JNEUROSCI.1426-20.2020.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

JNEUROSCI.1426-20.2020.Full.Pdf Research Articles: Cellular/Molecular Unique molecular characteristics of visceral afferents arising from different levels of the neuraxis: location of afferent somata predicts function and stimulus detection modalities https://doi.org/10.1523/JNEUROSCI.1426-20.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.1426-20.2020 Received: 2 June 2020 Revised: 30 July 2020 Accepted: 7 August 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 Unique molecular characteristics of visceral afferents arising from different levels of the 2 neuraxis: location of afferent somata predicts function and stimulus detection modalities 3 Running Title: Unique molecular profile of visceral afferents 4 Kimberly A. Meerschaert1,2, Peter C. Adelman 3, Robert L. Friedman 1,2, Kathryn M. Albers 1,2, H. 5 R. Koerber 1,2 and Brian M. Davis 1,2,# 6 1 Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, 7 Pennsylvania; 2 Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, 8 Pennsylvania; 3 Afiniti, Washington D.C. 9 #For correspondence: Brian M. Davis, University of Pittsburgh, Department of Neurobiology, 10 200 Lothrop Street, Pittsburgh, PA 15216, [email protected], Ph: 412-648-9745 11 Number of pages: 36 12 Number of figures and tables: 7 Figs., 3 Tables 13 Number of words for Abstract - 250, Significance Statement- 101; Introduction – 647, and 14 Discussion - 1489 15 All authors have no conflict of interest. 16 Acknowledgements: The authors acknowledge and thank Mr. Christopher Sullivan for expert 17 technical support and mouse husbandry. 18 Author contributions: KAM, conception and design, acquisition of data, analysis and 19 interpretation of data, drafting and revising the article. PCA and RLF, acquisition of data, 20 analysis and interpretation of data. KMA, HRK and BMD, conception and design, analysis and 21 interpretation of data, drafting and revising the article. 1 22 Supported by NINDS NS023725, NS096705 (HRK), NIAMS AR069951 (KMA), NIDDK 23 DK124955 (BMD), OT2-OD023859 (Marthe J. Howard PD, BMD PI) 24 25 Keywords: Dorsal root ganglia, nodose ganglia, primary afferent, colon, bladder 26 Abbreviations: DRG, dorsal root ganglia; NG, nodose ganglia; RT-qPCR, real-time quantitative 27 polymerase chain reaction; TL, thoracolumbar; LS, lumbosacral 28 2 29 Abstract 30 Viscera receive innervation from sensory ganglia located adjacent to multiple levels of the 31 brainstem and spinal cord. Here we examined whether molecular profiling could be used to 32 identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and 33 nodose ganglia (NG) in male and female mice. Profiling of TL and LS bladder afferents was 34 also done. Visceral afferents were back-labeled using retrograde tracers injected into proximal 35 and distal regions of colon or bladder, followed by single cell RT-qPCR and analysis via an 36 automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for 37 colon) based on their established role in stimulus detection, regulation of sensitivity/function or 38 neuroimmune interaction. A total of 132 colon afferents (from NG, TL, and LS) and 128 bladder 39 afferents (from TL and LS) were analyzed. Retrograde labeling from the colon showed NG and 40 TL afferents innervate proximal and distal regions of the colon whereas 98% of LS afferents 41 only project to distal regions. There were clusters of colon and bladder afferents, defined by 42 mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was 43 found. In addition, transcriptionally, NG colon afferents were almost completely segregated 44 from colon TL and LS neurons. Furthermore, colon and bladder afferents expressed genes at 45 similar levels, although different gene combinations defined the clusters. These results indicate 46 that genes implicated in both homeostatic regulation and conscious sensations are found at all 47 anatomic levels, suggesting afferents from different portions of the neuraxis have overlapping 48 functions. 49 50 Significance Statement: Visceral organs are innervated by sensory neurons whose cell 51 bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the 52 colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, 53 where sensation and pain is mediated by spinal afferents and fear and anxiety (the affective 3 54 aspects of visceral pain) are the domain of nodose afferents. Transcriptomic analysis 55 performed here reveals that genes implicated in both homeostatic regulation and pain are found 56 in afferents across all ganglia types, suggesting that conscious sensation and homeostatic 57 regulation is the result of convergence, and not segregation, of sensory input. 58 Introduction 59 Visceral organs receive sensory innervation from primary sensory neurons arising from multiple 60 levels of the neuraxis. Depending on the organ, innervation can originate from vagal afferents 61 (including afferents in the jugular and nodose (NG) ganglia), thoracolumbar (TL) spinal afferents 62 (arising from lower thoracic and upper lumbar dorsal root ganglia (DRG)) or lumbosacral (LS) 63 spinal afferents (arising from lower lumbar and upper sacral DRG). Our hypotheses to account 64 for why viscera requires monitoring by multiple populations of afferents include: a) that different 65 levels of innervation are involved in different qualitative aspects of stimulus detection, including 66 pain, b) that because the first synapse is on CNS neurons associated with sympathetic or 67 parasympathetic circuits, different afferent populations provide the basis for integration of 68 autonomic/homeostatic functions, or c) that the different levels play complementary roles in 69 immune modulation. 70 With regard to shaping the nature of the visceral sensory experience, it had been hypothesized 71 that spinal afferents, but not vagal afferents, relay nociceptive sensations (e.g., stabbing, 72 burning, cramping), whereas vagal afferents underlie affective aspects of visceral pain including 73 depression, anxiety, nausea and fear (Altschuler et al., 1993; Berthoud and Neuhuber, 2000; 74 Grundy, 2002; Sengupta, 2009). However, recent evidence has shown that vagal afferents may 75 have a significant role in nociception and pain (Lee et al., 2003; Kang et al., 2004; Yu et al., 76 2005; Bielefeldt et al., 2006; Canning et al., 2006; Nassenstein et al., 2008; Taylor-Clark et al., 77 2009). Even spinal afferents from different levels may have specific roles; colonic afferents 78 arising from the TL level have been reported to be important for inflammatory pain but not acute 4 79 pain, whereas LS colonic afferents are proposed to be involved in both acute and inflammatory 80 pain (Traub et al., 1994; Traub, 2000; Wang et al., 2005). 81 In terms of homeostasis, spinal visceral afferents that innervate colon and bladder have cell 82 bodies in both TL and LS DRG, projecting to organs they innervate along sympathetic (TL) or 83 parasympathetic (LS) splanchnic nerves and terminate broadly in the spinal cord, including in 84 the region of sympathetic (TL) or parasympathetic (LS) preganglionic neurons (Harrington et al., 85 2019; Smith-Edwards et al., 2019). In contrast, vagal afferents that innervate the colon (and 86 possibly bladder (Herrity et al., 2014)) have cell bodies in the nodose ganglia, run in the vagus 87 nerve with preganglionic parasympathetic fibers and terminate in the brainstem nucleus tractus 88 solitarius (NTS) that in turn projects to nuclei in the brainstem, thalamus and cortex (Norgren, 89 1978; van der Kooy et al., 1984). Thus, redundant sensory input to the CNS could be informing 90 different components of the autonomic nervous system. 91 Afferent/immune interactions are also critical for gut function and homeostasis, i.e., the vagus 92 nerve has a crucial role in the anti-inflammatory reflex (Tracey, 2002), with vagal afferent 93 response to cytokine release as the first step in this reflex. Primary afferents (vagal and spinal) 94 release multiple peptides including calcitonin gene-related peptide (CGRP) and substance P 95 that bind receptors on immune cells, allowing direct afferent and immune communication (Brain 96 and Williams, 1985; Caceres et al., 2009; Altmayr et al., 2010; Riol-Blanco et al., 2014; Cohen 97 et al., 2019). Ablation or silencing of primary afferents (vagal and spinal) also can modulate the 98 immune response across multiple organs, including the lungs, small intestine and colon (Engel 99 et al., 2011; Baral et al., 2018; Lai et al., 2020). 100 In this study we examined how genes required for sensation, homeostasis and neuroimmune 101 regulation are divided among different visceral afferents. Single cell RT-qPCR analysis 102 combined with automated hierarchical clustering (AHC) of afferents innervating the bladder and 103 colon were carried out. Results show that location matters; that genes expressed by an afferent 5 104 and where that afferent terminates (especially for the colon) is determined by the ganglionic 105 location. Furthermore, the clustering of unique genes to afferents from
Recommended publications
  • Cells Δγ Lineage Choice and Shapes Peripheral Purinergic P2X7
    Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral δγ Cells This information is current as Michela Frascoli, Jessica Marcandalli, Ursula Schenk and of October 2, 2021. Fabio Grassi J Immunol 2012; 189:174-180; Prepublished online 30 May 2012; doi: 10.4049/jimmunol.1101582 http://www.jimmunol.org/content/189/1/174 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/05/30/jimmunol.110158 Material 2.DC1 http://www.jimmunol.org/ References This article cites 31 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/1/174.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral gd Cells Michela Frascoli,* Jessica Marcandalli,* Ursula Schenk,*,1 and Fabio Grassi*,† TCR signal strength instructs ab versus gd lineage decision in immature T cells.
    [Show full text]
  • Sara Catarina Timóteo Dos Santos Domingues Identificação De
    Universidade de Aveiro Secção Autónoma de Ciências da Saúde 201 2 Sara Catarina Timóteo Identificação de Complexos Proteicos na Doença de dos Santos Domingues Alzheimer Identification of Protein Complexes in Alzheimer’s Disease Universida de de Aveiro Secção Autónoma de Ciências da Saúde 20 12 Sara Catarina Timóteo Identificação de Complexos Proteicos na Doença de dos Santos Domingues Alzheimer Identification of Protein Complexes in Alzheimer’s Disease Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Ciências Biomédicas, realizada sob a orientação científica da Prof. Doutora Odete Abreu Beirão da Cruz e Silva, Professora Auxiliar com Agregação da Secção Autónoma de Ciências da Saúde da Universidade de Aveiro. Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio (Bolsa de Doutoramento SFRH/ BD/ 21559/ 2005 ). o júri presidente Doutor Artur da Rosa Pires Professor Catedrático da Universidade de Aveiro Doutor Uwe Konietzko Investigador Sénior da Universidade de Zurique Doutor José António Henriques de Conde Belo Professor Associado com Agregação da Universidade do Algarve Doutora Patrícia Espinheira de Sá Maciel Professora Associada da Escola de Ciências da Saúde da Universidade do Minho Doutora Odete Abreu Beirão da Cruz e Silva Professora Auxiliar com Agregação da Universidade de Aveiro Doutora Margarida Sâncio da Cruz Fardilha Professora Auxiliar Convidada da Universidade de Aveiro agradecimentos I would like to express my gratitude to FCT, for the financial support. To the Centre for Cell Biology and to the Biology and Health Sciences Departments from the University of Aveiro, for providing the necessary conditions.
    [Show full text]
  • Single-Cell Rnaseq Reveals Seven Classes of Colonic Sensory Neuron
    Gut Online First, published on February 26, 2018 as 10.1136/gutjnl-2017-315631 Neurogastroenterology ORIGINAL ARTICLE Gut: first published as 10.1136/gutjnl-2017-315631 on 26 February 2018. Downloaded from Single-cell RNAseq reveals seven classes of colonic sensory neuron James R F Hockley,1,2 Toni S Taylor,1 Gerard Callejo,1 Anna L Wilbrey,2 Alex Gutteridge,2 Karsten Bach,1 Wendy J Winchester,2 David C Bulmer,1 Gordon McMurray,2 Ewan St John Smith1 ► Additional material is ABSTRact pathways to the central nervous system (CNS).1 In published online only. To view Objective Integration of nutritional, microbial and the colorectum, sensory innervation is organised please visit the journal online (http:// dx. doi. org/ 10. 1136/ inflammatory events along the gut-brain axis can alter into two main pathways: thoracolumbar (TL) spinal gutjnl- 2017- 315631). bowel physiology and organism behaviour. Colonic afferents projecting via the lumbar splanchnic sensory neurons activate reflex pathways and give nerve (LSN) and lumbosacral (LS) spinal afferents 1Department of Pharmacology, University of Cambridge, rise to conscious sensation, but the diversity and projecting via the pelvic nerve (PN) that are respon- Cambridge, UK division of function within these neurons is poorly sible for transducing conscious sensations of full- 2Neuroscience and Pain understood. The identification of signalling pathways ness, discomfort, urgency and pain, in addition to Research Unit, Pfizer, contributing to visceral sensation is constrained by a reflex actions.2 Cambridge, UK paucity of molecular markers. Here we address this by Visceral sensory afferents act to maintain many comprehensive transcriptomic profiling and unsupervised aspects of GI physiology, such as continence and Correspondence to James R F Hockley, Department clustering of individual mouse colonic sensory neurons.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • Transcriptomes and Neurotransmitter Profiles of Classes of Gustatory And
    ARTICLE DOI: 10.1038/s41467-017-01095-1 OPEN Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion Gennady Dvoryanchikov 1, Damian Hernandez1, Jennifer K. Roebber 2, David L. Hill3, Stephen D. Roper 1,2,4 & Nirupa Chaudhari 1,2,4 Taste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna. Here, we report single cell RNA sequencing of geniculate ganglion neurons. Using unbiased transcriptome analyses, we show a pronounced separation between two major clusters which, by anterograde labeling, correspond to gus- tatory and somatosensory neurons. Among the gustatory neurons, three subclusters are present, each with its own complement of transcription factors and neurotransmitter response profiles. The smallest subcluster expresses both gustatory- and mechanosensory- related genes, suggesting a novel type of sensory neuron. We identify several markers to help dissect the functional distinctions among gustatory neurons and address questions regarding target interactions and taste coding. 1 Department of Physiology & Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 2 Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 3 Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA. 4 Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. Gennady Dvoryanchikov and Damian Hernandez contributed equally to the work.
    [Show full text]
  • P2X2 (P2RX2) (NM 170682) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP700191 P2X2 (P2RX2) (NM_170682) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human purinergic receptor P2X, ligand-gated ion channel, 2 (P2RX2), G353R mutant of transcript variant 1, 20 ug Species: Human Expression Host: HEK293 Tag: C-Myc/DDK Predicted MW: 51.6 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_733782 Locus ID: 22953 UniProt ID: Q9UBL9, Q32MC3 RefSeq Size: 1830 Cytogenetics: 12q24.33 RefSeq ORF: 1413 Synonyms: DFNA41; P2X2 Summary: The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel. Binding to ATP mediates synaptic transmission between neurons and from neurons to smooth muscle. Multiple transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Aug 2013] Protein Families: Druggable Genome, Ion Channels: ATP Receptors, Transmembrane Protein Pathways: Calcium signaling pathway, Neuroactive ligand-receptor interaction This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 P2X2 (P2RX2) (NM_170682) Human Recombinant Protein – TP700191 Product images: This product is to be used for laboratory only.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Non-Synonymous Single Nucleotide Polymorphisms in the P2X
    Int. J. Mol. Sci. 2014, 15, 13344-13371; doi:10.3390/ijms150813344 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Non-Synonymous Single Nucleotide Polymorphisms in the P2X Receptor Genes: Association with Diseases, Impact on Receptor Functions and Potential Use as Diagnosis Biomarkers Emily A. Caseley 1,†, Stephen P. Muench 1, Sebastien Roger 2, Hong-Ju Mao 3, Stephen A. Baldwin 1 and Lin-Hua Jiang 1,4,†,* 1 School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; E-Mails: [email protected] (E.A.C.); [email protected] (S.P.M.); [email protected] (S.A.B.) 2 Inserm U1069, University of Tours, Tours 37032, France; E-Mail: [email protected] 3 State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China; E-Mail: [email protected] 4 Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-0-113-343-4231. Received: 6 June 2014; in revised form: 10 July 2014 / Accepted: 14 July 2014 / Published: 30 July 2014 Abstract: P2X receptors are Ca2+-permeable cationic channels in the cell membranes, where they play an important role in mediating a diversity of physiological and pathophysiological functions of extracellular ATP. Mammalian cells express seven P2X receptor genes. Single nucleotide polymorphisms (SNPs) are widespread in the P2RX genes encoding the human P2X receptors, particularly the human P2X7 receptor.
    [Show full text]
  • P2RX2 Antibody Cat
    P2RX2 Antibody Cat. No.: 28-261 P2RX2 Antibody Antibody used in WB on Human Jurkat 0.6 ug/ml. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human Antibody produced in rabbits immunized with a synthetic peptide corresponding a region IMMUNOGEN: of human P2RX2. TESTED APPLICATIONS: ELISA, IHC, WB P2RX2 antibody can be used for detection of P2RX2 by ELISA at 1:312500. P2RX2 antibody APPLICATIONS: can be used for detection of P2RX2 by western blot at 0.6 μg/mL, and HRP conjugated secondary antibody should be diluted 1:50,000 - 100,000. POSITIVE CONTROL: 1) Cat. No. 1205 - Jurkat Cell Lysate PREDICTED MOLECULAR 42 kDa, 44 kDa, 49 kDa, 52 kDa, 55 kDa, 45 kDa WEIGHT: October 2, 2021 1 https://www.prosci-inc.com/p2rx2-antibody-28-261.html Properties PURIFICATION: Antibody is purified by protein A chromatography method. CLONALITY: Polyclonal CONJUGATE: Unconjugated PHYSICAL STATE: Liquid Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% BUFFER: sucrose. CONCENTRATION: batch dependent For short periods of storage (days) store at 4˚C. For longer periods of storage, store STORAGE CONDITIONS: P2RX2 antibody at -20˚C. As with any antibody avoid repeat freeze-thaw cycles. Additional Info OFFICIAL SYMBOL: P2RX2 ALTERNATE NAMES: P2RX2, P2X2, DFNA41 ACCESSION NO.: NP_777361 PROTEIN GI NO.: 28416921 GENE ID: 22953 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References P2RX2 belongs to the family of purinoceptors for ATP. This receptor functions as a ligand- gated ion channel. Binding to ATP mediates synaptic transmission between neurons and BACKGROUND: from neurons to smooth muscle.
    [Show full text]
  • A Sublethal ATP11A Mutation Associated with Neurological Deterioration Causes Aberrant Phosphatidylcholine Flipping in Plasma Membranes
    A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes Katsumori Segawa, … , Shigeo Kure, Shigekazu Nagata J Clin Invest. 2021. https://doi.org/10.1172/JCI148005. Research In-Press Preview Cell biology Metabolism Graphical abstract Find the latest version: https://jci.me/148005/pdf A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes Katsumori Segawa,1,16,17 Atsuo Kikuchi,2,16 Tomoyasu Noji,3 Yuki Sugiura,4 Keita Hiraga,3 Chigure Suzuki,5,6 Kazuhiro Haginoya,7,8 Yasuko Kobayashi,7,9 Mitsuhiro Matsunaga,1 Yuki Ochiai,1 Kyoko Yamada,1 Takuo Nishimura,1,18 Shinya Iwasawa,2 Wataru Shoji,10 Fuminori Sugihara,11 Kohei Nishino,12 Hidetaka Kosako,12 Masahito Ikawa,13 Yasuo Uchiyama,5,6 Makoto Suematsu,4 Hiroshi Ishikita,3 Shigeo Kure,2,14 Shigekazu Nagata1, 15* 1Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, 11Central Instrumentation Laboratory, Research Institute for Microbial Diseases, 13Department of Experimental Genome Research, Research Institute for Microbial Diseases, 15Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan. 2Department of Pediatrics, Tohoku University School of Medicine, 10Frontier Research Institute for Interdisciplinary Sciences, and 14Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan. 3Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. 4Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan. 5Department of Cellular and Molecular Pharmacology, and 6Department of Cellular and Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan. 7Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Miyagi, Japan.
    [Show full text]
  • Anti-P2X2 Antibody (ARG43042)
    Product datasheet [email protected] ARG43042 Package: 50 μg anti-P2X2 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes P2X2 Tested Reactivity Hu Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name P2X2 Antigen Species Human Immunogen Recombinant protein corresponding to D139-L471 of Human P2X2. Conjugation Un-conjugated Alternate Names DFNA41; ATP receptor; P2X2; P2X purinoceptor 2; Purinergic receptor Application Instructions Application table Application Dilution IHC-P 1:200 - 1:1000 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 52 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.2% Na2HPO4, 0.9% NaCl, 0.05% Sodium azide and 5% BSA. Preservative 0.05% Sodium azide Stabilizer 5% BSA Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol P2RX2 Gene Full Name purinergic receptor P2X, ligand gated ion channel, 2 Background The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel. Binding to ATP mediates synaptic transmission between neurons and from neurons to smooth muscle.
    [Show full text]
  • Identification of a Subset of Immunosuppressive P2RX1
    ARTICLE https://doi.org/10.1038/s41467-020-20447-y OPEN Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis Xu Wang1,2,4, Li-Peng Hu1,4, Wei-Ting Qin1,4, Qin Yang1,4, De-Yu Chen2,4, Qing Li1, Kai-Xia Zhou1, Pei-Qi Huang1, Chun-Jie Xu1, Jun Li1, Lin-Li Yao1, Ya-Hui Wang1, Guang-Ang Tian1, Jian-Yu Yang3, ✉ ✉ ✉ Min-Wei Yang3, De-Jun Liu3, Yong-Wei Sun 3 , Shu-Heng Jiang 1 , Xue-Li Zhang 1 & ✉ Zhi-Gang Zhang 1 1234567890():,; The immunosuppressive microenvironment that is shaped by hepatic metastatic pancreatic ductal adenocarcinoma (PDAC) is essential for tumor cell evasion of immune destruction. Neutrophils are important components of the metastatic tumor microenvironment and exhibit heterogeneity. However, the specific phenotypes, functions and regulatory mechan- isms of neutrophils in PDAC liver metastases remain unknown. Here, we show that a subset of P2RX1-negative neutrophils accumulate in clinical and murine PDAC liver metastases. RNA sequencing of murine PDAC liver metastasis-infiltrated neutrophils show that P2RX1- deficient neutrophils express increased levels of immunosuppressive molecules, including PD-L1, and have enhanced mitochondrial metabolism. Mechanistically, the transcription factor Nrf2 is upregulated in P2RX1-deficient neutrophils and associated with PD-L1 expression and metabolic reprogramming. An anti-PD-1 neutralizing antibody is sufficient to compromise the immunosuppressive effects of P2RX1-deficient neutrophils on OVA- activated OT1 CD8+ T cells. Therefore, our study uncovers a mechanism by which metastatic PDAC tumors evade antitumor immunity by accumulating a subset of immuno- suppressive P2RX1-negative neutrophils. 1 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.
    [Show full text]