupa Chaudhari 1,2,4 Taste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna. Here, we report single cell RNA sequencing of geniculate ganglion neurons. Using unbiased transcriptome analyses, we show a pronounced separation between two major clusters which, by anterograde labeling, correspond to gus- tatory and somatosensory neurons. Among the gustatory neurons, three subclusters are present, each with its own complement of transcription factors and neurotransmitter response profiles. The smallest subcluster expresses both gustatory- and mechanosensory- related genes, suggesting a novel type of sensory neuron. We identify several markers to help dissect the functional distinctions among gustatory neurons and address questions regarding target interactions and taste coding. 1 Department of Physiology & Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 2 Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 3 Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA. 4 Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. Gennady Dvoryanchikov and Damian Hernandez contributed equally to the work.
    [Show full text]
  • P2X2 (P2RX2) (NM 170682) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP700191 P2X2 (P2RX2) (NM_170682) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human purinergic receptor P2X, ligand-gated ion channel, 2 (P2RX2), G353R mutant of transcript variant 1, 20 ug Species: Human Expression Host: HEK293 Tag: C-Myc/DDK Predicted MW: 51.6 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_733782 Locus ID: 22953 UniProt ID: Q9UBL9, Q32MC3 RefSeq Size: 1830 Cytogenetics: 12q24.33 RefSeq ORF: 1413 Synonyms: DFNA41; P2X2 Summary: The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel. Binding to ATP mediates synaptic transmission between neurons and from neurons to smooth muscle. Multiple transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Aug 2013] Protein Families: Druggable Genome, Ion Channels: ATP Receptors, Transmembrane Protein Pathways: Calcium signaling pathway, Neuroactive ligand-receptor interaction This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 P2X2 (P2RX2) (NM_170682) Human Recombinant Protein – TP700191 Product images: This product is to be used for laboratory only.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • A Truncation Variant of the Cation Channel P2RX5 Is Upregulated During T Cell Activation
    A Truncation Variant of the Cation Channel P2RX5 Is Upregulated during T Cell Activation . Pierre Abramowski1,2", Christoph Ogrodowczyk3", Roland Martin1,4* , Olaf Pongs3,5 1 Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (inims), ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 2 Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 3 Institute for Neural Signaltransduction, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 4 Neuroimmunology and MS Research, Department of Neurology, University Hospital Zurich, Zurich, Switzerland, 5 Institute for Physiology, University Hospital Homburg, Homburg/Saar, Germany Abstract Members of the P2X family of ligand-gated cation channels (P2RX) are expressed by various cell types including neurons, smooth- and cardiac muscle cells, and leukocytes. The channels mediate signalling in response to extracellular ATP. Seven subunit isoforms (P2RX1-P2RX7) have been identified and these can assemble as homo- and heterotrimeric molecules. In humans, P2RX5 exists as a natural deletion mutant lacking amino acids 328–349 of exon 10, which are part of transmembrane (TM) 2 and pre-TM2 regions in other organisms like rat, chicken and zebrafish. We show that P2RX5 gene expression of human T lymphocytes is upregulated during activation. P2RX5 is recruited to the cell surface. P2RX5-siRNA- transfected CD4+ T cells produced twofold more IL-10 than controls. Surface and intracellular P2RX5 expression was upregulated in activated antigen-specific CD4+ T cell clones. These data indicate a functional role of the human P2RX5 splice variant in T cell activation and immunoregulation. Citation: Abramowski P, Ogrodowczyk C, Martin R, Pongs O (2014) A Truncation Variant of the Cation Channel P2RX5 Is Upregulated during T Cell Activation.
    [Show full text]
  • P2X1 (F-17): Sc-12208
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . P2X1 (F-17): sc-12208 BACKGROUND APPLICATIONS The P2X receptor family is comprised of ligand-gated ion channels that allow P2X1 (F-17) is recommended for detection of P2X1 of mouse, rat and for the increased permeability of calcium into the cell in response to extra - human origin by Western Blotting (starting dilution 1:200, dilution range cel lular ATP. The seven P2X receptors, P2X1-P2X7, form either homomeric or 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range heteromeric channels or both. They are characterized by intracellular amino- 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range and carboxy-termini. P2X receptors are expressed in a wide variety of tissues, 1:30-1:3000). including neurons, prostate, bladder, pancreas, colon, testis and ovary. The P2X1 (F-17) is also recommended for detection of P2X1 in additional species, major function of the P2X receptors is to mediate synaptic transmissions be- including equine, canine, bovine and porcine. tween neurons and to other tissues via the binding of extracellular ATP, which acts as a neurotransmitter. The P2X receptors may be involved in the onset Suitable for use as control antibody for P2X1 siRNA (h): sc-42563, P2X1 of necrosis or apoptosis after prolonged exposure to high concentrations of siRNA (m): sc-42564, P2X1 shRNA Plasmid (h): sc-42563-SH, P2X1 shRNA extracellular ATP. Plasmid (m): sc-42564-SH, P2X1 shRNA (h) Lentiviral Particles: sc-42563-V and P2X1 shRNA (m) Lentiviral Particles: sc-42564-V.
    [Show full text]
  • Prdc Cdna Insert Product Line
    rP2X5/P2RX5 VersaClone cDNA Catalog Number: RDC2061 Specifications: Description This shuttle vector contains the complete ORF for the gene of interest, Gene: rP2rx5 along with a Kozak consensus sequence for optimal translation initiation. It is inserted NotI to AscI. The gene insert is flanked with Accession: NP_542958 convenient multiple cloning sites which can be used to easily cut and transfer the gene cassette into your desired expression vector. Insert size: 1381bp Preparation and Storage Concentration: 10µg at 0.2μg/μL Formulation cDNA is provided in 10 mM Tris-Cl, pH 8.5 Shipping Ships at ambient temperature Stability 1 year from date of receipt when stored at -20°C to -80°C Storage Use a manual defrost freezer and avoid repeated rP2X5/P2RX5 cDNA freeze-thaw cycles. Plasmid P2rx5 purinergic receptor P2X 5 BstAPI EcoO109I BbeI [ Rattus norvegicus (Norway ZraI KasI BmgBI AatII NarI rat) ] SspI HpaI SfoI EcoRV BmtI Also known as: P2x5 NheI ScaI NotI EagI BtgI Summary: NcoI StyI P2RX5 belongs to the family of purinoceptors for ATP. It functions AMP BlpI NmeAIII as ligand-gated ion channel. P2RX5 BsrFI is believed to form a trimer with BsaI AhdI RDC2061 EcoNI another member of this family, P2RX1. P2RX5 mRNA expression is 4115 bps rP2RX5 (1-455) detected in a significant portion of XcmI PshAI solid tumor cell lines, including renal BsaBI cell carcinoma (RCC), melanoma, BseRI colorectal carcinoma, brain cancer COLE1 and breast cancer. Expression was AlwNI also detected in a subset of primary SexAI solid tumor specimens derived from Bsu36I BbsI Van91I AscI RCC, brain cancer and breast cancer BsmI BssHII PciI PspXI Bst1107I patients.
    [Show full text]
  • Non-Synonymous Single Nucleotide Polymorphisms in the P2X
    Int. J. Mol. Sci. 2014, 15, 13344-13371; doi:10.3390/ijms150813344 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Non-Synonymous Single Nucleotide Polymorphisms in the P2X Receptor Genes: Association with Diseases, Impact on Receptor Functions and Potential Use as Diagnosis Biomarkers Emily A. Caseley 1,†, Stephen P. Muench 1, Sebastien Roger 2, Hong-Ju Mao 3, Stephen A. Baldwin 1 and Lin-Hua Jiang 1,4,†,* 1 School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; E-Mails: [email protected] (E.A.C.); [email protected] (S.P.M.); [email protected] (S.A.B.) 2 Inserm U1069, University of Tours, Tours 37032, France; E-Mail: [email protected] 3 State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China; E-Mail: [email protected] 4 Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-0-113-343-4231. Received: 6 June 2014; in revised form: 10 July 2014 / Accepted: 14 July 2014 / Published: 30 July 2014 Abstract: P2X receptors are Ca2+-permeable cationic channels in the cell membranes, where they play an important role in mediating a diversity of physiological and pathophysiological functions of extracellular ATP. Mammalian cells express seven P2X receptor genes. Single nucleotide polymorphisms (SNPs) are widespread in the P2RX genes encoding the human P2X receptors, particularly the human P2X7 receptor.
    [Show full text]