Secretory Functions of Macrophages in the Human Pancreatic

Total Page:16

File Type:pdf, Size:1020Kb

Secretory Functions of Macrophages in the Human Pancreatic Page 1 of 55 Diabetes SECRETORY FUNCTIONS OF MACROPHAGES IN THE HUMAN PANCREATIC ISLET ARE REGULATED BY ENDOGENOUS PURINERGIC SIGNALING Jonathan R. Weitz1, Carol Jacques-Silva2, Mirza Muhammed Fahd Qadir2,3, Oliver Umland2, Elizabeth Pereira1, Farhan Qureshi1,3, Alejandro Tamayo1, Juan Dominguez-Bendala2,3,5, Rayner Rodriguez-Diaz1, Joana Almaça1, Alejandro Caicedo1,2,3,4,6 1Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA 2Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA 3Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL, USA 4Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA 5Dept. of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA 6Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA Corresponding authors: [email protected] (J.W.), [email protected] (J.A) [email protected] (A.C). Address: Department of Medicine, 1580 NW 10th Ave, Miami Fl 33136, USA Telephone: +1 (305) 243 6025 Fax: +1 (305) 243 7268 For Peer Review Only Diabetes Publish Ahead of Print, published online April 20, 2020 Diabetes Page 2 of 55 ABSTRACT Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. Here we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine Il-10 and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors is controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors, MMP9, and Il-10 is reduced. We propose that in those states exacerbated beta cell activity due to increased insulin demand and increased cell death produces high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity. 2 For Peer Review Only Page 3 of 55 Diabetes INTRODUCTION Macrophages of the pancreatic islet have been studied mainly in the context of immunological responses associated with diabetes pathogenesis. However, macrophages in nearly all tissues also have a homeostatic function in the non-inflamed, undamaged steady state. Resident macrophages such as Kupffer cells of the liver or microglia of the brain participate in a variety of housekeeping functions, including removal of cellular debris, remodeling of the extracellular matrix, and tissue repair (1). If these functions are impaired it can lead to pathological conditions (e.g. fibrosis). It was not until 2015 that it was determined that the islet contains its unique bona fide tissue resident macrophage (2,3). These islet macrophages have been shown to contribute to tissue homeostasis by promoting beta cell proliferation (4-7). We recently established that islet macrophages act as sentinels of beta cell activity (8), but the factors and mechanisms through which macrophages impact islet homeostasis remain mostly unexplored. While these recent studies are starting to unveil new roles for the macrophage in the mouse islet, the biology of the macrophage in the human islet has barely been investigated. Previous studies on human islet leukocytes focused on lymphocytes in both non-diabetic subjects (9) and patients with type 1 diabetes (10). There is a limited amount of papers describing in biopsies how macrophage numbers change in type 2 diabetes (11-16). There are no physiological studies of human islet macrophages, likely because studying resident macrophages is challenging. Removal and culture of tissue macrophages causes loss of tissue resident identity in as little as 12 hours (17). In addition, islets are inflamed immediately after isolation (18), and culturing islets depletes leukocytes (19). Consequently, islet macrophage biology has to be studied in situ and within a narrow temporal window. Here we used an experimental strategy that allowed us to overcome these technical 3 For Peer Review Only Diabetes Page 4 of 55 limitations. We first conducted immunohistochemical analyses to determine the anatomical properties and distribution of macrophages in human pancreas tissue sections. To examine gene expression, we used RT-PCR of macrophages sorted from isolated human islets. We then recorded 2+ 2+ changes in intracellular free Ca concentration ([Ca ]i) of islet macrophages by adapting the ex vivo pancreas slice technique (20). For these recordings in living pancreas slices, macrophages were manipulated with pharmacological tools and identified with fluorescence-conjugated antibodies. We also measured changes in cytokine secretion from isolated islets in response to purinergic agonists and antagonists. Using these approaches, we established that endogenous purinergic signaling regulates resident macrophage function, which comprises secretion of metalloproteinases that regulate the islet extracellular matrix. Our findings further show that these purinergic-dependent macrophage functions are compromised in a mouse model of obesity as well as in human type 2 diabetes. 4 For Peer Review Only Page 5 of 55 Diabetes RESEARCH DESIGN AND METHODS Experimental model and subject details Human organ donors All human tissues which were obtained are from de-identified cadaveric donors. We obtained human pancreatic tissue for islet isolation from n = 7 non-diabetic individuals and n = 4 type 2 diabetic individuals for analysis of gene expression and cultured cytokine secretion experiments, which were obtained from PRODO laboratories, as well the Human Islet Cell Processing Facility at the Diabetes Research Institute, University of Miami. See additional methods for information on donors (Supplementary Fig. S9). Method details Preparation of Living Pancreatic Tissue Slices Tissue blocks were obtained and imbedded in 3.9% low gelling temperature agarose (1.2%, Sigma Aldrich cat. no 39346-81-1, dissolved in HEPES solution as described below). Tissue blocks were solidified (4°C) for 15 minutes. Living slices were then cut (100 m) on a vibroslicer (Leica 1000S). Slices were incubated in HEPES solution (125 mM NaCl, 5.9 mM KCl, 2.56 mM CaCl2, 1 mM MgCl2, 25 mM HEPES, 0.1% BSA, pH 7.4, Aprotinin 10ug/ml). Based on our functional readouts, we have reason to believe that the different cellular components of the pancreas are functional. Indeed, we observed Ca2+ responses in acinar, endocrine, immune, and vascular cells. It is important to note that we avoided the injured cut surface of the slice in our imaging studies. Thus, to image intact islets we focused on smaller islets. Although there is no blood flow, we observed immune cells utilizing vascular scaffolds for transport within the islet (Movie S8). Immunohistochemistry 5 For Peer Review Only Diabetes Page 6 of 55 Blocks of human pancreas (0.5 cm3) were fixed in 4% paraformaldehyde, cryoprotected (30% sucrose), and tissue sections (40 m) cut on a cryostat. After permeabilization (PBS-Triton X-100 0.3%), sections were incubated in blocking solution (Biogenex, San Ramon, CA). Primary antibodies were diluted in blocking solution. To visualize macrophages we used antibodies against Iba1 (Wako Chemicals USA, Richmond, VA), CD206 (1∶100 Biolegend San Diego, CA cat No. 141721). Cell nuclei were stained with DAPI. Slides were mounted with ProLong Anti Fade (Invitrogen). See ESM for additional methods. Ca2+ Imaging of Living Pancreatic Tissue Slices To visualize macrophages in situ we used fluorescence conjugated antibodies for CD45 (1:50 Biolegend San Diego, CA cat No. 304011) and CD14 (1:50 Biolegend San Diego, CA cat No. 301805). Glucose was added to the buffered solution to give a basal glucose concentration of 3 mM, unless otherwise specified. All stimuli were bath applied. Throughout the study we used the nonhydrolyzable ATP agonist ATPS (Tocris Biosciences, Bristol, UK). Antagonists were 2+ allowed to equilibrate with receptors for 5 min before stimulation with an agonist. For [Ca ]i imaging, a Z stack of ~15-30 confocal images was acquired every 8 s using a Leica SP5 confocal 2+ laser-scanning microscope. [Ca ]i responses in pancreatic macrophages were quantified as the areas under the curve of individual traces of Fluo-4 fluorescence intensity during stimulus 2+ application. To be included in the analyses, [Ca ]i responses had to be reproducible in ≥ 3 pancreatic slices. Confocal Imaging Confocal images (pinhole = airy 1) of randomly selected islets were acquired on a Leica SP5 confocal laser-scanning microscope with 40x magnification (NA = 0.8). Macrophages were 6 For Peer Review Only Page 7 of 55 Diabetes reconstructed in Z-stacks of 15-30 confocal images (step size = 2.5-5.0 m) and analyzed using ImageJ. Using confocal images, we established the location of macrophages within islets (endocrine) or acinar regions (exocrine). To prevent bias, we used an automated method in ImageJ to segment the pancreas regions based on DAPI staining before determining macrophage position. Flow Cytometry and RT-PCR Islets were obtained from PRODO laboratories (Aliso Viejo, CA) as well the Human Islet Cell Processing Facility at the Diabetes Research Institute, University of Miami (Miami, FL) using the Ricordi Chamber. In all cases,
Recommended publications
  • Cells Δγ Lineage Choice and Shapes Peripheral Purinergic P2X7
    Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral δγ Cells This information is current as Michela Frascoli, Jessica Marcandalli, Ursula Schenk and of October 2, 2021. Fabio Grassi J Immunol 2012; 189:174-180; Prepublished online 30 May 2012; doi: 10.4049/jimmunol.1101582 http://www.jimmunol.org/content/189/1/174 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/05/30/jimmunol.110158 Material 2.DC1 http://www.jimmunol.org/ References This article cites 31 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/1/174.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral gd Cells Michela Frascoli,* Jessica Marcandalli,* Ursula Schenk,*,1 and Fabio Grassi*,† TCR signal strength instructs ab versus gd lineage decision in immature T cells.
    [Show full text]
  • Functions of the Mineralocorticoid Receptor in the Hippocampus By
    Functions of the Mineralocorticoid Receptor in the Hippocampus by Aaron M. Rozeboom A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2008 Doctoral Committee: Professor Audrey F. Seasholtz, Chair Professor Elizabeth A. Young Professor Ronald Jay Koenig Associate Professor Gary D. Hammer Assistant Professor Jorge A. Iniguez-Lluhi Acknowledgements There are more people than I can possibly name here that I need to thank who have helped me throughout the process of writing this thesis. The first and foremost person on this list is my mentor, Audrey Seasholtz. Between working in her laboratory as a research assistant and continuing my training as a graduate student, I spent 9 years in Audrey’s laboratory and it would be no exaggeration to say that almost everything I have learned regarding scientific research has come from her. Audrey’s boundless enthusiasm, great patience, and eager desire to teach students has made my time in her laboratory a richly rewarding experience. I cannot speak of Audrey’s laboratory without also including all the past and present members, many of whom were/are not just lab-mates but also good friends. I also need to thank all the members of my committee, an amazing group of people whose scientific prowess combined with their open-mindedness allowed me to explore a wide variety of interests while maintaining intense scientific rigor. Outside of Audrey’s laboratory, there have been many people in Ann Arbor without whom I would most assuredly have gone crazy.
    [Show full text]
  • Sara Catarina Timóteo Dos Santos Domingues Identificação De
    Universidade de Aveiro Secção Autónoma de Ciências da Saúde 201 2 Sara Catarina Timóteo Identificação de Complexos Proteicos na Doença de dos Santos Domingues Alzheimer Identification of Protein Complexes in Alzheimer’s Disease Universida de de Aveiro Secção Autónoma de Ciências da Saúde 20 12 Sara Catarina Timóteo Identificação de Complexos Proteicos na Doença de dos Santos Domingues Alzheimer Identification of Protein Complexes in Alzheimer’s Disease Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Ciências Biomédicas, realizada sob a orientação científica da Prof. Doutora Odete Abreu Beirão da Cruz e Silva, Professora Auxiliar com Agregação da Secção Autónoma de Ciências da Saúde da Universidade de Aveiro. Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio (Bolsa de Doutoramento SFRH/ BD/ 21559/ 2005 ). o júri presidente Doutor Artur da Rosa Pires Professor Catedrático da Universidade de Aveiro Doutor Uwe Konietzko Investigador Sénior da Universidade de Zurique Doutor José António Henriques de Conde Belo Professor Associado com Agregação da Universidade do Algarve Doutora Patrícia Espinheira de Sá Maciel Professora Associada da Escola de Ciências da Saúde da Universidade do Minho Doutora Odete Abreu Beirão da Cruz e Silva Professora Auxiliar com Agregação da Universidade de Aveiro Doutora Margarida Sâncio da Cruz Fardilha Professora Auxiliar Convidada da Universidade de Aveiro agradecimentos I would like to express my gratitude to FCT, for the financial support. To the Centre for Cell Biology and to the Biology and Health Sciences Departments from the University of Aveiro, for providing the necessary conditions.
    [Show full text]
  • Single-Cell Rnaseq Reveals Seven Classes of Colonic Sensory Neuron
    Gut Online First, published on February 26, 2018 as 10.1136/gutjnl-2017-315631 Neurogastroenterology ORIGINAL ARTICLE Gut: first published as 10.1136/gutjnl-2017-315631 on 26 February 2018. Downloaded from Single-cell RNAseq reveals seven classes of colonic sensory neuron James R F Hockley,1,2 Toni S Taylor,1 Gerard Callejo,1 Anna L Wilbrey,2 Alex Gutteridge,2 Karsten Bach,1 Wendy J Winchester,2 David C Bulmer,1 Gordon McMurray,2 Ewan St John Smith1 ► Additional material is ABSTRact pathways to the central nervous system (CNS).1 In published online only. To view Objective Integration of nutritional, microbial and the colorectum, sensory innervation is organised please visit the journal online (http:// dx. doi. org/ 10. 1136/ inflammatory events along the gut-brain axis can alter into two main pathways: thoracolumbar (TL) spinal gutjnl- 2017- 315631). bowel physiology and organism behaviour. Colonic afferents projecting via the lumbar splanchnic sensory neurons activate reflex pathways and give nerve (LSN) and lumbosacral (LS) spinal afferents 1Department of Pharmacology, University of Cambridge, rise to conscious sensation, but the diversity and projecting via the pelvic nerve (PN) that are respon- Cambridge, UK division of function within these neurons is poorly sible for transducing conscious sensations of full- 2Neuroscience and Pain understood. The identification of signalling pathways ness, discomfort, urgency and pain, in addition to Research Unit, Pfizer, contributing to visceral sensation is constrained by a reflex actions.2 Cambridge, UK paucity of molecular markers. Here we address this by Visceral sensory afferents act to maintain many comprehensive transcriptomic profiling and unsupervised aspects of GI physiology, such as continence and Correspondence to James R F Hockley, Department clustering of individual mouse colonic sensory neurons.
    [Show full text]
  • Clinical Application of Whole Transcriptome Sequencing for The
    Walter et al. BMC Cancer (2021) 21:886 https://doi.org/10.1186/s12885-021-08635-5 RESEARCH Open Access Clinical application of whole transcriptome sequencing for the classification of patients with acute lymphoblastic leukemia Wencke Walter1*, Rabia Shahswar2, Anna Stengel1, Manja Meggendorfer1, Wolfgang Kern1, Torsten Haferlach1 and Claudia Haferlach1 Abstract Background: Considering the clinical and genetic characteristics, acute lymphoblastic leukemia (ALL) is a rather heterogeneous hematological neoplasm for which current standard diagnostics require various analyses encompassing morphology, immunophenotyping, cytogenetics, and molecular analysis of gene fusions and mutations. Hence, it would be desirable to rely on a technique and an analytical workflow that allows the simultaneous analysis and identification of all the genetic alterations in a single approach. Moreover, based on the results with standard methods, a significant amount of patients have no established abnormalities and hence, cannot further be stratified. Methods: We performed WTS and WGS in 279 acute lymphoblastic leukemia (ALL) patients (B-cell: n = 211; T-cell: n = 68) to assess the accuracy of WTS, to detect relevant genetic markers, and to classify ALL patients. Results: DNA and RNA-based genotyping was used to ensure correct WTS-WGS pairing. Gene expression analysis reliably assigned samples to the B Cell Precursor (BCP)-ALL or the T-ALL group. Subclassification of BCP-ALL samples was done progressively, assessing first the presence of chromosomal rearrangements by the means of fusion detection. Compared to the standard methods, 97% of the recurrent risk-stratifying fusions could be identified by WTS, assigning 76 samples to their respective entities. Additionally, read-through fusions (indicative of CDKN2A and RB1 gene deletions) were recurrently detected in the cohort along with 57 putative novel fusions, with yet untouched diagnostic potentials.
    [Show full text]
  • Lysophosphatidic Acid and Its Receptors: Pharmacology and Therapeutic Potential in Atherosclerosis and Vascular Disease
    JPT-107404; No of Pages 13 Pharmacology & Therapeutics xxx (2019) xxx Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease Ying Zhou a, Peter J. Little a,b, Hang T. Ta a,c, Suowen Xu d, Danielle Kamato a,b,⁎ a School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia b Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China c Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia d Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA article info abstract Available online xxxx Lysophosphatidic acid (LPA) is a collective name for a set of bioactive lipid species. Via six widely distributed G protein-coupled receptors (GPCRs), LPA elicits a plethora of biological responses, contributing to inflammation, Keywords: thrombosis and atherosclerosis. There have recently been considerable advances in GPCR signaling especially Lysophosphatidic acid recognition of the extended role for GPCR transactivation of tyrosine and serine/threonine kinase growth factor G-protein coupled receptors receptors. This review covers LPA signaling pathways in the light of new information. The use of transgenic and Atherosclerosis gene knockout animals, gene manipulated cells, pharmacological LPA receptor agonists and antagonists have Gproteins fi β-arrestins provided many insights into the biological signi cance of LPA and individual LPA receptors in the progression Transactivation of atherosclerosis and vascular diseases.
    [Show full text]
  • Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses
    RESEARCH ARTICLE Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses Emi Takamitsu1, Motoaki Otsuka1, Tatsuki Haebara1, Manami Yano1, Kanako Matsuzaki1, Hirotsugu Kobuchi3, Koko Moriya1, Toshihiko Utsumi1,2* 1 Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753– 8515, Japan, 2 Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753–8515, Japan, 3 Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700–8558, Japan * [email protected] OPEN ACCESS Abstract Citation: Takamitsu E, Otsuka M, Haebara T, Yano To identify physiologically important human N-myristoylated proteins, 90 cDNA clones pre- M, Matsuzaki K, Kobuchi H, et al. (2015) Identification dicted to encode human N-myristoylated proteins were selected from a human cDNA of Human N-Myristoylated Proteins from Human resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic Complementary DNA Resources by Cell-Free and N Cellular Metabolic Labeling Analyses. PLoS ONE 10 -myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After data- (8): e0136360. doi:10.1371/journal.pone.0136360 base searches to exclude known human N-myristoylated proteins, 37 cDNA clones were N Editor: Jamil Saad, University of Alabama at selected as potential human -myristoylated proteins. The susceptibility of these cDNA Birmingham, UNITED STATES clones to protein N-myristoylation was first evaluated using fusion proteins in which the N- Received: May 12, 2015 terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, pro- tein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic Accepted: July 31, 2015 labeling experiments both in an insect cell-free protein synthesis system and in transfected Published: August 26, 2015 human cells.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • NIH Public Access Author Manuscript Neuron Glia Biol
    NIH Public Access Author Manuscript Neuron Glia Biol. Author manuscript; available in PMC 2006 May 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Neuron Glia Biol. 2006 May ; 2(2): 125±138. Purinergic receptors activating rapid intracellular Ca2+ increases in microglia Alan R. Light1, Ying Wu2, Ronald W. Hughen1, and Peter B. Guthrie3 1 Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA 2 Oral Biology Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27510, USA 3 Scientific Review Administrator, Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Room 4142 Msc 7850, Bethesda, MD 20892-7850, USA Abstract We provide both molecular and pharmacological evidence that the metabotropic, purinergic, P2Y6, P2Y12 and P2Y13 receptors and the ionotropic P2X4 receptor contribute strongly to the rapid calcium response caused by ATP and its analogues in mouse microglia. Real-time PCR demonstrates that the most prevalent P2 receptor in microglia is P2Y6 followed, in order, by P2X4, P2Y12, and P2X7 = P2Y13. Only very small quantities of mRNA for P2Y1, P2Y2, P2Y4, P2Y14, P2X3 and P2X5 were found. Dose-response curves of the rapid calcium response gave a potency order of: 2MeSADP>ADP=UDP=IDP=UTP>ATP>BzATP, whereas A2P4 had little effect. Pertussis toxin partially blocked responses to 2MeSADP, ADP and UDP. The P2X4 antagonist suramin, but not PPADS, significantly blocked responses to ATP. These data indicate that P2Y6, P2Y12, P2Y13 and P2X receptors mediate much of the rapid calcium responses and shape changes in microglia to low concentrations of ATP, presumably at least partly because ATP is rapidly hydrolyzed to ADP.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Supplementary Material
    Supplementary Material Table S1: Significant downregulated KEGGs pathways identified by DAVID following exposure to five cinnamon- based phenylpropanoids (p < 0.05). p-value Term: Genes (Benjamini) Cytokine-cytokine receptor interaction: FASLG, TNFSF14, CXCL11, IL11, FLT3LG, CCL3L1, CCL3L3, CXCR6, XCR1, 2.43 × 105 RTEL1, CSF2RA, TNFRSF17, TNFRSF14, CCNL2, VEGFB, AMH, TNFRSF10B, INHBE, IFNB1, CCR3, VEGFA, CCR2, IL12A, CCL1, CCL3, CXCL5, TNFRSF25, CCR1, CSF1, CX3CL1, CCL7, CCL24, TNFRSF1B, IL12RB1, CCL21, FIGF, EPO, IL4, IL18R1, FLT1, TGFBR1, EDA2R, HGF, TNFSF8, KDR, LEP, GH2, CCL13, EPOR, XCL1, IFNA16, XCL2 Neuroactive ligand-receptor interaction: OPRM1, THRA, GRIK1, DRD2, GRIK2, TACR2, TACR1, GABRB1, LPAR4, 9.68 × 105 GRIK5, FPR1, PRSS1, GNRHR, FPR2, EDNRA, AGTR2, LTB4R, PRSS2, CNR1, S1PR4, CALCRL, TAAR5, GABRE, PTGER1, GABRG3, C5AR1, PTGER3, PTGER4, GABRA6, GABRA5, GRM1, PLG, LEP, CRHR1, GH2, GRM3, SSTR2, Chlorogenic acid Chlorogenic CHRM3, GRIA1, MC2R, P2RX2, TBXA2R, GHSR, HTR2C, TSHR, LHB, GLP1R, OPRD1 Hematopoietic cell lineage: IL4, CR1, CD8B, CSF1, FCER2, GYPA, ITGA2, IL11, GP9, FLT3LG, CD38, CD19, DNTT, 9.29 × 104 GP1BB, CD22, EPOR, CSF2RA, CD14, THPO, EPO, HLA-DRA, ITGA2B Cytokine-cytokine receptor interaction: IL6ST, IL21R, IL19, TNFSF15, CXCR3, IL15, CXCL11, TGFB1, IL11, FLT3LG, CXCL10, CCR10, XCR1, RTEL1, CSF2RA, IL21, CCNL2, VEGFB, CCR8, AMH, TNFRSF10C, IFNB1, PDGFRA, EDA, CXCL5, TNFRSF25, CSF1, IFNW1, CNTFR, CX3CL1, CCL5, TNFRSF4, CCL4, CCL27, CCL24, CCL25, CCL23, IFNA6, IFNA5, FIGF, EPO, AMHR2, IL2RA, FLT4, TGFBR2, EDA2R,
    [Show full text]