CREB-Mediated Enhancement of Hippocampus-Dependent Memory Consolidation and Reconsolidation

Total Page:16

File Type:pdf, Size:1020Kb

CREB-Mediated Enhancement of Hippocampus-Dependent Memory Consolidation and Reconsolidation CREB-mediated enhancement of hippocampus-dependent memory consolidation and reconsolidation by Melanie Jay Sekeres A thesis submitted in conformity with the requirements for the degree of Doctorate of Philosophy (PhD) Department of Physiology University of Toronto © Copyright by Melanie Jay Sekeres, 2012 CREB-mediated enhancement of hippocampus-dependent memory consolidation and reconsolidation Melanie Jay Sekeres PhD Department of Physiology University of Toronto 2012 Abstract Memory stabilization following encoding (synaptic consolidation) or memory reactivation (reconsolidation) requires gene expression and protein synthesis. Although consolidation and reconsolidation may be mediated by distinct molecular mechanisms, disrupting the function of the transcription factor CREB (cAMP responsive element binding protein) impairs both processes. We use a gain-of-function approach to show that CREB (and CREB-coactivator CRTC1) can facilitate both synaptic and systems consolidation and reconsolidation. We first examine whether acutely increasing CREB levels in the dorsal hippocampus is sufficient to enhance spatial memory formation in the watermaze. Locally and acutely increasing CREB in the dorsal hippocampus using viral vectors is sufficient to induce robust spatial memory in two conditions which do not normally support consolidation, weakly-trained wild-type (WT) mice and strongly-trained mutant mice with brain-wide disrupted CREB function. ii CRTCs (CREB regulated transcription co-activators) are a powerful co-activator of CREB, but their role in memory is virtually unexplored. We show, for the first time, that the novel CREB co-activator CRTC1 enhances memory consolidation. Locally increasing CRTC1 (or CREB) in the dorsal hippocampus of WT mice prior to weak context fear conditioning facilitates consolidation of precise context memory. Last, we show that CREB or CRTC1 facilitates precise and enduring memory consolidation and reconsolidation. Acute enhancement of hippocampal CREB or CRTC1 during initial synaptic consolidation can maintain precision of remote context memory, while increasing CREB or CRTC1 just prior to reactivation of a weak remote context memory enhances context memory reconsolidation. These gain-of-function manipulations indicate that increasing CRTC1 or CREB function is sufficient to enhance the strength of new, as well as reactivated established, memories without compromising memory specificity. Together with previous results, these findings indicate that CREB is both necessary and sufficient for hippocampal-dependent memory formation, and underline its pivotal role in the hippocampal molecular machinery underlying long-term memory consolidation and reconsolidation. iii Acknowledgments I would like to acknowledge my PhD supervisor, Dr. Sheena Josselyn for her continuous mentorship throughout my graduate program. She is one of the toughest women scientists I have known, and she has been a tremendous example of dedication to science, and to pop culture. The contributions of Dr. Paul Frankland have also been an invaluable part of my graduate program, both as a collaborator and as a sports fan. Life in the lab was always a fun and supportive environment thanks to the motley crew of graduate students and post-doctoral fellows in the Josselyn and Frankland labs. I would especially like to acknowledge Alonso Martinez-Cannabal, Anne Wheeler, Katherine Akers, Maithe Arruda-Carvalho, Christy Cole, Adelaide Yiu, Scellig Stone, and Catia Teixiera for years of collaboration, entertainment and enabling. I also acknowledge the in-vitro work done by Valentina Mercaldo and Derya Sargin (Chapter 4). Daily life in the lab would not have been nearly as smooth without the contributions of our outstanding lab manager Toni Decristofaro, and technicians Mika Yamamoto and Russell Braybon. I thank Dr. Martin Wojtowicz and Dr. Zhengping Jia for their suggestions and guidance on my graduate supervisory committee. I also acknowledge the contributions of Dr. Gordon Winocur for his ongoing advice and constructive criticism, and Jeff Winocur for his sharp eye and wit, and for his tolerance. Funding of my graduate program was provided by CIHR Frederick Banting and Charles Best Canada Graduate scholarship - Master’s and Doctoral awards, Sick Kids Research Institute (Restracomp), the University of Toronto’s School of Graduate Studies (SGS), the University of Toronto’s Faculty of Medicine, and the University of Toronto Neuroscience Program (UTNP). iv Table of Contents Acknowledgments ........................................................................................................... iv Table of Contents ............................................................................................................. v List of Figures ................................................................................................................ xii List of Abbreviations ....................................................................................................... xv 1 INTRODUCTION ......................................................................................................... 1 1.1 Consolidation ........................................................................................................ 2 1.1.1 Synaptic consolidation ................................................................................ 3 1.2 Transcription factors .............................................................................................. 5 1.2.1 Transcriptional regulation by CREB............................................................ 6 1.2.2 CREB co-activators .................................................................................. 11 1.3 CREB’s role in regulating behaviour ................................................................... 15 1.3.1 Identification of CREB as a key mediator of memory consolidation ......... 16 1.3.2 Methods of genetically manipulating CREB function in the mammalian brain ......................................................................................................... 19 1.3.3 A role for CRTCs in memory consolidation? ............................................. 27 1.4 Introduction to Systems Consolidation ................................................................ 29 1.4.1 The hippocampus ..................................................................................... 31 1.4.2 Theories of systems consolidation of remote memory.............................. 41 1.4.3 Reconsolidation ........................................................................................ 44 1.4.4 Time-dependent reorganization of remote memories ............................... 45 1.5 Putting it all together: CREB is both necessary and sufficient for memory consolidation ....................................................................................................... 48 1.5.1 CREB is necessary for memory consolidation .......................................... 48 1.5.2 CREB is sufficient for memory consolidation ............................................ 54 v 1.5.3 CREB is necessary for memory reconsolidation ...................................... 58 1.6 The role of CREB co-activators in memory consolidation ................................... 62 1.6.1 CBP/p300 disruption impairs memory consolidation ................................ 62 1.6.2 What is the role of CRTCs in memory consolidation? .............................. 63 1.7 Goals of this thesis: Hypotheses and predictions ................................................ 64 2 GENERAL METHODS............................................................................................... 66 2.1 Mice .................................................................................................................... 66 2.1.1 Wild-type (WT) ......................................................................................... 66 2.1.2 CREBαΔ−/− mice ......................................................................................... 66 2.2 Preparation of HSV Vectors ................................................................................ 66 2.3 Surgery................................................................................................................ 68 2.4 General behavioural procedures ......................................................................... 68 2.4.1 Spatial watermaze experiments ............................................................... 68 2.4.2 Context fear conditioning experiments ..................................................... 72 2.5 Statistical analyses .............................................................................................. 74 2.6 Histology ............................................................................................................. 74 2.7 Immunohistochemistry ........................................................................................ 76 3 Dorsal hippocampal CREB is both necessary and sufficient for spatial memory ....... 77 3.1 Abstract ............................................................................................................... 77 3.2 Introduction ......................................................................................................... 77 3.2.1 Experiment 1: Effects of increasing or suppressing CREB on the consolidation of spatial memory that is only weakly acquired in control mice. ........................................................................................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Non-Canonical Activation of CREB Mediates Neuroprotection in a C
    bioRxiv preprint doi: https://doi.org/10.1101/261420; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Non-Canonical Activation of CREB Mediates Neuroprotection in a C. elegans Model of Excitotoxic Necrosis K. Genevieve Feldmann1,2, Ayesha Chowdhury1,2, Jessi Becker3, N’Gina McAlpin3, Taqwa Ahmed4, Syed Haider3, Jian X. Richard Xia4, Karina Diaz4, Monal G. Mehta5, and Itzhak Mano1,2,4,CA 1 Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY) 2 The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center 3 Undergraduate Program in Biology, CCNY, CUNY 4 The Sophie Davis BS/MD program, CUNY School of Medicine 5 Robert Wood Johnson Medical School, Rutgers – The State University of New Jersey CA Corresponding Author: Itzhak Mano, Ph.D. Department of Molecular, Cellular and Biomedical Sciences Center for Discovery & Innovation, Cluster on Neural Development and Repair The CUNY School of Medicine at City College & The CUNY Graduate Center The City University of New York CDI building room 3-382 85 St. Nicholas Terrace, New York, NY 10031 E-mail: [email protected] Office Phone:(212) 6507965 Lab Phone:(212) 6505334 www.manolab.org Running Title: Non-canonical CREB activation in nematode excitotoxicity 1 bioRxiv preprint doi: https://doi.org/10.1101/261420; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • The Coactivator CRTC1 Promotes Cell Proliferation and Transformation Via AP-1
    The coactivator CRTC1 promotes cell proliferation and transformation via AP-1 Gianluca Canettieria,1, Sonia Conia,2, Michele Della Guardiaa,2, Valentina Nocerinoa, Laura Antonuccia, Laura Di Magnoa, Robert Screatonc, Isabella Screpantia,b, Giuseppe Gianninia, and Alberto Gulinoa,b,d,1 aDepartment of Experimental Medicine and bPasteur Institute, Cenci Bolognetti Foundation, Sapienza University, Rome, Italy; cApoptosis Research Centre, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada; and dNeuromed Institute, Pozzilli, Italy Edited by Peter K. Vogt, Scripps Research Institute, La Jolla, CA, and approved December 5, 2008 (received for review September 3, 2008) Regulation of gene expression in response to mitogenic stimuli is a Besides TPA, AP-1 also is activated by growth factors, cytokines, critical aspect underlying many forms of human cancers. The AP-1 stress signals, and oncoproteins, and thus is involved in various complex mediates the transcriptional response to mitogens, and its cellular processes, including cell proliferation, differentiation, deregulation causes developmental defects and tumors. We report cell survival, apoptosis, and neoplastic transformation (14). that the coactivator CRTC1 cyclic AMP response element-binding Whereas the biological role of the AP-1 transcription factors protein (CREB)-regulated transcription coactivator 1 is a potent and is well established, the molecular mechanism through which indispensable modulator of AP-1 function. After exposure of cells to these factors promote target gene activation remains incom- the AP-1 agonist 12-O-tetradecanoylphorbol-13-acetate (TPA), CRTC1 pletely understood. In this report, we demonstrate that CRTC1 is recruited to AP-1 target gene promoters and associates with c-Jun is a potent, indispensable modulator of AP-1 activity that and c-Fos to activate transcription.
    [Show full text]
  • Role of CREB/CRTC1-Regulated Gene Transcription During Hippocampal-Dependent Memory in Alzheimer’S Disease Mouse Models
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Institut de Neurociències Universitat Autònoma de Barcelona Departament de Bioquímica i Biologia Molecular Unitat de Bioquímica, Facultat de Medicina Role of CREB/CRTC1-regulated gene transcription during hippocampal-dependent memory in Alzheimer’s disease mouse models Arnaldo J. Parra Damas TESIS DOCTORAL Bellaterra, 2015 Institut de Neurociències Departament de Bioquímica i Biologia Molecular Universitat Autònoma de Barcelona Role of CREB/CRTC1-regulated gene transcription during hippocampal-dependent memory in Alzheimer’s disease mouse models Papel de la transcripción génica regulada por CRTC1/CREB durante memoria dependiente de hipocampo en modelos murinos de la enfermedad de Alzheimer Memoria de tesis doctoral presentada por Arnaldo J. Parra Damas para optar al grado de Doctor en Neurociencias por la Universitat Autonòma de Barcelona. Trabajo realizado en la Unidad de Bioquímica y Biología Molecular de la Facultad de Medicina del Departamento de Bioquímica y Biología Molecular de la Universitat Autònoma de Barcelona, y en el Instituto de Neurociencias de la Universitat Autònoma de Barcelona, bajo la dirección del Doctor Carlos Saura Antolín.
    [Show full text]
  • Chapter 2 2. Q Labelling in Hyoscyamine
    Durham E-Theses The biosynthesis of the tropane alkaloid hyoscyamine in datura stramonium Wong, Chi W. How to cite: Wong, Chi W. (1999) The biosynthesis of the tropane alkaloid hyoscyamine in datura stramonium, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4310/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk COPYRIGHT The copyright of this thesis rests with the author. No quotation form it should be published without prior consent, and any information derived from this thesis should be acknowledged. DECLARATION The work contained in this thesis was carried out in the Department of Chemistry at the University of Durham between October 1995 and September 1998. All the work was carried out by the author, unless otherwise indicated. It has not been previously submitted for a degree at this or any other university.
    [Show full text]
  • Copyright © 2019 by Yue Wu
    Studies in Using Gold Nanoparticles in Treating Cancer and Inhibiting Metastasis A Dissertation Presented to The Academic Faculty by Yue Wu In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry and Biochemistry Georgia Institute of Technology May 2019 COPYRIGHT © 2019 BY YUE WU Studies in Using Gold Nanoparticles in Treating Cancer and Inhibiting Metastasis Approved by: Dr. Mostafa A. El-Sayed, Advisor Dr. Robert Dickson School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Ingeborg Schmidt-Krey Dr. Zhong Lin Wang School of Chemistry and Biochemistry School of Material Science and Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Ronghu Wu School of Chemistry and Biochemistry Georgia Institute of Technology Date Approved: March 26, 2019 To My Family ACKNOWLEDGEMENTS First, I would like to thank my advisor, Prof. Mostafa A. El-Sayed, for his guidance, encouragement, support, sharing with me his life-long enthusiasm and dedication towards scientific research, and the opportunity he provided me to move into the nanotechnology and nanomedicine field. His optimistic, positive, modest, and humorous personality is always inspiring me. I would also like to acknowledge the professors during my PhD time, including Prof. Ning Fang, for his guidance of optical imaging and great support for my research, Prof. Todd Sulchek for his help with cell mechanical measurement, Profs. Ronghu Wu, Fangjun Wang, and Facundo Fernandez for their help with mass spectrometry based proteomics and metabolomics, Profs. Ivan El-Sayed and Dong Shin for their guidance on animal work or clinical applications, and Prof.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Common Genetic Aberrations Associated with Metabolic Interferences in Human Type-2 Diabetes and Acute Myeloid Leukemia: a Bioinformatics Approach
    International Journal of Molecular Sciences Article Common Genetic Aberrations Associated with Metabolic Interferences in Human Type-2 Diabetes and Acute Myeloid Leukemia: A Bioinformatics Approach Theodora-Christina Kyriakou 1, Panagiotis Papageorgis 1,2 and Maria-Ioanna Christodoulou 3,* 1 Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus; [email protected] (T.-C.K.); [email protected] (P.P.) 2 European University Cyprus Research Center, Nicosia 2404, Cyprus 3 Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus * Correspondence: [email protected] Abstract: Type-2 diabetes mellitus (T2D) is a chronic metabolic disorder, associated with an increased risk of developing solid tumors and hematological malignancies, including acute myeloid leukemia (AML). However, the genetic background underlying this predisposition remains elusive. We herein aimed at the exploration of the genetic variants, related transcriptomic changes and disturbances in metabolic pathways shared by T2D and AML, utilizing bioinformatics tools and repositories, as well as publicly available clinical datasets. Our approach revealed that rs11709077 and rs1801282, on PPARG, rs11108094 on USP44, rs6685701 on RPS6KA1 and rs7929543 on AC118942.1 comprise Citation: Kyriakou, T.-C.; common SNPs susceptible to the two diseases and, together with 64 other co-inherited proxy SNPs, Papageorgis, P.; Christodoulou, M.-I. may affect the expression patterns of metabolic genes, such as USP44, METAP2, PPARG, TIMP4 and Common Genetic Aberrations RPS6KA1, in adipose tissue, skeletal muscle, liver, pancreas and whole blood.
    [Show full text]
  • Analysis of Chemotherapeutic Response in Ovarian Cancers Using Publicly Available High-Throughput Data
    Published OnlineFirst May 21, 2014; DOI: 10.1158/0008-5472.CAN-14-0186 Cancer Therapeutics, Targets, and Chemical Biology Research Analysis of Chemotherapeutic Response in Ovarian Cancers Using Publicly Available High-Throughput Data Jesus Gonzalez Bosquet1, Douglas C. Marchion2, HyeSook Chon3, Johnathan M. Lancaster3, and Stephen Chanock4 Abstract A third of patients with epithelial ovarian cancer (OVCA) will not respond to standard treatment. The determination of a robust signature that predicts chemoresponse could lead to the identification of molecular markers for response as well as possible clinical implementation in the future to identify patients at risk of failing therapy. This pilot study was designed to identify biologic processes affecting candidate pathways associated with chemoresponse and to create a robust gene signature for follow-up studies. After identifying common pathways associated with chemoresponse in serous OVCA in three independent gene-expression experiments, we assessed the biologic processes associated with them using The Cancer Genome Atlas (TCGA) dataset for serous OVCA. We identified differential copy-number alterations (CNA), mutations, DNA meth- ylation, and miRNA expression between patients that responded to standard treatment and those who did not or recurred prematurely. We correlated these significant parameters with gene expression to create a signature of 422 genes associated with chemoresponse. A consensus clustering of this signature identified two differentiated clusters with unique molecular patterns: cluster 1 was significant for cellular signaling and immune response (mainly cell-mediated); and cluster 2 was significant for pathways involving DNA-damage repair and replication, cell cycle, and apoptosis. Validation through consensus clustering was performed in five independent OVCA gene-expression experiments.
    [Show full text]
  • Mouse Fertility Is Not Dependent on the CREB Coactivator Crtc1
    CORRESPONDENCE Mouse fertility is not dependent on the CREB coactivator Crtc1 To the Editor: Cartpt and Kiss1 genes, which encode neuropeptides that mediate lep- Cyclic AMP response element–binding protein (CREB)-regulated tran- tin’s effects on satiety and fertility. Furthermore, they provided evidence scription coactivators (Crtcs), also known as transducers of regulated that Crtc1-mutant mice have a deficit in circulating luteinizing hormone CREB activity (TORCs), are coactivators that function as calcium- and levels, which is a characteristic of infertility. On the basis of their results, cyclic AMP–sensitive coincidence detectors1,2. Ubiquitously expressed these authors concluded that the CREB-Crtc1 pathway mediates the cen- Crtc2 is a key regulator of energy metabolism modulating gluconeo- tral effects of hormones and nutrients on energy balance and fertility. genesis and insulin signaling3–5. Crtc1 is primarily expressed in the To follow up our evaluation of Crtc1’s physiological role in the brain6, brain, where its functions still need to be determined more clearly. Our and before the publication of the article by Altarejos et al.7, we inde- previous work showed that Crtc1 is required for the maintenance of pendently generated a Crtc1-trapped mouse line using the same strat- late-phase long-term potentiation in the mammalian hippocampus, sug- egy. However, unlike their Crtc1-mutant mice, our Crtc1–/– males and gesting that it may be involved in learning and memory processes6. females are fertile, thus questioning the crucial role of Crtc1 for mouse Altarejos et al.7 recently characterized a Crtc1-trapped mouse line fertility. and found that Crtc1–/– mice are hyperphagic, obese and infertile.
    [Show full text]
  • International Application Number: Published: PCT/US20 19/052026 — with International Search Report (Art
    ( (51) International Patent Classification: TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, C12Q 1/6886 (2018.01) KM, ML, MR, NE, SN, TD, TG). (21) International Application Number: Published: PCT/US20 19/052026 — with international search report (Art. 21(3)) (22) International Filing Date: — before the expiration of the time limit for amending the 19 September 2019 (19.09.2019) claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/733,566 19 September 2018 (19.09.2018) US (71) Applicant: BLUESTAR GENOMICS, INC. [US/US]; 185 Berry Street, Suite 210, San Francisco, California 94107 (US). (72) Inventors: ARENSDORF, Patrick A.; 185 Berry Street, Suite 210, San Francisco, California 94107 (US). LEVY, Samuel; 185 Berry Street, Suite 210, San Francisco, Cali¬ fornia 94107 (US). KU, Chin-Jen; 185 Berry Street, Suite 210, San Francisco, California 94107 (US). COLLIN, Francois; 185 Berry Street, Suite 210, San Francisco, Cal¬ ifornia 94107 (US). (74) Agent: REED, Dianne E. et al.; 555 Bryant Street, Suite 820, Palo Alto, California 94301 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • CRTC1/MAML2 Gain-Of-Function Interactions with MYC Create A
    CRTC1/MAML2 gain-of-function interactions with MYC PNAS PLUS create a gene signature predictive of cancers with CREB–MYC involvement Antonio L. Amelioa,1, Mohammad Fallahib, Franz X. Schauba, Min Zhangc, Mariam B. Lawania, Adam S. Alpersteina, Mark R. Southernd, Brandon M. Younge, Lizi Wuf, Maria Zajac-Kayec,g, Frederic J. Kayec, John L. Clevelanda, and Michael D. Conkrighta,d,2 aDepartment of Cancer Biology, bIT Informatics, dTranslational Research Institute and Department of Molecular Therapeutics, and eGenomics Core, The Scripps Research Institute, Jupiter, FL 33458; and Departments of cMedicine, fMolecular Genetics and Microbiology, and gAnatomy and Cell Biology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 Edited* by Marc Montminy, The Salk Institute for Biological Studies, La Jolla, CA, and approved July 8, 2014 (received for review October 11, 2013) Chimeric oncoproteins created by chromosomal translocations are histology. As such, these are a class of epithelial cell malignancies among the most common genetic mutations associated with tu- that originate from mucous/serous glands present at different morigenesis. Malignant mucoepidermoid salivary gland tumors, as locations in the body (6, 8–15). well as a growing number of solid epithelial-derived tumors, can The genesis of these adult solid tumors was thought to be due arise from a recurrent t (11, 19)(q21;p13.1) translocation that gen- to the direct activation of both CREB and NOTCH/RBPJ, the erates an unusual chimeric cAMP response element binding protein transcription factor targets of the CRTC1 and MAML2 coac- (CREB)-regulated transcriptional coactivator 1 (CRTC1)/mastermind- tivators involved in the t (11, 19) translocation, respectively like 2 (MAML2) (C1/M2) oncoprotein comprised of two transcrip- (6, 15).
    [Show full text]